SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỂ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2009 THÀNH PHỐ ĐÀ NẴNG Môn thi: TOÁN, khối A TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Thời gian làm bài: 180 phút, không kể thời gian giao đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số 4 2 ( ) 8x 9x 1y f x= = − + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình 4 2 8 os 9 os 0c x c x m− + = với [0; ]x π ∈ . Câu II (2 điểm) 1. Giải phương trình: ( ) 3 log 1 2 2 2 x x x x − − = − ÷ 2. Giải hệ phương trình: 2 2 2 2 12 12 x y x y y x y + + − = − = Câu III (1 điểm) Tính diện tích của miền phẳng giới hạn bởi các đường 2 | 4 |y x x= − và 2y x= . Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r cho trước. Tính thể tích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ. Câu V (1 điểm) Định m để phương trình sau có nghiệm 2 4sin3xsinx + 4cos 3x - os x + os 2x + 0 4 4 4 c c m π π π − + = ÷ ÷ ÷ PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. Cho ∆ ABC có đỉnh A(1;2), đường trung tuyến BM: 2 1 0x y+ + = và phân giác trong CD: 1 0x y+ − = . Viết phương trình đường thẳng BC. 2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số 2 2 2 2 x t y t z t = − + = − = + .Gọi ∆ là đường thẳng qua điểm A(4;0;-1) song song với (D) và I(-2;0;2) là hình chiếu vuông góc của A trên (D). Trong các mặt phẳng qua ∆ , hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất. Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 1 1 1 5 1 1 1xy yz zx x y z + + ≤ + + + + + 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D. 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số 1 2 1 2 x t y t z t = − + = − = .Một điểm M thay đổi trên đường thẳng ∆ , xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh 1 1 2 2 3 3 2 3 3 b c a a b a c a b c a c a b + + + + < ÷ + + + + + + ----------------------Hết---------------------- Đáp án Câu Ý Nội dung Điểm I 2,00 1 1,00 + Tập xác định: D = ¡ 0,25 + Sự biến thiên: • Giới hạn: lim ; lim x x y y →−∞ →+∞ = +∞ = +∞ • ( ) 3 2 ' 32x 18x = 2x 16x 9y = − − 0 ' 0 3 4 x y x = = ⇔ = ± 0,25 • Bảng biến thiên. ( ) 3 49 3 49 ; ; 0 1 4 32 4 32 CT CT y y y y y y = − = − = = − = = ÷ ÷ C§ 0,25 • Đồ thị 0,25 2 1,00 Xét phương trình 4 2 8 os 9 os 0c x c x m− + = với [0; ]x π ∈ (1) Đặt osxt c= , phương trình (1) trở thành: 4 2 8 9 0 (2)t t m− + = Vì [0; ]x π ∈ nên [ 1;1]t ∈ − , giữa x và t có sự tương ứng một đối một, do đó số nghiệm của phương trình (1) và (2) bằng nhau. 0,25 Ta có: 4 2 (2) 8 9 1 1 (3)t t m⇔ − + = − Gọi (C 1 ): 4 2 8 9 1y t t= − + với [ 1;1]t ∈ − và (D): y = 1 – m. Phương trình (3) là phương trình hoành độ giao điểm của (C 1 ) và (D). Chú ý rằng (C 1 ) giống như đồ thị (C) trong miền 1 1t− ≤ ≤ . 0,25 Dựa vào đồ thị ta có kết luận sau: • 81 32 m > : Phương trình đã cho vô nghiệm. • 81 32 m = : Phương trình đã cho có 2 nghiệm. • 81 1 32 m≤ < : Phương trình đã cho có 4 nghiệm. • 0 1m< < : Phương trình đã cho có 2 nghiệm. • 0m = : Phương trình đã cho có 1 nghiệm. • m < 0 : Phương trình đã cho vô nghiệm. 0,50 II 2,00 1 1,00 Phương Onthionline.net TRƯỜNG THPT NG VĂN CỪ ĐỀ THI THƯ ĐẠI HỌC MÔN TOÁN KHỐI A NĂM HỌC 2011-2012 (Thời gian làm 180 phút) PHẤN CHUNG:( Dành cho tất thí sinh) Câu I Cho hàm số y = x − 3mx + 3m + ,(Cm ) Khảo sát vẽ đồ thị ( C ) m = Tìm giá trị m để ( Cm) có cực trị nằm trục tọa độ Câu II Giải phương trình : cos x + cos x + sin x = 2 x − x − + x − 14 = x − Câu III Tính tích phân : π I=∫ π dx sin x.cos x Câu IV Cho hình chóp S.ABCD có đáy ABCD hình vuông tâm O cạnh a, SO vuông góc với (ABCD) Gọi M,N la trung điểm SA BC, góc MN (ABCD) 600 Tính thể tích khối chóp S.ABCD d(MN,BD) 2 Câu V Cho a,b,c số dương thỏa mãn a + b + c ≤ thức : P = + a + b + c Tìm giá trị nhỏ biểu 1 + + a +1 b +1 c +1 PHẦN RIÊNG: A: Theo chương trình chuan: Câu VIa Trong mp Oxy , cho hình bình hành ABCD có diện tích Biết A(1; 0) , B( 2:0) Và giao điểm I hai đường chéo AC BD thuộc đường thẳng d: y = x Tìm tọa độ đỉnh C D Trong không gian Oxyz, Cho hai mp ( p1 ) : x − y + z − = ( p2 ) : x − y + z + = Và điểm A( -1;1;1) Mặt cấu (S) tâm I qua A , tiếp xúc với (P1) (P2) Chứng minh I thuộc đường tròn cố định, tìm tâm bán kính đường tròn Câu VIIa z1 Z cho z1 , z2 ( z2 ≠ 0) hai số phức Chúng minh = z2 z2 Tìm tập hơp điểm mặt phẳng biểu diễn số phức Z thoả mãn: 1 = 2z − z ĐỀ THI THỬ ĐẠI HỌC NĂM 2009-2010. Môn: Toán A. Thời gian: 180 phút ( Không kể giao đề). I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm). Câu I (2 điểm): Cho hàm số 2 4 1 x y x + = − . 1) Khảo sát và vẽ đồ thị ( ) C của hàm số trên. 2) Gọi (d) là đường thẳng qua A( 1; 1 ) và có hệ số góc k. Tìm k sao cho (d) cắt ( C ) tại hai điểm M, N và 3 10MN = . Câu II (2 điểm): 1) Giải phương trình: sin 3 3sin 2 cos2 3sin 3cos 2 0x x x x x− − + + − = . 2) Giải hệ phương trình: 2 2 2 2 1 4 ( ) 2 7 2 x y xy y y x y x y + + + = + = + + . Câu III (1 điểm): Tính tích phân: 2 3 0 3sin 2cos (sin cos ) x x I dx x x π − = + ∫ Câu IV (1 điểm): Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật với SA vuông góc với đáy, G là trọng tâm tam giác SAC, mặt phẳng (ABG) cắt SC tại M, cắt SD tại N. Tính thể tích của khối đa diện MNABCD biết SA=AB=a và góc hợp bởi đường thẳng AN và mp(ABCD) bằng 0 30 . Câu V (1 điểm): Cho các số dương , , : 3.a b c ab bc ca+ + = Chứng minh rằng: 2 2 2 1 1 1 1 . 1 ( ) 1 ( ) 1 ( )a b c b c a c a b abc + + ≤ + + + + + + II. PHẦN RIÊNG (3 điểm) (Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2)). 1. Theo chương trình Chuẩn : Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn 2 2 ( ) : – 2 – 2 1 0,C x y x y+ + = 2 2 ( ') : 4 – 5 0C x y x+ + = cùng đi qua M(1; 0). Viết phương trình đường thẳng qua M cắt hai đường tròn ( ), ( ')C C lần lượt tại A, B sao cho MA= 2MB. 2) Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). Câu VII.a (1 điểm): Khai triển đa thức: 20 2 20 0 1 2 20 (1 3 ) . .x a a x a x a x− = + + + + Tính tổng: 0 1 2 20 2 3 . 21S a a a a= + + + + . 2. Theo chương trình Nâng cao : Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm (1;0)H , chân đường cao hạ từ đỉnh B là (0; 2)K , trung điểm cạnh AB là (3;1)M . 2) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 1 ( ): 1 1 2 x y z d = = và 2 1 1 ( ) : 2 1 1 x y z d + − = = − . Tìm tọa độ các điểm M thuộc 1 ( )d và N thuộc 2 ( )d sao cho đường thẳng MN song song với mặt phẳng ( ) : – 2010 0P x y z+ + = độ dài đoạn MN bằng 2 . Câu VII.b (1 điểm): Giải hệ phương trình 2 1 2 1 2 2log ( 2 2) log ( 2 1) 6 log ( 5) log ( 4) = 1 x y x y xy x y x x y x − + − + − − + + + − + = + − + ………………………………… .HẾT…………………………………………………… Câu Phần Nội dung Điểm I (2,0) 1(1,0) Làm đúng, đủ các bước theo Sơ đồ khảo sát hàm số cho điểm tối đa. 1,0 2(1,0) Từ giả thiết ta có: ( ) : ( 1) 1.d y k x= − + Bài toán trở thành: Tìm k để hệ phương trình sau có hai nghiệm 1 1 2 2 ( ; ), ( ; )x y x y phân biệt sao cho ( ) ( ) 2 2 2 1 2 1 90(*)x x y y− + − = 2 4 ( 1) 1 ( ) 1 ( 1) 1 x k x I x y k x + = − + − + = − + . Ta có: 2 (2 3) 3 0 ( ) ( 1) 1 kx k x k I y k x − − + + = ⇔ = − + Dễ có (I) có hai nghiệm phân biệt khi và chỉ khi phương trình 2 (2 3) 3 0(**)kx k x k− − + + = có hai nghiệm phân biệt. Khi đó dễ có được 3 0, . 8 k k≠ < Ta biến đổi (*) trở thành: ( ) ( ) 2 2 2 2 2 1 2 1 2 1 (1 ) 90 (1 )[ 4 ] 90(***)k x x k x x x x+ − = ⇔ + + − = Theo định lí Viet cho (**) ta có: 1 2 1 2 2 3 3 , , k k x x x x k k − + + = = thế vào (***) ta có phương trình: 3 2 2 8 27 8 3 0 ( 3)(8 3 1) 0k k k k k k+ + − = ⇔ + + − = 3 41 3 41 3, , 16 16 − + − − = − =⇔ =k k k . KL: Vậy có 3 giá trị của k thoả mãn như trên. 0,25 0,5 0,25 Câu Phần Nội dung Điểm II (2,0) 1(1,0) sin 3 3sin 2 cos2 3sin 3cos 2 0x x x x x− − + + − = ⇔ (sin 3 sin ) 2sin 3sin 2 (cos 2 2 3cos ) 0x x x x x x+ + − − + − = 2 2sin 2 .cos K THI KHO ST CHT LNG ễN THI I HC KHI A - B D. Nm 2010. Mụn thi: Toỏn. Thi gian lm bi: 180 phỳt. Ngy 20 thỏng 3 nm 2010. A. PHN CHUNG CHO TT C TH SINH (7 im) Cõu I. (2 im) Cho hm s y = x 3 + 3x 2 + mx + 1 cú th l (C m ); ( m l tham s) 1. Kho sỏt s bin thiờn v v th hm s khi m = 3. 2. Xỏc nh m (C m ) ct ng thng y = 1 ti ba im phõn bit C(0;1), D, E sao cho cỏc tip tuyn ca (C m ) ti D v E vuụng gúc vi nhau. Cõu II (2 im) 1.Gii phng trỡnh: x xx xx 2 32 2 cos 1coscos tan2cos + = . 2. Gii h phng trỡnh: 2 2 2 2 1 4 ( ) 2 7 2 x y xy y y x y x y + + + = + = + + , ( , )x y R . Cõu III (1 im) Tớnh tớch phõn: 3 2 2 1 log 1 3ln e x I dx x x = + . Cõu IV. (1 im) Cho hình hộp đứng ABCD.A'B'C'D' có các cạnh AB = AD = a, AA' = 3 2 a và góc BAD = 60 0 . Gọi M và N lần lợt là trung điểm của các cạnh A'D' và A'B'. Chứng minh AC' vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp A.BDMN. Cõu V. (1 im) Cho a, b, c l cỏc s thc khụng õm tha món 1a b c + + = . Chng minh rng: 7 2 27 ab bc ca abc+ + . B. PHN RIấNG (3 im). Thớ sinh ch c lm mt trong hai phn (phn 1 hoc 2) 1.Theo chng trỡnh Chun Cõu VIa. ( 2 im) 1. Trong mt phng vi h ta Oxy , cho tam giỏc ABC bit A(5; 2). Phng trỡnh ng trung trc cnh BC, ng trung tuyn CC ln lt l x + y 6 = 0 v 2x y + 3 = 0. Tỡm ta cỏc nh ca tam giỏc ABC. 2. Trong khụng gian vi h ta Oxyz, hóy xỏc nh to tõm v bỏn kớnh ng trũn ngoi tip tam giỏc ABC, bit A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). Cõu VIIa. (1 im) Cho 1 z , 2 z l cỏc nghim phc ca phng trỡnh 2 2 4 11 0z z + = . Tớnh giỏ tr ca biu thc 2 2 1 2 2 1 2 ( ) z z z z + + . 2. Theo chng trỡnh Nõng cao Cõu VIb. ( 2 im) 1. Trong mt phng vi h ta Oxy cho hai ng thng : 3 8 0x y+ + = , ':3 4 10 0x y + = v im A(-2 ; 1). Vit phng trỡnh ng trũn cú tõm thuc ng thng , i qua im A v tip xỳc vi ng thng . 2. Trong khụng gian vi h ta Oxyz, Cho ba im A(0;1;2), B(2;-2;1), C(-2;0;1). Vit phng trỡnh mt phng (ABC) v tỡm im M thuc mt phng 2x + 2y + z 3 = 0 sao cho MA = MB = MC. Cõu VIIb. (1 im) Gii h phng trỡnh : 2 1 2 1 2 2log ( 2 2) log ( 2 1) 6 log ( 5) log ( 4) = 1 x y x y xy x y x x y x + + + + + + = + + , ( , )x y R . ----------------------------------------------------------- tavi ------------------------------------------------------ ĐÁP ÁN KỲ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC KHỐI A - B – D. Năm 2010 Câu Ý Nội dung Điểm I 1 1 2 PT hoành độ giao điểm x 3 + 3x 2 + mx + 1 = 1 ⇔ x(x 2 + 3x + m) = 0 ⇔ m = 0, f(x) = 0 0.25 Đê thỏa mãn yc ta phải có pt f(x) = 0 có 2 nghiệm phân biệt x 1 , x 2 khác 0 và y’(x 1 ).y’(x 2 ) = -1. 0.25 Hay 2 2 1 1 2 2 9 4 0, (0) 0 (3 6 )(3 6 ) 1. m f m x x m x x m − > = ≠ + + + + = − 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 9 9 , 0 , 0 4 4 9( ) 18 ( ) 3 ( ) 36 6 ( ) 1 4 9 1 0 m m m m x x x x x x m x x x x m x x m m m < ≠ < ≠ ⇔ ⇔ + + + + + + + + = − − + = 0.25 Giải ra ta có ĐS: m = 9 65 8 ± 0.25 II 1 ĐK cosx ≠ 0, pt được đưa về 2 2 2 cos2 tan 1 cos (1 tan ) 2cos cos -1 0x x x x x x− = + − + ⇔ − = 0.5 Giải tiếp được cosx = 1 và cosx = 0,5 rồi đối chiếu đk để đưa ra ĐS: 2 2 2 , 2 ; hay 3 3 x k x k x k π π π π = = ± + = . 