1. Trang chủ
  2. » Thể loại khác

Tài liệu PDF The Simple Pendulum

6 90 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 218,13 KB

Nội dung

Tài liệu PDF The Simple Pendulum tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả các lĩnh...

PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Simple Pendulum The Simple Pendulum Bởi: OpenStaxCollege A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch appreciably The linear displacement from equilibrium is s, the length of the arc Also shown are the forces on the bob, which result in a net force of −mg sinθ toward the equilibrium position—that is, a restoring force Pendulums are in common usage Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and some are just there, such as the sinker on a fishing line For small displacements, a pendulum is a simple harmonic oscillator A simple pendulum is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended from a light wire or string, such as shown in [link] Exploring the simple pendulum a bit further, we can discover the conditions under which it performs simple harmonic motion, and we can derive an interesting expression for its period We begin by defining the displacement to be the arc length s We see from [link] that the net force on the bob is tangent to the arc and equals −mg sin θ (The weight mg has components mg cos θ along the string and mg sin θ tangent to the arc.) Tension in the string exactly cancels the component mg cos θ parallel to the string This leaves a net restoring force back toward the equilibrium position at θ = Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic oscillator In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about 15º), sin θ ≈ θ (sin θ and θ differ by about 1% or less at smaller angles) Thus, for angles less than about 15º, the restoring force F is 1/6 The Simple Pendulum F ≈ −mg θ The displacement s is directly proportional to θ When θ is expressed in radians, the arc length in a circle is related to its radius (L in this instance) by: s = Lθ, so that s θ = L For small angles, then, the expression for the restoring force is: F≈ − mg L s This expression is of the form: F = −kx , where the force constant is given by k = mg / L and the displacement is given by x = s For angles less than about 15º, the restoring force is directly proportional to the displacement, and the simple pendulum is a simple harmonic oscillator Using this equation, we can find the period of a pendulum for amplitudes less than about 15º For the simple pendulum: T = 2π √ mk = 2π√ mgm/ L Thus, T = 2π √ Lg for the period of a simple pendulum This result is interesting because of its simplicity The only things that affect the period of a simple pendulum are its length and the acceleration due to gravity The period is completely independent of other factors, such as mass As with simple harmonic oscillators, the period T for a pendulum is nearly independent of amplitude, especially if θ is less than about 15º Even simple pendulum clocks can be finely adjusted and accurate Note the dependence of T on g If the length of a pendulum is precisely known, it can actually be used to measure the acceleration due to gravity Consider the following example 2/6 The Simple Pendulum Measuring Acceleration due to Gravity: The Period of a Pendulum What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of 1.7357 s? Strategy We are asked to find g given the period T and the length L of a pendulum We can solve L T = 2π g for g, assuming only that the angle of deflection is less than 15º √ Solution Square T = 2π L g = 4π2 √ Lg and solve for g: T Substitute known values into the new equation: 0.75000 m g = 4π2 (1.7357 s) Calculate to find g: g = 9.8281 m / s2 Discussion This method for determining g can be very accurate This is why length and period are given to five digits in this example For the precision of the approximation sin θ ≈ θ to be better than the precision of the pendulum length and period, the maximum displacement angle should be kept below about 0.5º Making Career Connections Knowing g can be important in geological exploration; for example, a map of g over large geographical regions aids the study of plate tectonics and helps in the search for oil fields and large mineral deposits Take Home Experiment: Determining g Use a simple pendulum to determine the acceleration due to gravity g in your own locale Cut a piece of a string or dental floss so that it is about m long Attach a small object of high density to the end of the string (for example, a metal nut or a car key) Starting at an angle of less than 10º, allow the pendulum to swing and measure the pendulum’s period for 10 oscillations using a stopwatch Calculate g How accurate is this measurement? How might it be improved? Check Your Understanding 3/6 The Simple Pendulum An engineer builds two simple pendula Both are suspended from small wires secured to the ceiling of a room Each pendulum hovers cm above the floor ...PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Hall Effect The Hall Effect Bởi: OpenStaxCollege We have seen effects of a magnetic field on free-moving charges The magnetic field also affects charges moving in a conductor One result is the Hall effect, which has important PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy The Cell Cycle The Cell Cycle Bởi: OpenStaxCollege The cell cycle is an ordered series of events involving cell growth and cell division that produces two new daughter cells Cells on the path to cell division proceed through a PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 1CHƯƠNGDòng chảy có thế ⇔∃ϕ/thoả đ.k. (1) ⇔0xyyx=⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂−⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂⇔0yuxuxy=∂∂−∂∂⇔ rot(u)=0dòng chảy phẳng, lưu chất lý tưởng không nén được chuyển động ổn đònhGiới hạn: I. CÁC KHÁI NIỆM CƠ BẢN1. Hàm thế vận tốc:Ta đònh nghóa hàm ϕ sao cho:θ∂ϕ∂=∂ϕ∂=∂ϕ∂=∂ϕ∂=θr1u;ruhayyu;xuryxTrường véctơ u là trường có thế khi: ∫BAdsuGchỉ phụ thuộc vào hai vò trí A và B. Ta có: BABABABA)1(thoảtồntạiyBAxBAd)dyydxx(dsu)dyudxu(dsuϕ−ϕ=ϕ=∂ϕ∂+∂ϕ∂=+=∫∫∫⇒∫∫ϕGGchỉ phụ thuộc vào giá trò hàm thế tại A và B.Rõràngtừchứngminhtrên, ∫BAdsuGVậy:(1)ABnuunus0dyudxu0dyx=+⇔=ϕ2. Phương trình đường đẳng thế:3. Ý nghóa hàm thế vận tốc:ABABϕ−ϕ=Γ∫=ΓBAsABdsulà lưu số vận tốc4. Tính chất hàm thế:Từ ptr liên tục, ta có: 0yx0yyxx0yuxu2222yx=∂ϕ∂+∂ϕ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ϕ∂∂∂+⎟⎠⎞⎜⎝⎛∂ϕ∂∂∂⇔=∂∂+∂∂⇔ Hàm thế thoả phương trình Laplace PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 25. Hàm dòng:Khi dòng chảy lưu chất không nén được tồn tại, thì các thành phần vận tốc của nóthoả ptr liên tục : ru;r1uhayxu;yu/0yuxuryxyx∂ψ∂−=θ∂ψ∂=∂ψ∂−=∂ψ∂=ψ∃⇔=∂∂+∂∂θψ gọi là hàm dòng. Như vậy ψ tồn tại trong mọi dòng chảy,còn ϕ chỉ tồn tại trong dòng chảy thế.6. Hàm dòng trong thế phẳng:Vì là dòng chảy thế nên:0yx0yyxx0yuxu2222xy=∂ψ∂+∂ψ∂⇔=⎟⎟⎠⎞⎜⎜⎝⎛∂ψ∂∂∂−⎟⎠⎞⎜⎝⎛∂ψ∂∂∂−⇔=∂∂−∂∂Vậy trong dòng thế thì hàm ψ thoả ptr Laplace.7. Đường dòng và ptr:Từ ptr đường dòng: 0d0dxxdyy0dxudyuyx=ψ⇔=∂ψ∂+∂ψ∂⇔=−xyOnnxnydxdydsα(-dx=ds.sinα)Như vậy trên cùng một đường dòng thì giá trò ψ là hằng số.8. Ý nghóa hàm dòng:Ta có: ∫∫∫∫∫∫∫ψ−ψ=ψ=∂ψ∂−∂ψ∂=−=α+α=+===BAABBABAyxBAyxBAyyxxBABAnABddxxdyydxudyudssinudscosudsnudsnudsnudsuqGGVậy:ABABq ψ−ψ=9. Sự trực giao giữa họ các đường dòng và đường đẳng thế: 0)u(u)u(uyyxxxyyx=+−=∂ψ∂∂ϕ∂+∂ψ∂∂ϕ∂Suy ra họ các đường dòng và các đường đẳng thế trực giao với nhau.10. Cộng thế lưu: 2121+ψ+ψ=ψ+ϕ+ϕ=ϕ11. Biễu diễn dòng thế:với z = x+iy = eiα. Thế phức f(z): ψ+ϕ= i)z(fNhư vậy:dydidxdiuudzdfyxψ+ϕ=−=Để biểu diễn dòng chảy thế, ta có thể biễu diễn riêng từng hàm dòng và hàm thế, tacũng có thể kết hợp hàm dòng với hàm thế thành một hàm thế phức như sau:: PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 3II. CÁC VÍ DỤ VỀ THẾ LƯU xOyϕ=0ϕ=1ϕ=2ϕ=3ϕ=-1ϕ=-2ϕ=-3ψ=0ψ=1ψ=2ψ=3ψ=-3ψ=-2ψ=-1V0α1. Chuyển động thẳng đều: từ xa vôcực tới, hợp với phương ngang một gócα.ux= V0cosα;uy= V0sinαdψ = uxdy - uydxψ = V0ycosα -V0xsinα + CChọn:ψ=0 là đường qua gốc toạ độ⇒ C=0.Vậy: ψ = V0ycosα -V0xsinαTương tự: ϕ = V0xcosα + V0ysinαBiễu diễn bằng hàm thế phức: F(z) = ϕ+iψ =(V0xcosα + V0ysinα) + i(V0ycosα -V0xsinα)= x(V0cosα-iV0sinα)+yi(V0cosα -iV0sinα)= az với: a=(V0cosα -iV0sinα) là số phức; z=x+iy là biến phức.2. Điểm nguồn, điểm hút: với lưu lượng q tâm đặt tại gốc toạ độ.(q>0:điểm nguồn; q<0:điểm hút).⇒ Họ các đường dòng là những đường thẳng qua O.)yxln(4q)rln(2q1rkhi0chọn;C)rln(2qdrr2qdrudrudruddrrd22rr+π=π=ϕ⇒==ϕ+π=ϕ⇒π==θ+=θθ∂ϕ∂+∂ϕ∂=ϕθ⎟⎠⎞⎜⎝⎛π=θπ=ψ⇒=θ=ψ+θπ=ψ⇒θ=θ+−=θθ∂ψ∂+∂ψ∂=ψ⇒⎪⎭⎪⎬⎫=πθθxyarctg2q2q0khi0chọn;C2qdrudrudruddrrd0ur2qurrr=Hàm dòng: Hàm thế vận tốc:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=π=π=+π=θ+π=+π=π=ϕ⎟⎠⎞⎜⎝⎛π=θπ=ψθθzlnazln2q)reln(2q)elnr(ln2q)ir(ln2q)z(f)yxln(4q)rln(2qxyarctg2q2qii22Kết luận: Oϕψ=0ψ=(q/4)ψ=q/2ψ=3q/4Ghi chú:Trường hợp điểm nguồn (hút) có tâm đặt tại một vò trí khác gốc toạ độ, ví dụ đặt tạiA(x0; y0) thì trong công thức tính hàm dòng (hoặc thế vận tốc), tai vò trí nào có các biến x phải thay bằng (x=x0) ; tại vò trí nào có biến y phải thay bằng (y-y0). PGS.TS. Nguyen Thi Bay, DHBK tp. HCM; www4.hcmut.edu.vn/~ntbay THE LUU 43. Xoáy tự do: đặt tại gốc toạ độ và có lưu số vận tốc∫==ΓCconstdsuG⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=πΓ−=πΓ−=θ+πΓ−=−θπΓ=+πΓ−=πΓ−=ψ⎟⎠⎞⎜⎝⎛πΓ=θπΓ=ϕ⇒⎪⎩⎪⎨⎧=πΓ==θθzlnazln2i)reln(2i)ir(ln2i)rlni(2)z(f)yxln(4)rln(2xyarctg22constr2u0ui22rOψϕ=0ϕ=Γ/4ϕ = Γ/2ϕ=3Γ/4Γ>0: xoáy ... Explorations: Pendulum Lab Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing... because the mass of the bob has no effect on the motion of a simple pendulum The pendula are only affected by the period (which is related to the pendulum s length) and by the acceleration due... is a simple pendulum and undergoes simple harmonic motion for amplitudes less than about 15º The period of a simple pendulum is T = 2π √ Lg , where L is the length of the string and g is the acceleration

Ngày đăng: 30/10/2017, 23:32

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN