CAM NANG TONG HOP KIEN THUC LY 12 THAY NGUYEN THANH TUNG HOCMAI tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án,...
up s/ Ta iL ie uO nT hi D H oc 01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 ro : …………………………………………………… ……………………………………………………… w w w fa ce bo ok c om /g : ……………………………………………………………… 2014 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 hi D uO nT Ta iL ie 01 Trang oc STT H www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Sóng ánh sáng up s/ w w w fa ce bo ok c om /g ro www.facebook.com/groups/TaiLieuOnThiDaiHoc01 17 24 34 38 43 49 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 t N N t f 01 T oc T f H O nT –A hi : x = Acos(ωt + ϕ) òa A x — — A = xmax — up s/ = = = /2 = – /2 sin Phương tr ok |v|min A x bo ce fa w w O |v|max = ωA Phương tr w cos v = –ωAsin(ωt + ϕ) |v|min |v|max –A —v — — sin c cos om /g ro Chú ý: t + ): Ta iL ie — : uO Phương trình d D òa: da |a|max –A |v|min = ω2Acos(ωt + ϕ) = -ω2x |a|min |a|max O A x —a — |v|max = ωA; |a|min — Fhpmax — |v|min = 0; |a|max = ω2A Fhpmin Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 x v= a2 v2 A2 vmax a2 v2 amax vmax x2 H a A2 01 v2 x2 oc A2 om /g ro up s/ Ta iL ie uO nT hi D Chú ý: –A O A x(cos) –A O xM A x(cos) ok c t M bo x1 x2 w fa ce –A t O A x(cos) M T –A x1 O x2 A x(cos) w w Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 oc 01 k có t1 = k.T hi D H k k n–1 n–1) + có t1 = (n–1).T up s/ Ta iL ie uO nT t = t1 + t2 ro t = t1 + t2 om /g t Tìm t = t2 –t1 .c k.2 –A ok S = k.4A + S0 O A x(cos) M bo Tìm S0 ce x1 S0 x2 w fa w w max –A O A x(cos) /Smin t ( t < T/2) –A M A x(cos) M Smax Smax O Smin 2A sin Smin 2A cos Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 4A T 2vmax H x t x tb =0 = t t k.2 t k up s/ Tách góc quét: D v v tb hi S t v 01 2A 2A cos oc Smin nT 2A 2A sin t (T/2< uO Smax /Smin Ta iL ie max om /g ro k.2 c k.2 k = t t w w w fa ce bo ok k.2 Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 f 01 m k k m oc T m (N/m) mg k m2 m1 k1 k2 Ta iL ie N1 N2 có chu kì T1; m1 có chu kì T1; m = m1 + m2 có chu kì T: T2 T12 T22 có chu kì T1; m1 có chu kì T1; m = m1 – m2 T12 T22 up s/ T2 T1 uO nT hi l D k m : H : x = Acos(ωt + ϕ) Phương trình dao l1; l2 có: > m2) , k2 l0, k0 l1, k1 l2, k2 l3, k3 knt k1 k2 k ss k1 k Tnt2 T12 Tss2 T12 T22 T22 w w w fa ce bo GHÉP LÒ XO ok c k.l k1 l1 k 2l2 om /g ro T2 Fhp = –kx = (Fhpmin = 0; Fhpmax = kA) không Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 kx k x kA F®hmin k x uO –A l0 Ta iL ie — l — O up s/ x A x= l± nT F®h hi D F®hmax H F®h oc 01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 k(A k.( l A) F®hmin F®hmin k( l A) l A l A l) l mg k om /g ro — FnÐn F®hmax lmax lmin lmax = lcb + A = lcb – A ce bo a Khi A > ∆l0 ( ok c lcb l0 ): tnÐn fa ): ∆ w w l A cos Δtgiãn = T – ∆tnén b Khi A < ∆l0 ( w l l0 –A O – VTCB xmax O A x(cos) – l l l A — tnén = T – Tgiãn –A O A x(cos) Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 1 kx m 2x2 m A 2cos2 ( t 2 2 mv m A sin2 ( t ) 2 W® kA 01 m 2 A2 Fhpmax A hi ; xmax Wtmax T' = 0,5T f' = 2f khôn uO T t up s/ A x — Khi: Wt n nW® khơng T/2 v A n om /g ro nWt Ta iL ie A 2 x — Khi: W® mv nT — Khi vmax W kx Wt oc W H W® ) D Wt ok c A T f k m g l A x2 v x2 a x v2 a2 v2 A2 bo : amax vmax A A fa ce — A = xmax w w A w A L Lmax Lmin x0 v0 Acos A sin L cb Lmin 2W k A t Lmax Lcb v tb T vmax amax Hocmai.vn Trang www.facebook.com/groups/TaiLieuOnThiDaiHoc01 ℓ g T ℓ f g ℓ oc g 01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 l; l g; không m hi D — g H đơn Phương trình dao ) cos( t ) uO s S0cos( t nT α0 ZC < ZC L C > > 0 ZC1 UR2 ) ZCmax Z2 ZC ZL UL2 UL UCmax Z ZCmax ZL ZCmax UR I ce bo ok tan ZL U2Cmax URL U20R ZL1 ZC2 LC om /g UCmax L RL UL tan U20 2 R L ZL ZC uR U0 cos L R 2 uLC U0 sin 1; R ZL ZC H i I0 L I1 I2 (•) 2 uR U0cos LC uLC U0LC R uC 1; U0 sin D 1; uR U0R vuông pha uC hi uR U0R (•) tan (•) 2 up s/ uLC U0LC uC U0C R 01 uL 1; U0 sin R oc nT uR U0R vuông pha uL uO uL U0L Ta iL ie R UC fa U w Khi URL vuông pha URC w w UL UR2 UL UC URL URC UR URL tan UR URC RL URL URC tan RC I UC Hocmai.vn Trang 30 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 U UCmax ZL ZC R2 2L2 Z ZCmax ; ZL ZC C ZL ZC tan 2 ZCmax Z2 ZL2 RL tan U C 2 ULmax L 2 ZC ZL Z ZLmax R 2C2 ZC ZL ; ZC ZL 2 L tan 2 ZLmax Z2 nT tan uO U Z2C Ta iL ie 2LC R 2C2 hi D UCmax 01 oc C L R2 C 2L2 H RC U 2 om /g ro up s/ ULmax 2 L ok c U1 bo U2 N1 N2 N1 1 w w w fa ce N2 N1 N2 100%: H = cos 2): P2 100% P1 N2 N1 U2 U1 U2I2cos U1I1cos I1 I2 100% Hocmai.vn Trang 31 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 .l S R Ta iL ie P2 R U2cos P I2R uO nT hi D H oc 01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 P P om /g P 100% 100% % P e N d dt = E0 cos( t) E0 = N cos2 ft ft : w w w fa ce bo ok c H ro U I.R up s/ cos — — Hocmai.vn Trang 32 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 D H oc 01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 hi — Cách 1: Ta iL ie f = np np 60 up s/ f uO — Cách 2: ịng nT hai vành khuyên tr /3 ro 2 ); e3 E0cos( t ) 3 I02cos( t ); I3 I03cos( t ) I0 I01 I02 I03 c I1 I01cos( t); I2 E0cos( t om /g e1 E0cos( t); e2 ok — /3 /3 w w w fa ce bo òn Stato b — Stato: — Rơto: vịng trịn Hocmai.vn Trang 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 ... www.facebook.com/groups/TaiLieuOnThiDaiHoc01 L i I0 uL ZL i2 I02 ZL i2 I20 ZC u22 u12 i12 i22 C uC U0C i I0 w w w fa ce uL U0L 2 uC ZC u22 u12 i12 i22 LC uLC U0LC i I0 ZLC u22 u12 i12 i22 Hocmai. vn Trang 29 www.facebook.com/groups/TaiLieuOnThiDaiHoc01... % 100 100 T l g w w w fa ce bo ok T M1 R22 M2 R12 ro T om /g t 86400 g1 g2 R R 2h up s/ nT T2 T1 uO T2 l g1 Ta iL ie T1 hi D T1 Hocmai. vn Trang 12 www.facebook.com/groups/TaiLieuOnThiDaiHoc01... www.facebook.com/groups/TaiLieuOnThiDaiHoc01 AB AB k k2 d AIM có: AB kmin d k dmin kmax AB d2 k B d2 AB d1 kmax kmax d12 AB2 d12 kmax Hocmai. vn AMmin d1 Trang 20 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 oc 01 www.facebook.com/groups/TaiLieuOnThiDaiHoc01