Bồi dưỡng HSG Phương trình hàm P2

119 141 0
Bồi dưỡng HSG Phương trình hàm P2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

So s a n h h§ so c i i a l i i y t h f r a cao n h a t d h a i ve c u a ( ) , t a dxxac: " V a y p{x) ' ' a „ " = 8a„ " = 2^ o dUdc: 14p(8) = O.p(lO) = NhiT vay: p{x) Do n = l a d a thiltc bac b a T\t (1) l a y x = - , t a dUdc: p ( - ) lay X = - , t a diWc: - p ( ) = p ( - ) = G i a i G i a suf d e g ( P ) = n So sanh bac c i i a h a i ve c i i a (1) t a t h u d u ^ c ''> = T i t (1) p ( ) = T t r (1) l a y x = 4, t a , K h i n = 0, t a dUdc d a t h i i c h t o g P ( x ) = a{x - 4)(a: + 4)(a; - ) , V x e R p(x) = ( x - ) ( T + ) ( a ; - ) , V x € R (2) T h u : l a i : v d i p ( x ) l a d a t h i i c xac d i n h b d i (2), t a c6: Vay P{x) P(x) = Ova = l a cac d a t h i i c h a n g t h o a m a n bai r a , X e t n = G i a s i i P ( x ) '''' c = c = c = = 210 n e n : 105a = 210 Tii (3) t a thay r i n g h ={x - y)'+ {y - z)'+ {z - x)' phai l a so c h i n : h = 2k, vdi k > K h i (3) t r Tom = ( x ' ' + 2/" + z") - 4x^2/+ x V - 4xy3 fc = l k = 2.3*= + 12* = 2.9*^ k h i P ( x ) Tiep theo t a chiing minh dftng thi'lc •^Jiong dong nhat 0, nghia la: 3xo e R : P(xo) 9[(a-6)" + (6-c)" + (c-a)"] = (2a - - c)" + (26 - c - a)" + (2c - a - 6)" " X -I- z^ = - ( x v + yz + zx) Suy =4[.T2,y2 ^ , y ^ ^ ^2^2 ^ 2.x,/x(x + 7/ + z)] = 4(.TV + 2/'^' + z'x^) 3m [(a - bf + (6 - cf + {c- Dat (8) x'' + y" + 2'' + ( x V + y'^' + V ) Vx e R T h a y vao phiiong t r i n h ham da cho d dau bai t a diXdc =m[{2a-b-cf+ -V^ = a - c, 2/ = - a, z = c - K h i x + i/ + z = Ta c6 [(a - 6)" + (6 - c)" + (c - a)*] = ( x ' ' + 2/" + z") 402 ^ (G) *a dudc P(xo).P(0) = 0 Trong (1) cho x = y = y P(0) = Trong (1) lay y = 2x t a dudc • P(3x).P(-x) = p ( x ) - p ( x ) , V x € R (7) Gia su p(^.) ^ „^.,.n + „„_i:;:»-i + ^ (2) „^ ^ (do P(0) = 0) Thay (2) t a dUdc: «n(3x)" + a „ _ i ( x ) " - i - I - • • • + ai(3x)] [ a „ ( - x ) " + • • • + a i ( - x ) ] = ( a „ x " + a „ - i x " - i + • • • + a i x ) ' - [a„(2x)" + a „ - i ( x ) " - i + • • • + ai(2x) ^ C, vdi C la hang so t h i t i t (1) c6 C = 2C2 ^ (3) a " ( - l ) " = (1 - 4") * = ( - ) " + 4">-,)£,^ ^"^"^^ (do ham so m u y = a„(2x2)" + a„_i(2x2)""^ + • • • + ai(2a;^) + ao] " = + 3" = ( - = ( a „ x " + a „ _ i x " - ^ + • • • + a j x + ao)^ , Vx € R nghich bien k h i < a < 1) Vay bac cua da thiJc P{x) man Vay t a t ca cac da thufc c l n t i m la: So sanh he so ciia x^" d hai ve ta dUdc • >iiii>» jt;; a „ " = 2(a„)2 n ) ^ ^ ^^^j ^ ^ ' , Vay deg(Q) < 1, suy P ( x ) = ax + b, Vx e R Thay vao (1) t a dudc (x - l ) x T2 _ bi^zili H ri%.ii'V "v?^t); + 6x ^{^+b)+y(j + b^=x + y,\fxeR\{0} •^ay + bx + ax + by = X + y, Vx € K\{0} +oo ''^eo dinh l i Lagrange, vdi moi x e (m; + 0 ) , t6n t g i G ( P ( x ) ; P ( x ) + x) '^ao cho _ P(x + P(x))-P(P(x)) _ P(x) P(x)+x-P(x) ^ ^ ^ ^ - - l • Ui t , Vfc i« = -Q(^)>vMo L P(x) = P ( x + _ P ( x ) ) - P ( P ( x ) ) , (2) D a t P ( i t ) = C?(fc) + K h i do (2) nen da thiic Q thoa man = 1+ [P'(x) - x l = + 0 (vi n > 3, na„ > O) P"(x) = xP(fc) + A:xP(^) = X + fcx, Vx ^ 0, fc ^ + l + k " n§n ton t a i n i cho vdi moi x > n i t h i P " ( x ) > 0, suy r a P'(x) dong bien •^ren (74,; + 0 ) Chon m = max {0, no, n j va xet x e (m; + 0 ) T i f G i a i Trong (1) lay y = A:x, vdi fc ^ va x 7^ t a dUdc Q{k) Do nen ton t a i no cho vdi moi x > no t h i P'(x) > x Lgi c6 X—»+oo =>P(fc) + ifcP(^) = + fc, VA: 5^ (1) P ( x ) = a „ x " + a „ _ i x " - i + • • • + a i x + ao, an^ Do Q{x) = T2 + hx va P ( T ) = r^ + hx thoa (1) Ket hian: Co hai cap da thiic thoa man yen can de bai la P(x) = P ( x + P(x)) = P(x) + P ( P ( x ) ) , V x e R G i a i Gia sir o„ > Xet trudng hdp deg(P) = n > Gia siif = Q ( l + +••• + n), V n = , , (•, ± 0 , k h i (do da thilc Q la ham lien tuc), den day t a gap mau thuan -Q{0) ,^, Q{k) CO P(o) = nen ao = Do lim [P(x) - x] = +00 X — • + 0 (3) lim X - t + O O P'(X) - P(x) = lim x—*+oo vS, * J2 4- Jj.'^oo P{x) ^ P{x) dieu mau thuan vdi P'(cx) = PiQix)) W^fiQJx)) X P{x) V i > max {mo, m } N h u ^^"g - anQ^'ix) - a „ P " ( x ) = c - a „ ( g " ( x ) + P"(x)) + P{R{x)) - anQ"{x) P{R{x)) - a„R-{x) P"-i(x) c ^ ^ - a „ ( Q ( x ) + P(x))r khong R-~Ux) Q-Hx) ,auu: • =^g(x) + P ( x ) the xay r a trirdng h(?p deg(P) = n > X e t deg(P) = G i a siit _ P(g(x)) - anQ"(x) P{x) ('^ "^^y a„ la he s6 bac cao nhdt ^jia da thrrc P ( x ) ) T i r gia thiet t a c6: Vay, v6i niQi x > max {mo, m } , t a c6 P'{c,)>P'{P{x))>P'{x)> — a„x" X"-'" = ax^ + bx, Vx R (do P(0) = 0) a„TQ"-i(x) P(P(x)) - a„P"(x) P"-nx) a„TP"-'(x) •g"-i(x) ^ a„TQ"-Hx)- Thay van (1) t a durtc 26 a[ax2 + ?>(x + 1)1 V l l v gidi han hai ve k h i cho x -* +oo, t a dUdc l i m ( Q ( x ) + P ( x ) ) = Hav (?(•'•) + -^(3^) l a da tluic hang Vay t a c6 dieu phai chiing m i n h [ax^ + 6(x + 1)' =ax^ + bx + a(ax^ + 6x) + (ax^ + 6x), Vx e R (2) TCr (2) lay X = dUdc a/;^ + fr^ = Q DO dang xet a > nen suy r a = Thay vao (2) dudc: 3.3 Phu-dng t r i n h d a n g P{f)P{g) = P{h) Bai t o a n t n g q u a t Gid sic / ( x ) , ^(x) va h{x) la cac da thiic he so thiic cho frudc thoa m.dn dieu kie.n: deg(/) + deg(g) = deg(/i) Tim tat c.a cac da thiic he so thiic P{x) cho a^x" + ahx^ = ax^ + a^x"* + abx^, Vx e R (v6 h') Tudng tit, vdi a„ < t h i cung suy r a vo h' neu deg(P) > Vay xet deg(F) = Gia sU P{x) = ax, Vx g R, a la hang so, thay vao (1) thay thoa man Neu P ( x ) la da thiic hang t h i thay vao (1) diTdc P ( x ) = Tom lai cac da thiic thoa man yeu cau bai l a P{x) = ax, Vx € R, a la hang so t i i y y B a i t o a n 3.36 (International Zhautykov Olympiad 2012) Cho P, Q, R la P(/(x)).P(3(x)) = P(/i(x)),Vx€R (1) I^ghiem r u a (1) c6 nhieu t i n h chat dftc biet giup chung t a c6 the xay di^ng (luoc t a l c a cac nghiem ciia no t ^ cac nghiem bac nho D j u h l y Neu P,Q la, nghiem cua phiiOng trinh ham (1) thi P.Q cung la nghiem ciia vhuanq trinh ham (1) ba da thiic vdi he so thuc cho P(Q(x)) + P ( P ( x ) ) = c , V x R Chx'cng minh rhng ho&c P ( x ) la da thiic hhng hoac R{x) + Q{x) la da thiic C h i h i g m i n h Ta c6 {P.Q) (/i(x)) = P {h{x)).Q {h{x)) = P {f{x)).P hhng G i a i Neu deg P = t h i P ( x ) la da thiic hSLng, t a c6 dieu phai chiJng minhGia si'r d e g P > Ta c6 cac nhan xet sau: = {9ix)).Q {f{x)).Q {g{x)) {PQ)U{x)).{PQ){9[x)) q u a Neu P ( x ) la nghiem cua (1) thi [ P ( x ) ] " cUng la nghi$m cua (1) Neu deg Q = t h i d e g P = va ngU^c l ^ i , nen khong giam t i n h t6ng qu^t ta gia sir deg Q > va deg P > Suy l i m Q{x) = oo va l i m P ( x ) = Q{x) = -1 deg Q = deg P > va deg P = n, la so lo, d6ng thrri ^ hrn^ j , a t T - l + ^ + ^ + - + ^ ^ t h l ^°ng kha nhieu trudng hdp h§ qua tren cho phep t a mo t a het cac nghiem ^'^^ (1) Dg l a m dieu t a CO dinh If quan sau day i t '[^inh l y Neu f, g, h la cac da thiCc he so thiCc thoa man dieu kien deg(/) + ^{9) - deg(/i) va thoa man mot hai dieu kien sau day: l i m T = l 411 410 (1) d e g ( / ) deg(9) (2) d e g ( / ) = deg(p) va f 0, r,g* + g* Id he so cua luy thica cao nhat cua cdc da thiCc f va g tUdng ling c u a x"''^«(^)+'"''*=8('^ d a thiic t h i i nhat v a d a thiic th,'r hai l^n lUdt l a i?*.(/*)'•.P*.(5*)"- N h u the bac ciia x"^^^f)+rdee(9) ^Bgtig hai d a thvic bang Khi vdi moi so nguyen duong n ton tax nhiiu nhat mot da thiic he so thycc K P{x) CO bdc n vd thoa man (1) " ChuTng m i n h Gia sur P l a da t h i i c bac n thoa man (1) Goi P*,f*,g*,h* Ian lirot l a he so cua luy thCra cao nhat cua P,f,g,h So sanh h§ so cua luy thfta cao nhat hai ve ciia cac da thi'rc'trong (1) t a CO • p^irr-R^xgr + =p*R'{rn9T{{fT-' n'-ifr-p^-iaT + {9T-1 (do r + V o) "' ^ H h U v^ly b a c cua ve trai cua (2) van l a n d e g ( / ) + rdeg((/), k h i bac ^ M a ve phai l a 7-deg(/t) = r ( d e g ( / ) + deg(5)) < n d e g ( / ) + rdeg(j?) ( m a u t h u a n ) _ ' •> P*.(/*)".P*.(.7*)" - P* = ^ • | n h l i dUdc chiing m i n h hoaii toan N h u vay neu gia sii ngUdc l a i , ton t a i mot da thiic Q he so thuc bac n, khac P, thoa man (1) t h i Q* = P* va t a c6 Q{x) = P{x) + R{x), vdi < r = deg(i?) < n ' Hbhu y Sii dung dinh li (2) vd h$ qua (1), ta thdy rdng neu Pi{x) la mot ^ma thAc bac nhat thoa man (1) vdi f,g, h la cdc da thiic thoa man dieu kien ^ • t t a dinh li (2) thl tat cd cdc nghiem cua (1) la P{x)=0,P{x) (ta quy Udc bac ciia da thiic dong nhat khong bang - o o , do r > d5ng nghia R khong dong nhat khong) Thay vao (1) t a dUdc [P{f) + R{f)].