PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thếtại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau::
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0).
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy ThePectoralGirdleThePectoralGirdle Bởi: OpenStaxCollege The appendicular skeleton includes all of the limb bones, plus the bones that unite each limb with the axial skeleton ([link]) The bones that attach each upper limb to the axial skeleton form thepectoralgirdle (shoulder girdle) This consists of two bones, the scapula and clavicle ([link]) The clavicle (collarbone) is an S-shaped bone located on the anterior side of the shoulder It is attached on its medial end to the sternum of the thoracic cage, which is part of the axial skeleton The lateral end of the clavicle articulates (joins) with the scapula just above the shoulder joint You can easily palpate, or feel with your fingers, the entire length of your clavicle 1/8 ThePectoralGirdle Axial and Appendicular Skeletons The axial skeleton forms the central axis of the body and consists of the skull, vertebral column, and thoracic cage The appendicular skeleton consists of thepectoral and pelvic girdles, the limb bones, and the bones of the hands and feet 2/8 ThePectoralGirdlePectoralGirdleThepectoralgirdle consists of the clavicle and the scapula, which serve to attach the upper limb to the sternum of the axial skeleton The scapula (shoulder blade) lies on the posterior aspect of the shoulder It is supported by the clavicle, which also articulates with the humerus (arm bone) to form the shoulder joint The scapula is a flat, triangular-shaped bone with a prominent ridge running across its posterior surface This ridge extends out laterally, where it forms the bony tip of the shoulder and joins with the lateral end of the clavicle By following along the clavicle, you can palpate out to the bony tip of the shoulder, and from there, you can move back across your posterior shoulder to follow the ridge of the scapula Move your shoulder around and feel how the clavicle and scapula move together as a unit Both of these 3/8 ThePectoralGirdle bones serve as important attachment sites for muscles that aid with movements of the shoulder and arm The right and left pectoral girdles are not joined to each other, allowing each to operate independently In addition, the clavicle of each pectoralgirdle is anchored to the axial skeleton by a single, highly mobile joint This allows for the extensive mobility of the entire pectoral girdle, which in turn enhances movements of the shoulder and upper limb Clavicle The clavicle is the only long bone that lies in a horizontal position in the body (see [link]) The clavicle has several important functions First, anchored by muscles from above, it serves as a strut that extends laterally to support the scapula This in turn holds the shoulder joint superiorly and laterally from the body trunk, allowing for maximal freedom of motion for the upper limb The clavicle also transmits forces acting on the upper limb to the sternum and axial skeleton Finally, it serves to protect the underlying nerves and blood vessels as they pass between the trunk of the body and the upper limb The clavicle has three regions: the medial end, the lateral end, and the shaft The medial end, known as the sternal end of the clavicle, has a triangular shape and articulates with the manubrium portion of the sternum This forms the sternoclavicular joint, which is the only bony articulation between thepectoralgirdle of the upper limb and the axial skeleton This joint allows considerable mobility, enabling the clavicle and scapula to move in upward/downward and anterior/posterior directions during shoulder movements The sternoclavicular joint is indirectly supported by the costoclavicular ligament (costo- = “rib”), which spans the sternal end of the clavicle and the underlying first rib The lateral or acromial end of the clavicle articulates with the acromion of the scapula, the portion of the scapula that forms the bony tip of the shoulder There are some sex differences in the morphology of the clavicle In women, the clavicle tends to be shorter, thinner, and less curved In men, the clavicle is heavier and longer, and has a greater curvature and rougher surfaces where muscles attach, features that are more pronounced in manual workers The clavicle is the most commonly fractured bone in the body Such breaks often occur because of the force exerted on the clavicle when a person falls onto his or her outstretched arms, or when the lateral shoulder receives a strong blow Because the sternoclavicular joint is strong and rarely dislocated, excessive force results in the breaking of the clavicle, usually between the middle and lateral portions of the bone If the fracture is complete, the shoulder and lateral clavicle fragment will drop due to the weight of the upper limb, causing the person to support the sagging limb with their other hand Muscles acting across the shoulder will also pull the shoulder and lateral clavicle anteriorly and medially, causing the clavicle fragments to override The clavicle overlies 4/8 ThePectoralGirdle many important ...PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thếtại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau::
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0).
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Hall Effect The Hall Effect Bởi: OpenStaxCollege We have seen effects of a magnetic field on free-moving charges The magnetic field also affects charges moving in a conductor One result is the Hall effect, which has important PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thếtại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau::
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0).
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Cell Cycle The Cell Cycle Bởi: OpenStaxCollege The cell cycle is an ordered series of events involving cell growth and cell division that produces two new daughter cells Cells on the path to cell division proceed through a PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thếtại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau::
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0).
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thếtại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau::
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0).
PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy ... consists of the pectoral and pelvic girdles, the limb bones, and the bones of the hands and feet 2/8 The Pectoral Girdle Pectoral Girdle The pectoral girdle consists of the clavicle and the scapula,... end of the clavicle articulates with the acromion of the scapula, the portion of the scapula that forms the bony tip of the shoulder There are some sex differences in the morphology of the clavicle... border of the scapula, the medial border of the scapula, and the lateral border of the scapula The suprascapular notch is located lateral to the midpoint of the superior border The corners of the triangular