0.5 2 0y ≠ , ta có: 2 2 2 2 2 2 2 1 4 1 4 . ( ) 2 7 2 1 ( ) 2 7 x x y y x y xy y y x y x y x x y y + + + = + + + = ⇔ + = + + + + − = 0.25 Đặt 2 1 , x u v x y y + = = + ta có hệ: 2 2 4 4 3, 1 2 7 2 15 0 5, 9 u v u v v u v u v v v u + = = − = = ⇔ ⇔ − = + − = = − = 0.25 +) Với 3, 1v u= = ta có hệ: 2 2 2 1, 2 1 1 2 0 2, 5 3 3 3 x y x y x y x x x y x y y x y x = = + = + = + − = ⇔ ⇔ ⇔ = − = + = = − = − . 0.25 +) Với 5, 9v u= − = ta có hệ: 2 2 2 1 9 1 9 9 46 0 5 5 5 x y x y x x x y y x TRNGTHPTCHUYấNVNHPHC KTHITHIHCLN1NMHC20122013 Mụn:Toỏn12.Khi A. Thigianlmbi:150phỳt(Khụngkthigiangiao) A.PHNCHUNGCHOTTCTHSINH(8,0im) Cõu I(2,5im)Chohms: 3 3 2y x mx = - + ( ) 1 , m là tham số thực. 1)Khosỏtsbinthiờnvvthhms ( ) 1 khi 1m = 2) Tìm các giá trị của m để đồ thị hàm số ( ) 1 có tiptuyntovingthng : 7 0d x y + + = gúc a,bit 1 cos 26 a = . CõuII(2,5im)1)Giiphngtrỡnh: 4 3 4cos2 8sin 1 sin 2 cos 2 sin 2 x x x x x - - = + 2) Giihphngtrỡnh: ( ) 3 3 2 2 4 16 1 5 1 x y y x y x ỡ + = + ù ớ + = + ù ợ ( , )x y ẻR . CõuIII(1,0im)Tớnh giihn : 3 2 2 2 6 4 lim 4 x x x L x đ - - + = - CõuIV.(1,0im)Chohỡnhlpphng 1 1 1 1 .ABCD A B C D códicnhbng 3 vim Mthuccnh 1 CC saocho 2CM = .Mtphng ( ) a iqua ,A M vsongsomgvi BD chiakhilpphngthnhhai khiadin.Tớnhthtớchhaikhiadinú. CõuV.(1,0im)Chocỏcsthc , ,x y z thomón 2 2 2 3x y z + + = .Tỡmgiỏtrlnnhtcabiuthc: 2 2 3 7 5 5 7 3F x y y z z x = + + + + + B.PHNRIấNG (2,0im).Thớsinhchclmmttronghaiphn(phn1 hoc2) 1.TheochngtrỡnhChun CõuVIa.(1,0 im)TrongmtphngvihtoOxy cho hai điểm ( ) ( ) 21 , 1 3A B - - và hai đờng thẳng 1 2 : 3 0 : 5 16 0.d x y d x y + + = - - = Tìm toạ độ các điểm ,C D lần lợt thuộc 1 2 ,d d sao cho tứ giác A BCD là hình bình hành. CõuVIIa.(1,0 im)Tớnhtng: 2 1 2 2 2 3 2 2012 2012 2012 2012 2012 1 2 3 2012S C C C C = + + + + L 2.TheochngtrỡnhNõngcao CõuVIb.(1,0 im)TrongmtphnghtoOxy choelớp ( ) 2 2 : 1 9 4 x y E + = và các điểm ( ) 30A - ; ( ) 10I - .Tìm toạ độ các điểm ,B C thuộc ( ) E sao cho I là tâm đờng tròn ngoại tiếp tam giác ABC CõuVIIB:(1,0im):Tớnhtng: 0 1 2 2012 2012 2012 2012 2012 1 2 3 2013 C C C C T = + + + + L HT Ghichỳ: Thớsinhkhụngcsdngbtctiliugỡ! Cỏnbcoithikhụn ggiithớchgỡthờm! Cm nthyNguynDuyLiờn(lientoancvp@vinhphuc.edu.vn)gitihttp://www.laisac.page.tl/ chớnhthc (thigm01trang) TRNGTHPTCHUYấNVNHPHC PN THITHIHCNM20122013LN1 MễNTONKHIA (ỏpỏngm5trang) Cõu Nidungtrỡnhby im I(2,0) 1.(1,50im) Khi 1m = hms(1)cúdng 3 3 2y x x = - + a)Tpxỏcnh D = Ă b)Sbinthiờn +)Chiubinthiờn: 2 ' 3 3y x = - , ' 0 1y x = = .Khiúxộtduca 'y : + + 0 0 11 + Ơ Ơ y x hmsngbintrờnkhong ( ) ( ) 1 , 1 -Ơ - + Ơ vnghchbintrờnkhong ( ) 11 - . 0,50 +)Cctr:hmstcciti 1, 4 CD x y = - = Hmstcctiuti 1, 0 CT x y = = +)Giihn: 3 3 2 3 2 3 3 2 3 2 lim lim 1 lim lim 1 x x x x y x y x x x x x đ-Ơ đ-Ơ đ+Ơ đ+Ơ ổ ử ổ ử = - + = -Ơ = - + = +Ơ ỗ ữ ỗ ữ ố ứ ố ứ 0,25 +)Bngbinthiờn: : x -Ơ 1 1 +Ơ y' + 0 - 0 + y 4 +Ơ -Ơ 0 0,25 c)th: 3 0 3 2 0 1, 2y x x x x = - + = = = - ,suyrathhmscttrcOxtiOx ticỏcim ( ) ( ) 10 , 20 - '' 0 6 0 0y x x = = = ị thhmsnhnim ( ) 02 lmimun. 0,50 1 1 4 x 0 y 2.(1,0 im) Gi k lhsgúccatiptuyn ị tiptuyn cúVTPT ( ) 1 1n k = - r ngthng : 7 0d x y + + = tiptuyn cúVTPT ( ) 2 11n = r 0,25 Tacú ( ) 1 2 1 2 2 1 2 1 1 cos cos , 26 2 1 n n k n n n n k ì - a = = = + r r r r r r 2 3 2 12 26 12 0 2 3 k k k k - + = = = 0,25 YCBTthomón ớtnhtmttronghaiphngtrỡnhsaucúnghim: , 2 2 , 2 2 3 3 2 1 2 1 3 3 0 2 2 2 2 2 2 9 2 9 2 3 3 0 3 3 9 9 m m y x m x m m y x m x + + ộ ộ ộ ộ = - = = ờ ờ ờ ờ ờ ờ ờ ờ + + ờ ờ ờ ờ = - = = ờ ờ ờ ờ ở ở ở ở 1 2 2 9 m m ộ - ờ ờ ờ - ờ ở 1 2 m - 0,25 Vythcútiptuyntovingthng : 7 0d x y + + = gúc a ,cú 1 cos 26 a = . thỡ 1 2 m - 0,25 II(2,5) 1.(1,25 im).Giiphngtrỡnh: 4 3 4 cos 2 8sin 1 sin 2 cos 2 sin 2 x x x x x - - = + Đ/k ( ) sin 2 cos 2 0 8 2 sin 2 0 2 x l x x l x x l p p p ỡ ạ - + ù + ạ ỡ ù ẻ ớ ớ ạ ợ ù ạ ù ợ Z 0,25 ta có: 2 4 1 cos 2 8sin 8 3 4cos 2 cos4 2 x x x x - ổ ử = = = - + ỗ ữ ố ứ L Phơng trình ( ) 3 4 cos 2 3 4cos 2 cos 4 1 sin 2 cos2 sin 2 x x x x x x - - - + = + ( ) cos 4 1 sin 2 cos 2 0,sin 2 0 sin 2 cos 2 sin 2 x do x x x x x x TRƯỜNG THPT NGUYỄN DU ĐỀ THI THỬ ĐẠI HỌC LẦN I Khối : A – B; Năm học: 2012 - 2013 Thời gian làm bài: 90 phút. Mã đề 137 Cho nguyên tử khối của các nguyên tố: H=1; O=16; C=12; N=14; Na=23; Mg=24; Al=27; S=32; Cl=35,5; Ca=40; Cr=52; Fe=56; Zn=65; Ag=108; Pb=207 C©u 1 : Hỗn hợp X gồm 1 ankan và 1 anken. Cho X tác dụng với 4,704 lít H 2 (đktc) cho đến phản ứng hoàn toàn thu được hỗn hợp Y gồm 2 khí trong đó có H 2 dư và 1 hiđrocacbon. Đốt cháy hoàn toàn Y rồi cho sản phẩm vào nước vôi trong dư thấy khối lượng bình đựng nước vôi trong tăng 16,2 gam và có 18 gam kết tủa tạo thành. Công thức của ankan trong hh X là: A. C 3 H 8 B. C 4 H 10 C. C 2 H 6 D. CH 4 C©u 2 : Những chất nào sau đây có thể tác dụng với dd Br 2 tạo kết tủa : C 6 H 5 NH 2 (1); C 6 H 4 OH(CH 3 ) (2); C 6 H 5 NH 3 Cl(3) C 6 H 5 -NH-CH 3 (4); C 6 H 5 -O-CH 3 (5) A. 1,2,4,5 B. 1,2,3,4 C. 1,4 D. 1,3,4,5 C©u 3 : Hỗn hợp X gồm ancol metylic và hai axit cacboxylic đơn chức,có số cacbon trong phân tử chênh nhau một nguyên tử, tác dụng hết với Na, giải phóng ra 6,72 lít khí H 2 (đktc). Nếu đun nóng hỗn hợp X (có H 2 SO 4 đặc làm xúc tác) thì các chất trong hỗn hợp phản ứng vừa đủ với nhau tạo thành 23,4 gam hỗn hợp este (giả thiết phản ứng este hoá đạt hiệu suất 100%). Hai axit trong hỗn hợp X là : A. HCOOH; CH 3 COOH B. C 2 H 5 COOH; HCOOH C. C 2 H 3 COOH; C 3 H 5 COOH D. CH 3 COOH; C 2 H 3 COOH C©u 4 : Cho m gam Zn vào dung dịch chứa 0,1 mol AgNO 3 và 0,15 mol Cu(NO 3 ) 2 , sau một thời gian thu được 26,9 gam kết tủa và dung dịch X chứa 2 muối. Tách lấy kết tủa, thêm tiếp 5,6 gam bột sắt vào dung dịch X, sau khi các phản ứng hoàn toàn thu được 6 gam kết tủa. Giá trị của m là: A. 6,50g B. 18,25g C. 19,50g D. 19,45g C©u 5 : Cho 7,84 lít khí CO 2 (đktc) vào 200 ml dd NaOH 1M, Ba(OH) 2 1M. Khối lượng kết tủa thu được là: A. 39,4 gam B. 29,55 gam C. 59,1 gam D. 49,25 gam C©u 6 : Thủy phân 152 gam hh các tripeptit thu được 159,2 gam hh X gồm các aminoaxit chỉ chứa một nhóm NH 2 và một nhóm –COOH . Cho 1/5 hh X tác dụng với dd KOH dư, khối lượng muối thu được là : A. 36,4gam B. 182 gam C. 34,48gam D. 34,24 gam C©u 7 : Dung dịch nào sau đây làm quỳ tím chuyển màu: A. Alanin B. Anilin C. Glixin D. Phenylamoniclorua C©u 8 : Oxi hóa 4,2 gam một anđehit đơn chức A bằng oxi. Sau một thời gian thu được hh B gồm anđehit dư và axit nặng 5,96 gam. Cho hh B phản ứng với lượng dư AgNO 3 / NH 3 . Khối lượng Ag thu được là: A. 21,6 g B. 12,96g C. 36,72 g D. 60,48 g C©u 9 : Một dung dịch chứa x mol Ca(OH) 2 và y mol CaCl 2 . Để làm kết tủa hoàn toàn ion Ca 2+ trong dung dịch trên, có thể dùng dung dịch NaHCO 3 , khi đó quan hệ giữa x và y phải là: A. x y B. x y C. x 2y D. 2y C©u 10 : Hỗn hợp X gồm C 2 H 2 và H 2 có cùng số mol. Lấy một lượng hỗn hợp X cho qua chất xúc tác nung nóng, thu được hỗn hợp Y gồm C 2 H 4 , C 2 H 6 , C 2 H 2 và H 2 . Sục Y vào dung dịch brom (dư) thì khối lượng bình brom tăng 10,8 gam và thoát ra 4,48 lít hỗn hợp khí (đktc) có tỉ khối so với H 2 là 8. Khối lượng brom đã phản ứng là: A. 96gam B. 64gam C. 32 gam D. 16 gam C©u 11 : Hỗn hợp X gồm ancol metylic và 1 ancol đơn chức mạch không phân nhánh R. Cho 7,8 gam X tác dụng với Na dư thu được 2,24 lít khí hiđro (đktc). Oxi hóa 7,8 gam X bằng CuO nung nóng thu được hỗn hợp Y. Cho toàn bộ hỗn hợp Y tác dụng với lượng dư AgNO 3 /NH 3 đun nóng thu được 64,8 gam chất kết tủa. Các phản ứng đều đạt hiệu suất 100%. Công thức của ancol là: A. Etanol B. Propan-2-ol C. Propan-1-ol D. Etanol hoặc propan- 2-ol C©u 12 : Đốt cháy 7,8 gam hh Al và Mg trong không khí, sau một thời gian thu được 11 gam hh A. Hòa tan 11 gam A trong một lượng vừa đủ V ml dd HCl 1 mol/l và H 2 SO 4 0,5 mol/l, thu được 4,48 lít khí H 2 (đktc). Giá trị của V là: A. 600 B. 800 C. 400 D. 500 C©u 13 : Đốt cháy 8,4 gam Fe trong không khí, sau một thời gian được 10 gam hỗn hợp X gồm 4 chất rắn. Hòa tan hoàn toàn X trong một lượng vừa đủ 500 ml dd chứa hỗn hợp HCl a mol/l và H 2 SO 4 b mol/l, thu được