1. Trang chủ
  2. » Thể loại khác

Tài liệu PDF The Lungs

6 117 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,51 MB

Nội dung

PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Lungs The Lungs Bởi: OpenStaxCollege A major organ of the respiratory system, each lung houses structures of both the conducting and respiratory zones The main function of the lungs is to perform the exchange of oxygen and carbon dioxide with air from the atmosphere To this end, the lungs exchange respiratory gases across a very large epithelial surface area—about 70 square meters—that is highly permeable to gases Gross Anatomy of the Lungs The lungs are pyramid-shaped, paired organs that are connected to the trachea by the right and left bronchi; on the inferior surface, the lungs are bordered by the diaphragm The diaphragm is the flat, dome-shaped muscle located at the base of the lungs and thoracic cavity The lungs are enclosed by the pleurae, which are attached to the mediastinum The right lung is shorter and wider than the left lung, and the left lung occupies a smaller volume than the right The cardiac notch is an indentation on the surface of the left lung, and it allows space for the heart ([link]) The apex of the lung is the superior region, whereas the base is the opposite region near the diaphragm The costal surface of the lung borders the ribs The mediastinal surface faces the midline Gross Anatomy of the Lungs 1/6 The Lungs Each lung is composed of smaller units called lobes Fissures separate these lobes from each other The right lung consists of three lobes: the superior, middle, and inferior lobes The left lung consists of two lobes: the superior and inferior lobes A bronchopulmonary segment is a division of a lobe, and each lobe houses multiple bronchopulmonary segments Each segment receives air from its own tertiary bronchus and is supplied with blood by its own artery Some diseases of the lungs typically affect one or more bronchopulmonary segments, and in some cases, the diseased segments can be surgically removed with little influence on neighboring segments A pulmonary lobule is a subdivision formed as the bronchi branch into bronchioles Each lobule receives its own large bronchiole that has multiple branches An interlobular septum is a wall, composed of connective tissue, which separates lobules from one another Blood Supply and Nervous Innervation of the Lungs The blood supply of the lungs plays an important role in gas exchange and serves as a transport system for gases throughout the body In addition, innervation by the both the parasympathetic and sympathetic nervous systems provides an important level of control through dilation and constriction of the airway Blood Supply The major function of the lungs is to perform gas exchange, which requires blood from the pulmonary circulation This blood supply contains deoxygenated blood and travels to the lungs where erythrocytes, also known as red blood cells, pick up oxygen to be transported to tissues throughout the body The pulmonary artery is an artery that arises from the pulmonary trunk and carries deoxygenated, arterial blood to the alveoli The pulmonary artery branches multiple times as it follows the bronchi, and each branch becomes progressively smaller in diameter One arteriole and an accompanying venule supply and drain one pulmonary lobule As they near the alveoli, the pulmonary arteries become the pulmonary capillary network The pulmonary capillary network consists of tiny vessels with very thin walls that lack smooth muscle fibers The capillaries branch and follow the bronchioles and structure of the alveoli It is at this point that the capillary wall meets the alveolar wall, creating the respiratory membrane Once the blood is oxygenated, it drains from the alveoli by way of multiple pulmonary veins, which exit the lungs through the hilum Nervous Innervation Dilation and constriction of the airway are achieved through nervous control by the parasympathetic and sympathetic nervous systems The parasympathetic system causes bronchoconstriction, whereas the sympathetic nervous system stimulates bronchodilation Reflexes such as coughing, and the ability of the lungs to regulate oxygen and carbon dioxide levels, also result from this autonomic nervous system 2/6 The Lungs control Sensory nerve fibers arise from the vagus nerve, and from the second to fifth thoracic ganglia The pulmonary plexus is a region on the lung root formed by the entrance of the nerves at the hilum The nerves then follow the bronchi in the lungs and branch to innervate muscle fibers, glands, and blood vessels Pleura of the Lungs Each lung is enclosed within a cavity that is surrounded by the pleura The pleura (plural = pleurae) is a serous membrane that surrounds the lung The right and left pleurae, which enclose the right and left lungs, respectively, are separated by the mediastinum The pleurae consist of two layers The visceral pleura is the layer that is superficial to the lungs, and extends into and lines the lung fissures ([link]) In contrast, the parietal pleura is the outer layer that connects to the thoracic wall, the mediastinum, and the ...PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Hall Effect The Hall Effect Bởi: OpenStaxCollege We have seen effects of a magnetic field on free-moving charges The magnetic field also affects charges moving in a conductor One result is the Hall effect, which has important PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Cell Cycle The Cell Cycle Bởi: OpenStaxCollege The cell cycle is an ordered series of events involving cell growth and cell division that produces two new daughter cells Cells on the path to cell division proceed through a PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy ... pleura is the outer layer that connects to the thoracic wall, the mediastinum, and the diaphragm The visceral and parietal pleurae connect to each other at the hilum The pleural cavity is the space... the position of the lungs against the thoracic wall This adhesive characteristic of the pleural fluid causes the lungs to enlarge when the thoracic wall expands during ventilation, allowing the. .. for further transport throughout the body The lungs are innervated by the parasympathetic and sympathetic nervous systems, which coordinate the bronchodilation and bronchoconstriction of the airways

Ngày đăng: 31/10/2017, 01:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN