1. Trang chủ
  2. » Giáo án - Bài giảng

Sáng kiến Giải bài toán bằng nhiều phương pháp

7 1,1K 16
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 102 KB

Nội dung

Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp” Đề tài: I. Đặt vấn đề: Từ thực tiễn cuộc sống khi một vấn đề được đưa ra thì thường có rất nhiều ý kiến thảo luận khác nhau nhưng tất cả những ý kiến ấy đều xoay quanh giải quyết vấn đề đó. Và trong thực tế đối với những em học sinh đang ngồi học trên ghế nhà trường không ít em cũng đã đưa ra những thắc mắc khi nhận được từ giáo viên một đề toán và yêu cầu giải thì có em lại bảo: Tại sao bài giải của tôi và bạn lại khác nhau thế ? Cách giải của bạn như thế này còn cách giải của tôi thì lại khác và rồi tại sao bài giải của tôi và bạn lại có kết quả giống nhau ? Hoặc có nhiều học sinh lại thắc mắc tại sao bài giải này giáo viên A giải cách này giáo viên B lại giải cách kia. Vậy chúng ta nên giải theo cách nào ? Đối với bản thân tôi là một giáo viên giảng dạy bộ môn Toán. Tôi nhận thấy nếu truyền thụ kiến thức cho các em một cách cứng nhắc, rập khuôn mà thiếu tính sáng tạo, linh hoạt thì có thể sẽ làm cho khả năng tư duy của học sinh bò hạn chế. Vì vậy tôi đề xuất sáng kiến khi giải một bài toán có thể có nhiều phương pháp giải phù hợp với từng đối tượng học sinh. II. NỘI DUNG: 1. Cơ sở lý luận: Đối với những em học sinh khi tiếp thu các kiến thức điều quan trọng là các em phải biết xây dựng tri thức mới xuất phát từ những tri thức ban đầu. Để làm điều này cần đến các thao tác tư duy, khả năng suy đoán và tưởng tượng, tư duy lôgic và ngôn ngữ chính xác, những yếu tố cấu thành năng lực trí tuệ. Những yếu tố cần phải có để học tập môn Toán và cũng là những yếu tố mà việc học tập môn Toán có thể mang đến cho người học. Chính vì thế giáo viên giảng dạy môn Toán cần tạo điều kiện thật tốt giúp các em phát huy khả năng tư duy cao độ, giải toán với nhiều cách khác nhau giúp học sinh giải tỏa những nghi ngờ, thắc mắc trong quá trình giải toán. Thực hiện theo phương châm đổi mới phương pháp dạy học là để học sinh suy nghó nhiều hơn, làm nhiều hơn “ Thầy chủ đạo – trò chủ động”. Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 1 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp” 2. Nội dung cụ thể: Sau khi truyền thụ các kiến thức phần lý thuyết, giáo viên có thể tùy vào từng đối tượng học sinh ở mỗi lớp mà giới thiệu hay yêu cầu các cách giải khác nhau của một bài toán. Chẳng hạn: Bài toán 1: Khi cho học sinh thực hiện phép nhân một số nguyên với một phân số, có thể hướng dẫn học sinh làm với hai cách. - Nhân số đó với tử rồi lấy kết quả chia cho mẫu. - Chia số đó cho mẫu rồi lấy kết quả nhân với tử. Ví dụ: Thực hiện phép tính: ( ) 3 2 24 ⋅− + Cách 1: ( ) 16 3 48 3 224 3 2 24 −= − = ⋅− =⋅− + Cách 2: ( ) ( ) 16282 3 24 3 2 24 −=⋅−=⋅ − =⋅− Bài toán 2: Tính giá trò của biểu thức: 2 5 22 3 13 4 2 7 13 5 11 2 +− −+ - Đa số các em học sinh khi gặp bài toán này các em thường qui đồng mẫu số. - Giáo viên có thể giới thiệu với học sinh một cách làm khác: ( ) ( ) 764 75 1 764 839 7153988 100111052 13112 2 5 22 3 13 4 13112 2 7 13 5 11 2 2 5 22 3 13 4 2 7 13 5 11 2 −= − = +− −+ = ⋅⋅⋅       +− ⋅⋅⋅       −+ = +− −+ Bài toán 3: Khi yêu cầu học sinh vẽ tia phân giác của một góc có thể hướng dẫn học sinh các cách làm như sau:  Cách 1: Dùng thước đo góc.  Cách 2: Dùng thước và compa.  Cách 3: Gấp giấy (nếu có thể). Bài toán 4: Chứng minh đảng thức: ( ) ( ) ( ) cbacabcba +=−−+ Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 2 764 75 1 764 839 7153988 100111052 286 7153988 286 100111052 2 5 22 3 13 4 2 7 13 5 11 2 −= − = +− −+ = = +− −+ = +− −+ Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp” - Cách 1: Biến đổi vế trái thành vế phải: ( ) ( ) ( ) bacbcacbcabacabcabcba +=+=+−+=−−+ Vậy ( ) ( ) ( ) cbacabcba +=−−+ - Cách 2: Vế trái: ( ) ( ) bcacbcabacabcabcba +=+−+=−−+ Vế phải: ( ) bcaccba +=+ Vậy ( ) ( ) ( ) cbacabcba +=−−+ Bài toán 5: Tính tổng đại số sau: 5 – 10 + 15 – 20 + 25 – 30 - Cách 1: 5 – 10 + 15 – 20 + 25 – 30 = 5 + 15 + 25 – 10 – 20 – 30 = 45 – 60 = -15 - Cách 2: 5 – 10 + 15 – 20 + 25 – 30 = ( ) ( ) ( ) 30252015105 −+−+− = ( ) ( ) 15555 −=−+−+− Bài toán 6: Xác đònh dạng của tích sau: - Cách 1: ( ) abab bbaa ba baab = +++= += ⋅+=⋅ 100101000 1011010 10110101 - Cách 2: ab x 101 ab ab abab Bài toán 7: Tìm số nguyên x, biết: ( ) ( ) 4133274 −−=−− x - Cách 1: 11 9244 9244 −= =+− −=− x x x - Cách 2: 11 13327 4133274 −= =++− +−=+− x x x Bài toán 8: Tính giá trò của biểu thức: Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 3 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp”       −⋅= 4 3 3 1 12N - Cách: 1: 5 12 5 12 12 94 12 4 3 3 1 12 −= − ⋅=       − ⋅=       −⋅= N N N - Cách 2: 594 4 3 12 3 1 12 4 3 3 1 12 −=−= ⋅−⋅=       −⋅= N N N Bài toán 9: Giải phương trình: ( ) 73 7 1 1 7 3 −=− xxx - Cách 1: ( ) ( ) ( ) ( ) ( )     = = ⇔     =− =− ⇔ =       −−⇔ =−−−⇔ =+−−⇔ =−−−⇔ −=− 3 7 x 1x 01x 7 3 0x1 01x 7 3 x1 0x1x1x 7 3 0xx 7 3 1x 7 3 07x3x 7 1 1x 7 3 7x3x 7 1 1x 7 3 2 Vậy tập nghiệm của phương trình là:       = 3 7 ;1S Cách 2: Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 4 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp” ( ) ( ) ( ) ( ) ( ) ( ) ( )     = = ⇔    =− =− ⇔ =−−⇔ =−−−⇔ =−=−⇔ = − = − ⇔ −=− 1 3 7 01 073 0173 07373 07373 0 7 73 7 73 73 7 1 1 7 3 x x x x xx xxx xxx xxx xxx Vậy tập nghiệm của phương trình là:       = 3 7 ;1S Bài toán 10: Sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần: sin78 0 , cos14 0 , sin 47 0 , cos87 0 - Cách 1: Làm bài theo cách thông thường Ta có: cos14 0 = sin76 0 cos87 0 = sin3 0 0000 0000 78sin14cos47sin87cos 78sin76sin47sin3sin <<<⇒ <<<⇒ - Cách 2: Dùng máy tính (bảng thống kê để tính tỉ số lượng giác) 0000 0 0 0 0 78sin14cos47sin87cos 0523.087cos 7314,047sin 9702,014cos 9781,078sin <<<⇒ ≈ ≈ ≈ ≈ 3. Hiệu quả: a. Đảm bảo tính khoa học: Mặc dù hướng dẫn học sinh giải toán với nhiều cách khác nhau nhưng trong mỗi cách giải vẫn đảm bảo được tính hệ thống lôgic, chặc chẽ, chính xác. Rèn luyện những kó năng tính toán thực hành chặc chẽ đồng thời bồi dưỡng cho học sinh đức tính chính xác, tỉ mó, kó luật. Qua việc hướng dẫn giải toán