1. Trang chủ
  2. » Khoa Học Tự Nhiên

Phân dạng các bài toán Tích Phân

47 153 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 1,04 MB

Nội dung

Phân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích PhânPhân dạng các bài toán Tích Phân

TÍCH PHÂN I Khái niệm tích phân Diện tích hình thang cong  Giới thiệu cho học sinh cách tính diện tích hình thang cong  Từ suy cơng thức: lim x  x0 S  x   S  x0   f  x0  x  x0 Định nghĩa tích phân  Cho hàm f liên tục khoảng K a, b hai số thuộc K Nếu F nguyên hàm f b K hiệu số: F(b) – F(a) gọi tích phân f từ a đến b, ký hiệu là:  f  x dx a b  Có nghĩa là:  f  x dx  F b   F  a  a  Gọi F  x  nguyên hàm f(x) F  x  a  F  b   F  a  thì: b b  f  x dx  F  x  b a  F b   F  a  a  Trong đó: – a: cận trên, b cận – f(x) gọi hàm số dấu tích phân – dx: gọi vi phân đối số – f(x)dx: Gọi biểu thức dấu tích phân II Tính chất tích phân Giả sử cho hai hàm số f g liên tục K, a, b, c ba số thuộc K Khi ta có: a  f  x  a b  a f  x dx    f  x dx (Gọi tính chất đổi cận) a b  a b c b a c f  x dx   f  x dx   f  x dx b b b a a a   f  x   g  x dx   f  x dx   g  x dx (Tích phân tổng hiệu hai tích phân tổng hiệu hai tích phân) b b a a  kf  x dx  k. f  x dx (Hằng số k dấu tích phân, đưa ngồi dấu tích phân được) Ngồi tính chất trên, người ta chứng minh số tính chất khác như: Nếu f  x   0x   a; b thì: b  f  x dx  0x   a; b a b b a a Nếu: x   a; b : f  x   g  x    f  x dx   g  x dx (Bất đẳng thức tích phân) Nếu: x   a; b với hai số M, N ta ln có: M  f  x   N Thì: b M  b  a    f  x dx  N  b  a  (Tính chất giá trị trung bình tích phân) a III CÁC PHƢƠNG PHÁP TÍNH TÍCH PHÂN A PHƢƠNG PHÁP PHÂN TÍCH Trong phƣơng pháp này, cần:  Kỹ năng: Cần biết phân tích f(x) thành tổng, hiệu, tích, thương nhiều hàm số khác, mà ta sử dụng trực tiếp bảng nguyên hàm tìm nguyên hàm chúng  Kiến thức: Như trình bày phần “Nguyên hàm”, cần phải nắm kiến thức Vi phân, cơng thức phép tốn lũy thừa, phép toán bậc n số biểu diễn chúng dạng lũy thừa với số mũ hữu tỷ Ví dụ áp dụng Ví dụ 1: Tính tích phân sau  a/  x2  1 Giải a/  b/  x x  x  ln  x x 1 x   dx  x x4 1  x2  1   x  1d  x2   x  1 dx 3  c/ dx x x4 1   dx d/  x3  x  x  dx x4  x2   x x2 1 x2   x  x   dx    x x   dx 1  2  x  x  x       x2 1   d    x2   x2 1  2  x2   1  5 2 b/  x   1 0  x  13 dx  0  x  13 1 x2    x  12 x 1  1  dx      dx      3 0  x   x  12  x  13 dx x  x  x              1 d  x  1 d  x  1 d  x  1 1 1 I   2   ln x     ln  x 1 x   x  1 0  x  1  x  1 1 c/  x x  x  ln  x x 1 x   I   x  dx   x3  x  x  dx  x4  x2   d  x  x  1  x x    ln    x  1  ln  x  1 2       d 1 x   x       3     x   ln  x 1   x3  x  dx    x4  x2    2    x2  1dx  2  x   2dx  1 2  1 1     x   x  dx    x   x   dx 2 