1. Trang chủ
  2. » Thể loại khác

Index of tailieu

18 172 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,47 MB

Nội dung

SECTION 5 Index of Expressions The numbers refer to the unit in which the idiom is taught. about It'll be all right on the night. 50 You've got to keep your wits about you. 47 It's all hands on deck. 6 accounts It's all in your mind. 39 By all accounts he's pretty good. 86 It's all over now, so go home. 86 acquainted It's all over your face. 26 I'm not very well acquainted with it. 60 It's all up in the air. 51 action It's all yours. 86 Actions speak louder than words. 113 Ifs been all go in the office today. 86 add It's been difficult all along the line. 44 It just doesn't add up. 63 It's open all year round. 86 That added more fuel to the fire. 28 N0t a^ ajj gg To add insult to injury, they didn't even say she.s on the g0 all day 83 thank you. 49, 109 There were flve of us all told 86 advantage They stopped aU 0f a sudden. 86 He's trying to take advantage of you. 54, 68 Wre all in the same boat 6 afford When all's said and done. 86 ^1 can't afford more than a week off. 1 you can>t wln them aU 50 You mustn't put all your eggs in one basket. 74 He s a man after my own heart. 34 . TT,n , I knew it all along. 86 We meet up now and again. 82 ., . . „ „ ambition You can say that again. 48 , . , , Her burning ambition was to be an actress. 28, age The golden age of drama. 38 It's unusual in this day and age. 82 ancient . " '"' That's ancient history now. 61 He's a breath of fresh air here. 52 and .(see Pa£es 188 ~ 191^ I felt as if I was walking on air. 66 angling It's all up in the air. 51 He's ang11^ for something. 29 We need to clear the air. 72 another aU It's been one thing after another. 83 By all accounts he's pretty good. 86 Tomorrow's another day. 50, 82 By all means help yourself. 86 You've got another think coming. 81 He was drunk, and to cap it all, he'd been ants drinking my wine. 109 He's got ants in his pants. 14 I knew it all along. 86 anything I want to get away from it all. 59 Don't take anything for granted. 47 I won't, if it's all the same to you. 86 He'll do anything for a quiet life. 70 I'll tell you once and for all. 40 apart I'm all at sea without her. 45 They're poles apart in sport. 75 I'm all fingers and thumbs. 27 arm I'm all for doing it now. 86 I'd give my right arm for that. 16 It was a good day all in all. 86 OK, twist my arm. 68 It wasn't all it's cracked up to be. 57 Private education costs an arm and a leg. 16, 64 245 arms Don't take your eye off the ball. 62 They are up in arms about it. 66 He's on the ball. 41 around I want to start the ball rolling. 78 He's always throwing his weight around. 68 It's a whole new ball game. 41, 75 arrive The ball's in their court. 41 He thinks he's really arrived. 4 They won't play ball. 41 aside They won't run with the ball. 41 I try to put a bit of money aside each month. 64 balloon asleep The joke went down like a lead balloon. 38 He's fast asleep. 76, 111 bang Sorry, I was half asleep. 76 You're banging your head against a brick wall. The baby's sound asleep. Ill 18,49 awake baptism It's late but I'm wide awake. Ill It was a baptism of fire. 28, 55 away bargain I want to get away from it all. 59 j picked up a bargain yesterday. 64 When the cat's away, the mice will play. 19 It was harder than I had bargained for. 81 awful bark I can't tell you - it's too awful for words. 113 His bark ls worse than his bite. 50 baby You're barking up the wrong tree. 62 Don't throw the baby out with the bath water. 47 barrel She's the baby of the family. 56 You're scraping the bottom of the barrel. 57 bachelor base Paul's a confirmed bachelor. 67 Fm going to touch base Tổ chức liệu Tổ chức Type index=word; typeflag=integer; // trường hợp có trường hợp Typereal=real; //Điểm: Point = record x, y: Typereal; end; //Đường thẳng: Line = Record p1, p2: point; end; //Đa giác: Polygon = array[1 n] of point;  Để thuận lợi biểu diễn đa giác ta nên thêm hai đỉnh đầu cuối: đỉnh đỉnh n đỉnh n + đỉnh  Từ ta thống với cách khai báo cho đoạn chương trình dùng đến Kiểu số thực - Xử lý hình học hầu hết liên quan đến số thực Bảng kiểu số thực mà Pascal có sẵn: Kiểu Single Real Double Extended - Giới hạn 1.5e-45 3.4e38 2.9e-39 1.7e38 5.0e-324 1.7e308 3.4e-4932 1.1e4932 Chữ số có nghĩa 7-8 11-12 15-16 19-20 Kích thước (Byte) 10 Đặc biệt, ta dùng Double Extended ta phải khai báo biên dịch ,$N+-, ta nên lúc làm Vì máy tính dùng đồng xử lý toán học, phép toán với số thực thực nhanh chẳng so với số ngun (thậm chí nhanh ta dùng kiểu số thực Double) - So sánh “=” số thực thực phép “=” có sẵn Function equal(a,b:sothuc):Boolean; Begin If abs(a-b) → 𝑟ẽ 𝑡𝑟á𝑖 function CCW(A, B, C: Point): typeflag; var k: typeReal; begin 𝑘 ≔ 𝐵 𝑥 − 𝐴 𝑥 ∗ 𝐶 𝑦 − 𝐵 𝑦 − 𝐵 𝑦 − 𝐴 𝑦 ∗ 𝐶 𝑥 − 𝐵 𝑥 ; if equal(k,0) then CCW := // c thẳng hàng ab else if k > then CCW := // c bên trái else CCW := -1; // c bên phải end; Phương trình đường thẳng tổng quát - - Phương trình đường thẳng qua hai điểm phân biệt p1, p2 có dạng: f(x,y) = (x- p1.x)*(p2.y – p1.y) - (y – p1.y)*(p2.x – p1.x) = (1) Viết dạng tổng quát : Ax + By + C = (2) Ta có: A= (p2.y- p1.y) ; B=(p1 x –p2 x) ; C=( p2.x*p1.y-p1.x*p2.y) procedure Extract(p1, p2: Point; var a, b, c: typeReal); begin a := p2.y - p1.y; b := p1.x - p2.x; C :=( p2.x*p1.y-p1.x*p2.y) ; end;  Hàm tính f(x,y) function ff(M, p1, p2: Point):typereal; begin Extract(p1, p2, a, b, c); Exit(a*M.x+b*M.y-c); end; Khoảng cách điểm đường thẳng - (d) đường thẳng có phương trình: Ax + By + C = Khoảng cách từ điểm p đến đường thẳng (d) : 𝑕= 𝐴𝑝 𝑥 + 𝐵𝑝 𝑦 + 𝐶 𝐴2 + 𝐵2 = 𝑓 𝑝 𝑥, 𝑝 𝑦 𝐴2 + 𝐵2 (3) function DistPL(p: Point;a,b,c: typedata): typereal; begin DistPoLi := abs(a*p.x+b*p.y+c)/Sqrt(Sqr(a)+ Sqr(b))); end; Vị trí tương đối điểm đường thẳng - Cho điểm p1, p2, M Vị trí tương đối M so với vector 𝑝1 , 𝑝2 xác định sau: VT=(p2.x-p1.x)(M.y-p1.y)-(p2.y-p1.y)(M.x-p1.x) (4)  Nếu VT>0 M bên trái véctơ 𝑝1 , 𝑝2  Nếu VT0 then exit(-1) // điểm M bên trái vector Else exit(1); // điểm M bên phải vector  Xác định điểm M có thuộc đoạn thẳng p1p2 M thỏa điều kiện sau: o M nằm đường thẳng p1p2 o Tọa độ M thỏa : (M.x>=min(p1.x,p2.x)) and (M.x=min(p1.y,p2.y)) and (M.y=min(p1.x,p2.x)) and (M.x=min(p1.y,p2.y)) and (M.y=0 (M.y-A.y)( B.y-A.y)>=0 function PoInRay(M,A,B: Point): boolean; var VT:typeflag; begin VT:= PosPoVec(M,A,B); Exit((VT=0) and ((M.x-A.x)*( B.x-A.x)>=0) and ((M.y-A.y)*( B.y-A.y)>=0)); end;  Xác định vị trí tương đối điểm M1,M2 so với thẳng p1p2 function Pos2PoLi(M1,M2,p1, p2,: Point): boolean; var VT1, VT2:typeflag; begin VT1:= PosPoVec(M1,p1, p2); VT2:= PosPoVec(M2,p1, p2); Exit(VT1 *VT2>=0); // nằm phía end; Vị trí tương đối thẳng - Cho điểm A, B, C, D Vị trí tương đối đường thẳng qua điểm AB qua điểm CD xác định sau: - Tính hệ số A1, B1, C1 đường thẳng AB - - Tính hệ số A2, B2, C2 đường thẳng CD Tính 𝑎1 𝑎 𝑏1 −𝑐1 𝑏1 𝑑= ; 𝑑𝑥 = ; 𝑑𝑦 = 𝑎 𝑎2 𝑏2 −𝑐2 𝑏2 Nếu D0 cắt Ngược lại - Nếu (dx=0) and (dy=0) trùng Ngược lại song song function Pos2Li(var I:Point;A,B,C,D: Point): integer; var a1, b1, c1, a2, b2, c2:typereal; d, dx, dy: typereal; Begin Extract(A,B,a1, b1, c1); Extract(C,D,a2, b2, c2); d:=a1*b2- a2*b1; dx:= c2*b1- c1*b2; dy:= a1*c2- a2*c1; If equal(d,0) then If equal(dx,0) and equal(dy,0) then exit(0) // trùng Else exit(-1) // song song Else // d0 Begin I.x:=dx/d; I.y:=dy/d; exit(1); // cắt điểm end End; -  Xác định đoạn thẳng có giao nhau? a Thuật toán đoạn thẳng giao thỏa điều kiện: Hai đường thẳng qua điểm phải cắt I Và I thuộc đoạn thẳng function ... The Invariance of the Index of Elliptic Operators Constantine Caramanis ∗ Harvard University April 5, 1999 Abstract In 1963 Atiyah and Singer proved the famous Atiyah-Singer Index Theorem, which states, among other things, that the space of elliptic pseudodifferential operators is such that the collection of operators with any given index forms a connected subset. Contained in this statement is the somewhat more specialized claim that the index of an elliptic operator must be invariant under sufficiently small perturbations. By developing the machinery of distributions and in particular Sobolev spaces, this paper addresses this more specific part of the famous Theorem from a completely analytic approach. We first prove the regularity of elliptic operators, then the finite dimensionality of the kernel and cokernel, and finally the invariance of the index under small perturbations. ∗ cmcaram@fas.harvard.edu 1 Acknowledgements I would like to express my thanks to a number of individuals for their con- tributions to this thesis, and to my development as a student of mathematics. First, I would like to thank Professor Clifford Taubes for advising my thesis, and for the many hours he spent providing both guidance and encouragement. I am also indebted to him for helping me realize that there is no analysis without geometry. I would also like to thank Spiro Karigiannis for his very helpful criti- cal reading of the manuscript, and Samuel Grushevsky and Greg Landweber for insightful guidance along the way. I would also like to thank Professor Kamal Khuri-Makdisi who instilled in me a love for mathematics. Studying with him has had a lasting influence on my thinking. If not for his guidance, I can hardly guess where in the Harvard world I would be today. Along those lines, I owe both Professor Dimitri Bertsekas and Professor Roger Brockett thanks for all their advice over the past 4 years. Finally, but certainly not least of all, I would like to thank Nikhil Wagle, Alli- son Rumsey, Sanjay Menon, Michael Emanuel, Thomas Knox, Demian Ordway, and Benjamin Stephens for the help and support, mathematical or other, that they have provided during my tenure at Harvard in general, and during the re- searching and writing of this thesis in particular. April 5 th , 1999 Lowell House, I-31 Constantine Caramanis 2 Contents 1 Introduction 4 2 Euclidean Space 6 2.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Definition of Sobolev Spaces . . . . . . . . . . . . . . . . . 7 2.1.2 The Rellich Lemma . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 Basic Sobolev Elliptic Estimate . . . . . . . . . . . . . . . 12 2.2 Elliptic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Local Regularity of Elliptic Operators . . . . . . . . . . . 16 2.2.2 Kernel and Cokernel of Elliptic Operators . . . . . . . . . 19 3 Compact Manifolds 23 3.1 Patching Up the Local Constructions . . . . . . . . . . . . . . . . 23 3.2 Differences from Euclidean Space . . . . . . . . . . . . . . . . . . 24 3.2.1 Connections and the Covariant Derivative . . . . . . . . . 25 3.2.2 The Riemannian Metric and Inner Products . . . . . . . . 27 3.3 Proof of the Invariance of the Index . . . . . . . . . . . . . . . . 32 4 Example: The Torus 36 A Elliptic Operators and Riemann-Roch 38 B An Alternate Proof of Elliptic Regularity 39 3 1 Introduction This paper defines, and then examines some properties of a certain PART III ALPHABETICAL INDEX OF REPRESENTED ORGANIZATIONS AND THEIR LEGISLATIVE AGENTS BY REGISTRATION NUMBER FOR THE THIRD QUARTER 2002 CLIENT ORGANIZATION NAME AGENT REGISTRATION NUMBER 1-800 Dentist 868 21st Century Frontier Group Inc 337 7-Eleven Inc 1247 AAA NJ Automobile Club 1247 AARP NJ 1222 Abbott Laboratories 365 Academy Bus Tours Inc 868 ACCA Air Cond Contractors of America NJ Chapter 547 Accenture 868 Access 1247 Accountants Coalition The 551 Advance Realty 1247 AdvancePCS 1247 Advantage NJ 291 Advocacy Group/Buchanan Ingersoll 1247 Aetna Inc 413 Aetna Life & Casualty 26 Aetna US Healthcare 413 Aetna US HealthCare 754 Affordable Housing Network of NJ 974 AFL-CIO Local 137 216 AFLAC NY 1263 AG Edwards & Sons Inc 1227 AIA Central NJ 1247 AIA NJ 1247 Air Bag & Seat Belt Safety Campaign/Natl Safety Counci 1174 Air Bag Safety Campaign 26 Aleph Management Services Inc 413 All Agents In The Public Interest 828 Page 1 of 51 PART III ALPHABETICAL INDEX OF REPRESENTED ORGANIZATIONS AND THEIR LEGISLATIVE AGENTS BY REGISTRATION NUMBER FOR THE THIRD QUARTER 2002 CLIENT ORGANIZATION NAME AGENT REGISTRATION NUMBER Allaire Airport 365 Alliance of American Insurers 922 Alliance of American Insurers 1228 Alliance of American Insurers 1241 Alliance of Automotive Service Providers Garden State 939 Alliance of NJ Liquor Retailers 1247 Allianz AG 551 Allied Junction Corp 938 Allied Signal Inc 786 Allstate NJ Insurance Co 1242 Alman Mgmt Group Inc 1087 Alzheimer Assn Greater NJ Chapter 1299 Am Physical Therapy Assn of NJ 291 Amalgamated Transit Union NJ State Joint Council ATU 118 Amerada Hess Corp 1247 Americaid Community Care 1165 American Academy of Pediatrics NJ Chapter 721 American Assn of Blood Banks 721 American Assn of Marriage & Family Therapists 291 American Blood Resource Assn/ABRA 26 American Cancer Society 939 American Cancer Society 1169 American Cancer Society Eastern Division NJ 1156 American Civil Liberties Union of NJ 1296 American Coastal Industries 677 American Coin Merchandising Inc 365 American College of Emergency Physicians 721 American Continental Properties Inc 365 American Council of Life Insurers 1287 Page 2 of 51 PART III ALPHABETICAL INDEX OF REPRESENTED ORGANIZATIONS AND THEIR LEGISLATIVE AGENTS BY REGISTRATION NUMBER FOR THE THIRD QUARTER 2002 CLIENT ORGANIZATION NAME AGENT REGISTRATION NUMBER American Cranberry Growers Assn 413 American Express Co 26 American Express Co 1228 American Fedn of State County & Mun Employees AFS 461 American Forest & Paper Assn 910 American Forest & Paper Assn/AFPA 721 American General Corp 291 American Golf Corp 100 American Guild of Appraisers 216 American Heart Assn 1192 American Home Products 495 American Institute of Architects NJ 291 American Insurance Assn 26 American Insurance Assn 413 American Intl Group Inc 1109 American Intl Group Inc 1284 American Multi Cinema Inc 551 American Plastics Council 289 American Plastics Council 906 American Re-Insurance Co 783 American Red Cross of Metropolitan NJ 849 American Ref-Fuel Co 1247 American Service Group-Prison Health Services 365 American Society of Landscape Architects NJ Chapter 1247 American Society Prevention of Cruelty to Animals/ASP 1268 American Spice Trade Assn 841 American Telephone & Telegraph Co 549 Amerigroup 1192 Amerigroup Corp 1165 Page 3 of 51 PART III ALPHABETICAL INDEX OF REPRESENTED ORGANIZATIONS AND THEIR LEGISLATIVE AGENTS BY REGISTRATION NUMBER FOR THE THIRD QUARTER Heritage Foundation: Index of economic freedom • Kinh tế tự do = không có cưỡng chế của chính phủ hoặc hạn chế về sản xuất, phân phối, hoặc tiêu thụ hàng hóa và dịch vụ vượt quá mức độ cần thiết cho công dân để bảo vệ và duy trì quyền tự của họ. • Chỉ số này bao gồm nhiềuyếu tố thể chế như: tham nhũng, các hàng rào phi thuế quan đối với thương mại, gánh nặng tài chính của chính phủ, các quy định của pháp luật, gánh nặng quản lý, hạn chế về ngân hàng, các quy định thị trường lao động, các hoạt động thị trường chợ đen Criteria of economic freedom • Để đo tốc độ tự do kinh tế và từng quốc gia, chỉ số này dựa trên 50 biến thể chế độc lập gộp lại trong 10 chỉ số tự do kinh tế sau: – Chính sách thương mại, – Gánh nặng tài chính của chính phủ, – Chính phủ can thiệp vào nền kinh tế, – Chính sách tiền tệ, – dòng vốn đầu tư nước ngoài, – Ngân hàng và tài chính, – Tiền lương và giá cả, – Quyền tài sản, – Quy định pháp luật, và – hoạt động thị trường đen Heritage Foundation: 2008 Economic Freedom Index(10 institutional and economic criteria) 1. HongKong 2. Singapore 3. Irland 4. Australia 5. USA 6. New Zealand 7. Canada 8. Chile 9. Switzerland 10.UK 13. Netherlands • Japan = 17 • Korea= 41 • Mexique= 44 • France = 48 France = 48 • Thaïland = 54 • Tunisia= 84 • Morocco= 98 • Brazil= 101 • Algéria= 102 • China = 126 • Russia= 134 • Vietnam = 145 • North Korea = 157 Institutional Investor Risk Rating • Rủi ro thông tin cung cấp bởi các ngân hàng quốc tế. • Ngân hàng được yêu cầu đánh giá tín nhiệm mỗi quốc gia theo thang điểm từ 0 đến 100, trong đó 100 đại diện cho quốc gia có tín nhiệm tốt nhất. • Các mẫu cho nghiên cứu, cập nhật mỗi sáu tháng. • Các tên của tất cả người tham gia cuộc khảo sát được giữ bí mật. • Các ngân hàng không được phép đánh giá quốc gia của họ. Institutional Investor 2007 Risk Rating of ASIA • Singapore= 16 • Australia= 18 • Hongkong= 24 • Taiwan= 26 • South Korea= 28 • China= 34 • Malaysia= 38 • Thailand= 54 • India= 58 • Philippines= 73 • Indonesia= 76 • Vietnam= 77 • Pakistan= 86 • Sri Lanka= 100 • Laos= 132 • Cambodia= 140 • Myanmar= 168 • North Korea= 173 the FDI confidence index • Chỉ số niềm tin FDI được xây dựng bằng cách sử dụng dữ liệu chính từ một cuộc điều tra độc các nhà quản lý , điều hành cấp cao của 1000 tập đoàn lớn nhất thế giới. • Cuộc điều tra được thiết kế để đánh giá khả năng đầu tư tại các thị trường cụ thể để có được cái nhìn sâu sắc và các xu hướng có khả năng trong dòng chảy FDI toàn cầu trong 1-3 năm tới. • Chỉ số giá trị dựa sự phản hồi bởi các công ty không trực thuộc tại QG bị đánh giá (ví dụ: bảng xếp hạng chỉ số cho Hoa Kỳ phản ánh tất cả các câu trả lời công ty ngoài nước Mỹ về thị trường Mỹ) Free download from www.hsrcpress.ac.za Helen Barnes, Gemma Wright, Michael Noble & Andrew Dawes The South African Index of Multiple Deprivation for Children Census 2001 Centre for the Analysis of South African Social Policy, Oxford University Free download from www.hsrcpress.ac.za Research project funded by Save the Children, Sweden, Southern Africa Region Published by HSRC Press Private Bag X9182, Cape Town, 8000, South Africa www.hsrcpress.ac.za First published 2007 ISBN 978-0-7969-2216-8 © 2007 Human Sciences Research Council The University of Oxford and the Human Sciences Research Council have taken care to ensure that the information in this report and the accompanying data are correct. However, no warranty, express or implied, is given as to its accuracy and the University of Oxford and the Human Sciences Research Council do not accept any liability for error or omission. The University of Oxford and the Human Sciences Research Council are not responsible for how the information is used, how it is interpreted or what reliance is placed on it. The University of Oxford and the Human Sciences Research Council do not guarantee that the information in this report or in the accompanying file is fit for any particular purpose. The University of Oxford and the Human Sciences Research Council do not accept responsibility for any alteration or manipulation of the report or the data once it has been released. Print management by comPress Distributed in Africa by Blue Weaver Tel: +27 (0) 21 701 4477; Fax: +27 (0) 21 701 7302 www.oneworldbooks.com Distributed in Europe and the United Kingdom by Eurospan Distribution Services (EDS) Tel: +44 (0) 20 7240 0856; Fax: +44 (0) 20 7379 0609 www.eurospanbookstore.com Distributed in North America by Independent Publishers Group (IPG) Call toll-free: (800) 888 4741; Fax: +1 (312) 337 5985 www.ipgbook.com Suggested citation Barnes, H., Wright, G., Noble, M. and Dawes, A. (2007) The South African Index of Multiple Deprivation for Children: Census 2001. Cape Town: HSRC Press. Free download from www.hsrcpress.ac.za CONTENTS Acknowledgements iv Contributors v Acronyms vi 1 Background 1 1.1 Introduction 1 1.2 Conceptual framework for the SAIMDC 3 1.3 Review of previous research measuring child poverty in South Africa 4 2 Components of the SAIMDC 10 2.1 About the domains 10 2.2 About the indicators 10 3 Methodology 13 3.1 Creating domain indices 13 3.2 Combining domain indices into an index of multiple deprivation 13 4 The geography of deprivation 16 4.1 How to interpret the municipal-level results 16 4.2 Municipal-level results 16 5 Towards a SAIMDC at sub-municipal level 42 5.1 A new statistical geography 42 5.2 Harnessing administrative and survey data to create indices of multiple deprivation 43 Appendix 1 44 Indicators used in the SAIMDC 44 The Income and Material Deprivation Domain 44 The Employment Deprivation Domain 45 The Education Deprivation Domain 45 The Living Environment Deprivation Domain 47 The Adequate Care Deprivation Domain 49 Other domains considered 50 Appendix 2 52 Exponential transformation 52 Appendix 3 54 Municipal identification maps 54 References 63 Free download from www.hsrcpress.ac.za iv The authors would like to thank Save the Children, Sweden for funding this project and the following people for reviewing and commenting on earlier drafts of the text: Lucie Cluver, Christopher Dibben, Sharmla Rama, Benjamin Roberts, Judith Streak and Cathy ... procedure ConvexSet(M:SetPoint;n :index; var H:polygon; var k); Var i,j :index; dd: array[1 n] of boolean; Begin Sort_Y_Axis(M); // tăng theo tung độ Fillchar(dd,sizeof(dd),false); // đỉnh xét Stop:=false;... End; 3.2 Kiểm tra đa giác lồi 10 - Dựa theo định nghĩa Function Convex (P:polygon;n :index) :boolean; Var i,j,l,k :index; Begin For i:=1 to n Begin l:=i+1; if l=n+1 then l:=1; // đỉnh kế với i k:=i+2;... giác nằm bên (trái phải) với vector cạnh cuả đa giác Function Inside (P:polygon;n :index; M:point):boolean; Var i :index; VT, VT1:integer; Begin If PoInLi(P[1], P[2],M) then exit(true); 11 VT:=PosPoVec(P[1],P[2],M);

Ngày đăng: 03/11/2017, 17:34

Xem thêm

HÌNH ẢNH LIÊN QUAN

- Xử lý hình học hầu hết liên quan đến số thực. - Index of  tailieu
l ý hình học hầu hết liên quan đến số thực (Trang 1)
Phương pháp hình học - Index of  tailieu
h ương pháp hình học (Trang 3)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w