cho Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 5 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp” học sinh sẽ rèn luyện kó năng tính nhanh, tính nhẩm, kó năng vẽ và đọc đồ thò, biểu đồ sơ đồ, ., kó năng sử dụng một số dụng cụ toán học như: thước thẳng, compa, thước đo góc, . b. Phạm vi áp dụng: Giáo viên có thể sử dụng phương pháp giải toán với nhiều cách cho từng đối tượng học sinh tùy theo thực tế ở mỗi lớp. Nếu trong một lớp có nhiều học sinh khá, giỏi giáo viên hướng dẫn một bài toán với nhiều cách khác nhau (nếu có thể) theo trình độ kiến thức nâng dần. Còn nếu trong một lớp có nhiều học sinh yếu giáo viên có thể giải cách vừa sức tiếp thu của các em đồng thời hướng dẫn thêm cách giải khác cho các em học sinh khá, giỏi trong lớp giải. c. Kết quả cụ thể: Qua việc sử dụng phương pháp giải toán với nhiều cách, tôi nhận thấy các em đã có nhiều hứng thú hơn khi tiếp thu bài giảng, tiết dạy trở nên sinh động hơn. Việc các em có thể tự mình tư duy, tìm tòi ra một cách giải mới làm cho các em hết sức thích thú và những kiến thức đó sẽ được khắc sâu hơn, dễ nhớ hơn. Bên cạch đó đối với từng đối tượng học sinh việc tiếp thu những kiến thức ngang tầm với mình sẽ làm cho các em không còn nhàm chán vì bài đó giải quá khó (đối với những em học sinh yếu, trung bình) hay quá dễ ( đối với học sinh khá, giỏi) và cũng vì vậy mà các em có nhiều phấn khởi trong giờ học và tiết dạy sẽ đạt được hiệu quả cao. III. Kết luận: Qua sáng kiến giải toán bằng nhiều cách khác nhau có thể giúp nâng cao nghiệp vụ, trình độ chuyên môn của bản thân. Bên cạnh đó có thể giải quyết những mâu thuẩn, những khó khăn và thắc mắc của học sinh trong quá trình dạy và học . Việc áp dụng sáng kiến trên và khả năng vận dụng nó một cách hợp lí vào việc giảng dạy sẽ làm cho tiết dạy được nâng cao, học sinh dễ tiếp thu bài, hứng thú hơn trong học tập và có thể giúp cho các em ngày càng yêu thích bộ môn Toán. Trên đây là một số bài toán và suy nghó , đúc kết từ bản thân qua quá trình giảng dạy, củng như học hỏi từ đồng nghiệp, vì vậy đề tài khó tránh khỏi những thiếu sót. Kính mong q đồng nghiệp góp ý xây dựng thêm để trong thực tế giảng dạy của mình ngày càng chất lượng hơn. Rất chân thành cảm ơn !. Biển Bạch Đông, ngày 06 tháng 02 năm 2009 Người viết Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 6 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp” Nguyễn Hoàng Thiện ĐÁNH GIÁ CỦA HỘI ĐỒNG KHOA HỌC . . . . . . . . . . . . . . . . . . . . . . . . . Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 7 . hướng dẫn giải toán cho Người viết: Nguyễn Hoàng Thiện -Trường THCS Biển Bạch Đông Trang 5 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp học. THCS Biển Bạch Đông Trang 1 Sáng kiến kinh nghiệm “ Giải toán bằng nhiều phương pháp 2. Nội dung cụ thể: Sau khi truyền thụ các kiến thức phần lý thuyết,

Ngày đăng: 23/07/2013, 01:25

HÌNH ẢNH LIÊN QUAN

- Cách 2: Dùng máy tính (bảng thống kê để tính tỉ số lượng giác) - Sáng kiến Giải bài toán bằng nhiều phương pháp
ch 2: Dùng máy tính (bảng thống kê để tính tỉ số lượng giác) (Trang 5)

TỪ KHÓA LIÊN QUAN

w