x 1  ln x 1 2 1 1 x 1      ln  x 1 x 1 x   2 Ví dụ Tính tích phân sau  a/  2sin x  sin x  1  cos x  b/ dx  2sin sin x dx x  3cos x   2 x  1  x2 ln   x dx c/ sin x   tan x dx cos x d/  Ví dụ Tính tích phân sau e2 ln x  dx a/  x ln x e x2 1 b/  dx 2 x  x  1    sin x  sin 2 x dx c/ 3 d/  sin 3x.cos xdx B PHƢƠNG PHÁP ĐỔI BIẾN SỐ I Phƣơng pháp đổi biến số dạng Để tính tích phân dạng này, ta cần thực theo bước sau 1/ Quy tắc:  Bước 1: Đặt x  v  t   Bước 2: Tính vi phân hai vế đổi cận  Bước 3: Phân tích f  x  dx  f  v  t   v '  t  dt  Bước 4: Tính b  a  f  x dx  v b   g t dt  G t  v a  v b  Bước 5: Kết luận: I  G  t  v a   v b  v a     dx x 1  1 x x   2     ln  x   x 1   dx    1   x  x 1 x    ln  x  1 1    ln d/  dx  ln  x   Đăng ký mua file word trọn chuyên đề khối 10,11,12: 2/ Nhận dạng: (Xem lại phần nguyên hàm) HƯỚNG DẪN ĐĂNG KÝ Soạn tin nhắn “Tôi muốn mua tài liệu” Gửi đến số điện thoại: 0969.912.851 * Chú ý: a Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu thông thường là: Dấu hiệu Cách chọn a2  x2     x  a sin t    t    x  a cos t   t   x2  a2  a     t   ;  x  sin t  2   a    t   0;   \   s  cos t 2  a2  x2      x  a tan t  t    ;      x  a cos t  t   0;   ax ax  ax ax x  a.cos 2t  x  a  b  x  x  a   b  a  sin t b Quan trọng em phải nhận dạng: - Ví dụ: Trong dạng phân thức hữu tỷ:    1 1 dx       dx   du *  2 a u  k      ax  bx  c   b   a  x       2a   2a       b  Với:  u  x  , k  , du  dx  2a 2a    * áp dụng để giải toán tổng quát:   dx a x  2 k 1 k ¢  …  *     2x  x2 dx     3   x  1 dx Từ suy cách đặt: x   sin t 3/ Một số ví dụ áp dụng: Ví dụ 1: Tính tích phân sau a/   x dx b/   2x2 0 dx c/  1  x  x2 dx Giải    a/ Đặt x  sin t với: t    ;   2   x   sin t   t   Suy ra: dx  cos tdt và:   x   sin t   t     Do đó: f  x  dx   x dx   sin t cos tdt  cos2 tdt    Vậy:  f  x dx   b/ Đặt: x   1  cos 2t  dt   t  sin 2t   2     1      0 2 2    sin t , t    ;   2   x   sin t   t   Suy ra: dx  cos tdt   1   x    sin t  t    Do đó:  1  cos 2t  dt 1  2x2 dx    1 dx    2   x  2    1 2  cos tdt  dt  t   20 2  sin t 2 1 c/ Vì:  x  x    x  1 Cho nên:  x 1    Đặt: x   2sin t , t    ;   sin t  *  2  11   x   sin t    t     t  0;   cos t  Suy ra: dx  2cos tdt và:   6  x   sin t     t    2  Do đó: f  x  dx   x  x2 dx    x  1 dx  1  sin t  2cos tdt  dt   Vậy:   f  x dx   dt  t 06   Ví dụ 2: Tính tích phân sau a/ c/ 1 dx  x 1 x b a  x2  12 x  x  5dx b/ 2 x2  x  7dx d/  * Chú ý: Để tính tích phân dạng có chứa  a  x  2 dx  x  a , a  x , ta sử dụng phương pháp đổi biến số: u  x   g  x, t  Ví dụ 1: Tính tích phân sau  x2  dx Giải: t 1 2t  Đặt:   x   t  1; x   t    Khi đó:  t2 1 dx   2t  x2   x  t  x   Do vậy:  x 1 1  dx  1 2t t  dt  t  2t 1  1 dt  ln t t 1 1   ln   1 Ví dụ 2: Tính tích phân: I   x  x dx Giải   Đặt: t  sin x , suy dt  cos xdx x  0, t  ; Khi x  1, t     cos 4t  Do đó: f  x  dx  x  x dx  sin t  sin t cos tdt  sin t cos tdt    dt 4   12 1  1   Vậy: I   f  x dx   1  cos 4t  dt   t  sin 4t   80 8  16   II Đổi biến số dạng Quy tắc: (Ta tính tích phân phương pháp đổi biến số dạng theo bước sau:)  Bước 1: Khéo léo chọn hàm số u  x  đặt t : t  u  x   Bước 2: Tính vi phân hai vế đổi cận: dt  u '  x  dx    Bước 3: Ta phân tích f  x  dx  g u  x  u '  x  dx  g t  dt Bước 4: Tính b ub a u a  f  x dx   g t dt  G t  ub u a ub Kết luận: I  G  t  u a   Nhận dạng: TÍCH PHÂN HÀM PHÂN THỨC HỮU TỶ  A DẠNG: I    P  x dx ax  b  a  0   m m dx  ln ax  b Và bậc P  x  cao ta chia tử cho * Chú ý đến công thức:  a   ax  b mẫu dẫn đến    P  x m dx  Q x  dx  Q x dx  m  ax  b    ax  b     ax  bdx  Ví dụ 1: Tính ticích phân: I   x3 dx 2x  Giải x3 27 Ta có: f  x    x2  x   2x  8 2x  Do đó: x3 27  27 13 27 1 1 3  1 x  3dx  1  x  x   x  dx   x  x  x  16 ln 2x      16 ln 35 2 Ví dụ 2: Tính tích phân: I   x2  dx x 1 Giải Ta có: f  x   x2   x 1 x 1 x 1 x2  Do đó:  dx  x   B DẠNG:   ax   1    x   x  dx   x  x  4ln x   P  x dx  bx  c Tam thức: f  x   ax  bx  c có hai nghiệm phân biệt  1     4ln      Công thức cần lưu ý: u ' x  dx  ln u  x     u  x Ta có hai cách Cách 1: (Hệ số bất định) Cách 2: (Nhẩy tầng lầu) Ví dụ 3: Tính tích phân: I   x  11 dx x  5x  Giải Cách 1: (Hệ số bất định) Ta có: f  x   A  x  3  B  x   4x 1 x  11 A B     x  x   x   x  3 x  x   x   x  3 Thay x  2 vào hai tử số:  A thay x  3 vào hai tử số: 1   B suy B  Do đó: f  x    x2 x3 x  11   dx     Vậy:  dx  3ln x   ln x   2ln  ln x  5x  x2 x3 0 1 Cách 2: (Nhẩy tầng lầu) Ta có: f  x    x  5  2x  2x  1  2   2   x  5x  x  x   x   x  3 x  5x  x  x  Do đó: 2x  1   x2   I   f  x dx    2    2ln  ln dx   2ln x  x   ln x  5x  x  x   x    0 1 Tam thức: f  x   ax  bx  c có hai nghiệm kép  Cơng thức cần lưu ý:    u '  x  dx  ln  u  x    u  x Thông thường ta đặt  x  b / 2a   t x3 dx Ví dụ 4: Tính tích phân sau: I   x  2x 1 Giải Ta có: x3 x3 dx  0 x2  x  0  x  12 dx Đặt: t  x  suy ra: dx  dt; x  t  và: x  t  ; x  t  Do đó: x3   x  1 dx    t  1 t2 1 1  1 dt    t    dt   t  3t  ln t    2ln  t t  t 1 2 1 4x dx 4x  4x 1 Ví dụ 5: Tính tích phân sau: I   Giải Ta có: 4x 4x  x  x   x  12 Đăng ký mua file word trọn chuyên đề khối 10,11,12: HƯỚNG DẪN ĐĂNG KÝ Soạn tin nhắn “Tôi muốn mua tài liệu” Gửi đến số điện thoại: 0969.912.851  x   t  1 Đặt: t  x  suy ra: dt  2dx  dx  dt ;  x   t  1 Do đó:  4x 4x 4x dx   dx    4x 1 x    1 1  t  1 1 1   dt     dt   ln t    2 t2 t t  t  1  1  Tam thức: f  x   ax  bx  c vô nghiệm: b  u  x  P  x P  x 2a  Ta viết: f  x    ; 2 2  b      a  u  k  k   a  x        2a 2a   2a     Khi đó: Đặt u  k tan t Ví dụ 6: Tính tích phân: I   x dx x  4x  Giải 2  x x dx   dx Ta có:  2 x  4x  0  x  2   Đặt: x   tan t , suy ra: dx  t2 tan t  dt  sin t  dx    dt    ln cos t  2t  1 Do đó:   2   t1  tan t cos t t1  cos t   x  2  t1   x   tan t  dt   cos t  x   tan t  x t2 t 1  2  tan t    tan t   cos t   cos t1  Từ:  1  2  tan t    tan t  17  cos t  17  cos t2  17   t2 cos t2 Vậy:   ln cos t  2t     ln cos t2   2t2    ln cos t1  2t1    ln   t2  t1  t1 cos t1    ln cos t2 1   t2  t1    arctan  arctan   ln   arctan  arctan   ln cos t1 17 17 Ví dụ 7: Tính tích phân sau: I   x3  x  x  dx x2  Giải x3  x  x   x2 2 x 4 x 4  Ta có:  x3  x  x   dx  1  dx    x     J 1 Do đó:  dx   x  x    2 x  x  x      0 0 2 2 Tính tích phân J   dx x 4  x   t     Đặt: x  tan t suy ra: dx  dt;    t  0;   cos t  cos t  x   t   4   14 14  dx   dt  dt  t  Khi đó:  2  x 4  tan t cos t 20  Thay vào (1): I      C DẠNG:   ax   P  x dx  bx  cx  d Đa thức: f  x   ax3  bx  cx  d  a   có nghiệm bội ba   Cơng thức cần lưu ý: 1  xm dx   m xm1  Ví dụ 8: Tính tích phân: I   x  x  1 dx Giải Cách 1:  Đặt: x   t , suy x  t  và: x  t  ; x  t   b I    dx sin x cot x Đăng ký mua file word trọn chuyên đề khối 10,11,12: HƯỚNG DẪN ĐĂNG KÝ Soạn tin nhắn “Tôi muốn mua tài liệu” Gửi đến số điện thoại: 0969.912.851 1  2tdt   dx  dx  2tdt   sin x sin x Đặt: t  cot x  t  cot x    x    t  3; x    t    2tdt Vậy: I      dt  2t  t   3 c I   tan x  cot x  2dx   2   6 Vì: tan x  cot x    1   tan x  cot x  dx   tan x  cot x dx  sin x cos x sin x  cos x cos x    2  2cot x cos x sin x sin x cos x sin x     tan x  cot x  0; x   ;    3 6 4       Cho nên: x   ;   x   ;   cot x    ;     6 3 3 3     3   tan x  cot x  0; x   ;  4 3     4    6 Vậy: I     tan x  cot x dx    tan x  cot x dx     cos x cos x dx   dx  sin x  sin x    ln sin x    12  ln sin x    ln  d I     cos x  sin x dx (1) Đặt: x  Do đó:   t  dx  dt , x   t   ;x   t 0       I    cos   t   sin  t    dt     2      0    sin t  cos t dt     sin x  cos x dx (2) Lấy (1) + (2) vế với vế: 2I   I  Ví dụ Tính tích phân sau a   4  tan xdx (Y-HN-2000) b   cos x 0  sin x  cos x   dx (NT-2000) cos x  dx (NNI-2001)  sin x c 4    sin x d  dx (GTVT-2000) cos6 x  2sin x 0  sin x dx (KB-03) 4 sin x e  dx  cos x f Giải  sin x 1  cos x  1 a  tan xdx Ta có: f  x   tan x    2 1 4 cos x cos x cos x cos2 x  4  Do đó: I       dx   f  x dx      dx   tan x  tan x  x   3    2  cos x  cos x   cos x  4 4     4      3    tan x  tan x                  12   3  12  12    * Chú ý: Ta cách phân tích khác: f  x   tan x  tan x  tan x   1  tan x 1  tan x   tan x  tan x 1  tan x    tan x  1     3     4 4  dx dx   dx Vậy: I    tan x 1  tan x    tan x  1  1dx   tan x cos x  cos x     1   1  1 I   tan x  tan x  x    3            3  12 3  3  b cos x   sin x  cos x  dx Ta có: f  x    cos x  sin x  cos x     cos x  sin x   sin x  cos x     cos x  sin x  cos x  sin x   sin x  cos x    4  cos x  sin x   cos x  sin x dx Do đó: I   f  x dx        0   sin x  cos x    (1)   cos x  sin x  t  2.x   t  3; x   t   2,   Đặt: t  sin x  cos x    dt   cos x  sin x  dx  f  x  dx  t  dt     dt  t3 t3  t  Vậy: 2 I   1 1  1   dt      t  t  t t 3  sin t  cos t   sin t  cos t   2  1     2  2    sin t  cos t  dt    sin t  cos t   sin t  cos t             1      9 2     cos t  sin t  dt  f  x   cos x dx c   sin x cos6 x 1  sin x   3sin x  3sin x  sin x 1 Ta có: f  x         sin x 4 4 sin x sin x sin x sin x sin x     2 dx dx   cos x  Vậy: I   1  cot x   3  3 dx    dx sin x  sin x     4 4  1   5 23    cot x  3cot x  3x  x  sin x    12        sin x  cos x  1 dx  dx   dx     dx   1  tan x  d  dx   6 4 cos x cos x cos x cos x  cos x cos x cos x 0 0 0 2  4    1  tan x    4 1 2 dx   tan x dx   tan x  tan x d tan x     1  tan x  d  tan x      2   cos x cos x 0   1   1 4   tan x  tan x  tan x  tan x  tan x    tan x  tan x   5  0 3  15     2 d   cos x  sin x sin x 2sin x dx  dx  dx     ln  cos x e      cos x  cos x  cos x  cos x 0 4 0 2     2sin x cos x d 1  sin x  dx   dx    ln  sin x f   sin x  sin x  sin x 0 4 Ví dụ Tính tích phân sau:   ln 2   ln   2 a  sin x cos xdx b sin 3x   cos 3xdx   sin x cos x c I   dx  J   dx  K  sin x  cos x sin x  cos x  cos x dx sin x  cos x  Giải    a  sin x cos xdx   1  cos2 x  cos4 x.sin xdx    cos6 x  cos4 x d  cos x  2 0  1 2   cos7 x  cos5 x   7  35 Đăng ký mua file word trọn chuyên đề khối 10,11,12: HƯỚNG DẪN ĐĂNG KÝ Soạn tin nhắn “Tôi muốn mua tài liệu” Gửi đến số điện thoại: 0969.912.851   2  sin 3x 3sin 3x d 1  2cos 3x  dx    dx      ln  2cos 3x b   2cos 3x  2cos x  2cos x     ln  sin x  cos x 1 16 dx   dx   dx  201 20  sin x  cos x sin  x   sin x  cos x 3  2 c Ta có: I  J     x   d  tan     1 1       Do:    x   x  x  x  sin  x   2sin    cos  x   tan    cos    tan    3 6  2 6  2 6 2 6 2 6   x   d  tan     x    Vậy: I     ln tan    20 x  2 6 tan    2 6   6    1  ln  ln  (1)  sin x  cos x sin x  cos x sin x  3cos x dx   dx - Mặt khác: I  3J   sin x  cos x sin x  cos x 2     Do đó: I  3J   sin x  cos x dx   cos x  sin x    1 (2)  3 1  I  ln    I  J  ln  16 4 Từ (1) (2) ta có hệ:   1  I  3J      J  16 ln  Để tính K ta đặt t  x       dt  dx  x  ; t  0.x   t  2  cos  2t  3      cos  t    sin  t   2 2   Vậy: K    (3) cos 2t 1 dt  I  J  ln  sin t  cos t dt    Ví dụ 10 Tính tích phân sau:   dx (CĐ – 99) a   sin x b (ĐH-LN-2000)   10 10 4   sin x  cos x  sin x cos x dx (SPII-2000) d c dx   sin x  cos x dx (MĐC-2000)   sin x sin  x   6    Giải    4 1 a  dx   dx  0  sin x 0  sin x  cos x   4  dx  tan  x     0   cos  x   4   b dx   sin x  cos x Đặt: t  tan x 1 x 2dt   dt  dx  1  tan  dx;  dx  ; x   t  0, x   t  x 2 2 1 t 2 cos 2 1 2dt 2dt dt    2 2t  t 1  t  t  2t   t  12  0 2  1 t2 1 t2 Vậy: I   (2)  du; t   tan u  ; t   tan u  dt  2 cos u  Đặt: t   tan u   2dt 2  f  t  dt   du  2du 2  cos u  tan u t        u2 Vậy: I   2du  2u u1 u2 u1     u2  u1    arctan  arctan       sin c 10 x  cos10 x  sin x cos x dx Ta có: sin10 x  cos10 x  sin x cos4 x  sin x  cos2 x    cos4  sin x  cos6 x  sin x    cos2 x  sin x  cos2 x  sin x  cos4 x  sin x  cos2 x sin x  1  cos x  cos8 x 15 1    cos 2 x 1  sin 2 x   cos 2 x  sin x     cos x  cos8 x 16 32 32 32      2 15  1 15  15  Vậy: I     cos x  cos8x dx   sin x  sin x  32 32 32 32.8 64  0 0  d dx   sin x sin  x   6              Ta có:  x    x   sin  x    x   sin  x   cos x  sin x cos  x    (*) 6 6  6 6         sin  x   cos x  sin x cos  x   6 6  Do đó: f  x   2 2        sin x sin  x   sin x sin  x   sin x sin  x   6 6 6    cos x   sin x         cos  x   cos  x    3   cos x  6       I   f  x dx     dx   ln sin x  ln sin  x      6        sin x  sin  x   sin  x     6 6 6     I  ln sin x   sin  x   6   ln 3  ln  ln 2  * Chú ý: Ta có cách khác f  x  1       sin x sin x sin  x   sin x  sin x  cos x  6     Vậy: I         cot x 2d  cot x dx    2ln  cot x   cot x sin x  cotx        2ln Ví dụ 11 Tính tích phân sau   a sin x cos x 0  cos2 x dx (HVBCVT-99) b  cos x cos 2 xdx (HVNHTPHCM-98)   4 sin x c  dx (ĐHNT-01) cos x  sin x Giải d dx  cos x (ĐHTM-95) Đăng ký mua file word trọn chuyên đề khối 10,11,12: HƯỚNG DẪN ĐĂNG KÝ Soạn tin nhắn “Tôi muốn mua tài liệu” Gửi đến số điện thoại: 0969.912.851   sin x cos3 x cos x a  dx   sin x dx 2   cos x  cos x 0 (1) dt  2sin x cos xdx   sin xdx  Đặt: t   cos x    cos x  t  1; x   t  2, x   t    2  t  1 1 ln  Vậy: I    dt      1dt   ln t  t   22 t 1t  2 1 2  b  cos x cos 2 xdx Ta có: f  x   cos2 x cos2 x   cos x  cos x  1  cos x  cos x  cos x.cos x  2 1 1   1  cos x  cos x   cos x  cos x     cos x  cos x  cos x 4    1 1 1  1 2  Vậy: I     cos x  cos x  cos x dx   x  sin x  sin x  sin x   8 16 16 48  4 0 0  c  cos sin x dx x  sin x Vì: d  sin x  cos6 x    6sin5 x cos x  6cos5 x sin x  dx  6sin x cos x  sin x  cos4 x   d  sin x  cos x   3sin x  sin x  cos x  sin x  cos x  dx  3sin x cos xdx   sin xdx  sin xdx   d  sin x  cos x    6 sin x d  sin x  cos x  Vậy:  dx      ln  sin x  cos6 x  6 6 cos x  sin x  sin x  cos x      4  ln  4 dx dx  4 d     tan x  d  tan x    tan x  tan x    2   cos x cos x cos x  0 Ví dụ 12 Tính tích phân sau:   a  sin xdx (HVQHQT-96) b  sin x cos xdx (NNI-96) 11 0   c  cos x cos xdx (NNI-98) d   cos 2xdx (ĐHTL-97) Giải  a  sin11 xdx Ta có: sin11 x  sin10 x.sin x  1  cos x  sin x  1  5cos x  10cos3 x 10cos x  5cos5 x  cos x  sin x  Cho nên: I   1  5cos x  10cos3 x  10cos x  5cos5 x  cos6 x  sin xdx  5 118 1    cos7 x  cos6 x  2cos5 x  cos4 x  cos3 x  cos x   21 7 0  b  sin x cos xdx Hạ bậc:   cos x   cos x  sin x cos x      1  cos x  1  2cos x  cos x  2    2 1  cos x  cos2 x  cos x  cos2 x  cos3 x  1  cos x   cos x    1  cos x  cos 2 x  cos3 x   1  cos x   cos x   8 2     1 cos x  cos x  1  cos x  cos x  cos x.cos x   1  cos x  cos x   16 16      3cos3x  cos x  cos x  32   1  4 Vậy I     3cos x  cos6 x cos x dx   x  sin x  sin x  sin x  32 64 32.6 32.4  32 0  d   2     2cos xdx   cos x dx    cos xdx   cos xdx   0       cos xdx         sin x 02  sin x    1  1  2   III MỘT SỐ CHÚ Ý QUAN TRỌNG Trong phương pháp đổi biến dạng b * Sử dụng công thức:  b f  x dx   f  b  x dx 0 Chứng minh: x   t  b Đặt: b  x  t , suy x  b  t dx  dt ,   x  b  t    Do đó: b b b b 0  f  x dx   f b  t  dt    f  b  t dt   f b  x dx Vì tích phân khơng phụ thuộc vào biến số Ví dụ: Tính tích phân sau   a/ 4sin xdx   3 dx c/ 5cos x  4sin x   sin x  cos x    sin x  cos x  b/ sin x 0 sin x  cos6 xdx  log 1  tan x  dx d/  e/ n f/ Giải  a/ I   4sin xdx  sin x  cos x  sin x cos x 0 sin3 x  cos3 xdx m  x 1  x  dx (1) Đặt:    dt  dx, x   t  , x   t        4sin   t  t   x  x  t   cos t 2  2  f  x  dx  dt    dt  f  t  dt  cos t  sin t          sin   t   cos   t         Nhưng tích phân không phụ thuộc biến số, cho nên:   I   f  t dt   cos x  sin x  cos x  dx (2)  Lấy (1) + (2) vế với vế ta có: I     sin x  cos x   sin x  cos x   dx  I    sin x  cos x  dx  2   I  2 dx  tan  x     0  cos  x    4   b/ I   5cos x  4sin x  sin x  cos x  dx Tương tự ví dụ a/ ta có kết sau:  I   5cos x  4sin x  sin x  cos x  dx     5sin t  4cos t  cos t  sin t   5sin x  4cos x  sin x  cos x  (2) dx    1 2  dx   dx  tan  x     I  Vậy: I    0   sin x  cos x  cos  x    4  2  c/  log 1  tan x dx Đặt:    dx  dt , x   t  ; x   t   4    t   x  x  t   4  f  x  dx  log 1  tan x  dx  log 1  tan    t    dt         tan t  Hay: f  t   log 1   dt   log 2  log t   dt   log  tan t   tan t    4 0  Vậy: I   f  t dt   dt   log tdt  I  t 04    I   sin x dx sin x  cos6 x d/ I   (1)    sin   t  cos6 x 2        d  t   0 cos6 x  sin xdx  I  sin   t   cos   t  2  2  (2)    cos x  sin x    dx  dx  x I  6  cos x  sin x 0 Cộng (1) (2) ta có: I   e/  x 1  x  m n dx Đặt: t   x suy x   t Khi x  0, t  1; x  1, t  0; dt  dx 0 1 Do đó: I   1  t  t  dt    t 1  t  dt   x n 1  x  dx m n m n m MỘT SỐ BÀI TẬP TỰ LUYỆN   4sin x dx   cos x sin x cos x 0  cos2 x dx  x 1  x  dx (ĐHKT-97)  x  sin x dx (HVNHTPHCM-2000) cos x  x sin x   cos   6 sin x  cos x dx (CĐSPHN-2000)  3sin x  cos x x dx (AN-97)   sin x   ln  dx (CĐSPKT-2000)   cos x    (XD-98)   cos x  3sin xdx  cos x  2sin x x sin x 0  cos2 xdx (ĐHYDTPHCM-2000)  * Dạng: I    sin x cos x 0 sin3 x  cos3 xdx 10 a sin x  b cos x  c dx a 'sin x  b 'cos x  c ' Cách giải:  Ta phân tích: a sin x  b cos x  c - Sau đó: Quy đồng mẫu số - Đồng hai tử số, để tìm A, B, C - Tính I: B '  a 'cos x  b 'sin x  C dx  A    a 'sin x  b 'cos x  c ' a 'sin x  b 'cos x  c '  a 'sin x  b 'cos x  c '    B  a 'cos x  b 'sin x    C dx I   A  dx  Ax  B ln a 'sin x  b 'cos x  c '  C      a 'sin x  b 'cos x  c ' a 'sin x  b 'cos x  c '    a 'sin x  b 'cos x  VÍ DỤ ÁP DỤNG Ví dụ Tính tích phân sau:   sin x  cos x  a  dx (Bộ đề) sin x  cos x  b   sin x  cos x  0 4sin x  3cos x  5dx c cos x  2sin x  cos x  3sin xdx (XD-98) d I   cos x  3sin x  dx 4sin x  3cos x  Giải    sin x  cos x  sin x  cos x  C  sin x  cos x  3dx Ta có: f  x   sin x  2cos x   A  sin x  2cos x   sin x  2cos x  B cos x  2sin x a Quy đồng mẫu số đồng hệ số hai tử số:  A    A  2B   A  B  sin x   A  B  cos x  A  C     f  x   2 A  B  1   B   Thay vào (1) sin x  cos x  3 A  C     C     2  d  sin x  2cos x  3   1 I     dx     dx    ln sin x  2cos x  5 sin x  2cos x  sin x  2cos x  10 0 I   4  ln  ln J 10 5 (2) - Tính tích phân J: dx   ; x   t  0, x   t  dt  x cos  x 2dt  J  Đặt: t  tan   2dt 2dt  t     f  x  dx    2t 1 t2  t t  2t  2 3  1 t2 1 t2 Tính (3): Đặt:  du t   tan u   u1; t   tan u   u2 dt  2 cos u  t   tan u   2du  du  f  t  dt  2 cos u  cos u   3   J (1) Vậy: J  u2  u 2  4 du   u2  u1   I  I    ln   u2  u1  2 10 5   tan u1    tan u    B   cos x  4sin x  cos x  2sin x cos x  2sin x C dx ; f x   A    1   0 4cos x  3sin x 4cos x  3sin x 4cos x  3sin x 4cos x  3sin x b Giống phần a Ta có: A  ; B   ; C  5     3cos x  4sin x   2 4  Vậy: I     dx   x  ln 4cos x  3sin x    ln 5 4cos x  3sin x  5  10 0 ... Phƣơng pháp đổi biến số dạng Để tính tích phân dạng này, ta cần thực theo bước sau 1/ Quy tắc:  Bước 1: Đặt x  v  t   Bước 2: Tính vi phân hai vế đổi cận  Bước 3: Phân tích f  x  dx  f ... tích phân) a III CÁC PHƢƠNG PHÁP TÍNH TÍCH PHÂN A PHƢƠNG PHÁP PHÂN TÍCH Trong phƣơng pháp này, cần:  Kỹ năng: Cần biết phân tích f(x) thành tổng, hiệu, tích, thương nhiều hàm số khác, mà ta sử... thức tích phân) Nếu: x   a; b với hai số M, N ta ln có: M  f  x   N Thì: b M  b  a    f  x dx  N  b  a  (Tính chất giá trị trung bình tích phân) a III CÁC PHƢƠNG PHÁP TÍNH TÍCH

Ngày đăng: 04/11/2017, 12:12

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w