{Pig) " + R{g)]=P{h) + R{h) ^P{f)P{g) + P{f)R{g) + Rif)P{g) + R{f)R{g) ^P{f)R{g) + R{f)Pig) + R{f)Ri!j) = ^(M- (2) n d e g ( / ) + r d e g ( ) , r d e g ( / ) + ndeg(5), r d e g ( / ) + r d e g ( ) , v, ( n - r ) d e g ( / ) > (n - r ) deg(p) Vay ve t r a i cua (2) c6 h^c la n d e g ( / ) + rdeg(5) Trong k h i ve phai c6 bac • ' J rdeg{h) = r ( d e g ( / ) + deg{g)) < n d e g ( / ) + r deg(5) (mau thuan) TrvCdng hdp d e g { / ) = deg(5) K h i hai da thiic dau tien ve trai cua (2) CO cimg bac la n d e g ( / ) + r deg(ff) va c6 the xay r a sU triet t i e u k h i tb^'^ hien phep cong T u y nhien, xet he sS cao nhat cua hai da thiic nay, t a c6 + l),\fxeR (1) ^ K x ) = t h o a m a n phuong trinh h a m (1) Xet trUdng hop P ( x ) c6 bac nhat, ^ • ( x ) = ax + b {a,b l a hang so a ^ 0) Thay v a c (1) t a dUOc B [ax + b] [ax + a + b] = a{x'^ + x + 1) + 6, Vx € R B r deg(/) + ndeg(9) > r d e g ( / ) + r d e g ( g ) + l) = P{x'^+x H&ch (Tvfdng t\i nhvf h a i t o a n t n g q u a t ) De thay P{x) = v a n d e g ( / ) + r deg(5) > r d e g ( / ) + ndeg(5)- Do la P{x)P{x H; = Pih) + R{h) cac da thiic ve trai ciia (2) la ^ = [P,{x)r {vdi n = 1,2, ) H i a i t o a n 3.37 Tim tat cd cdc da thdc he so thiCc P(x) thoa man TrtfcJng h d p d e g ( / ) 7^ deg(5) Gia sii deg(/) > deg(5) K h i bac ciia D e y rang = l,P{x) a2 - a = a ( a + - 1) = 6(a + ) - a - = eR •• ' ' V n? v6 nghiem a 7^ Vay khong ton t a i d a thiic bac n h a t t h o a m a n (!)• Tiep theo t a x e t trUdng hop P ( x ) c6 bac 2, P ( x ) = ax^ + 6x + c, vdi a 7^0 ^ h a y vao (1) v a d5ng nhat he so n h u tren t a duOc a = 1,6 = 0, c = V?ly thiic bac h a i t h o a man (1) l a P ( x ) s x^ + Xet c a c d a thiic / ( x ) = x , g ( x ) = x + l , / i ( x ) = x2 + x + l 413 : K h i deg(/) = deg(5) = 1, deg(/) + deg(g) = = deg{h) Tiep theo ta chiing m i n h vdi moi so nguyen duong n ton tai nhieu nhat mot da thiic he so thuc P{x) CO bac ri va thoa man (1) Gia sii P la da thi'rc bac n thoa man (1) Goi P* la he so cao nhat ciia P So sanh h§ so cao nhat hai ve cua cac da thiic (1) ta ro , , ^P*f = P'^ P'= {do nghiem thuc, suy P(x) la da thiic bac chSn, gia sir deg(P) = 2m K h i p{x) dUdc bie'u dign dudi dang • o P ( x ) = (x2 + l ) " * + G{x), •(^2 N h u vay neu gia sii ton t a i mot da thjic Q h^ so thi^c b§c n, kh&c P, thoa Q{x) = P{x) + R{x), vdi < r = deg(fl) P*.R' + R\P' = (2) 2P*.R" N h u vay bac ciia ve trai ciia (2) la n + r, bac ciia da thiic d ph.ii la 2r, nhung 2r < n + r , den day ta gSp mau thuan Vay vdi mpi nguyen diidng n ton t a i nhieu nhat mot da thilc he so thuc P{x) c6 bac n thoa man (1) Ket hdp vdi he qua (1) siiy tat ca cac da thiic thoa man bai la P ( x ) = 0, P{x) = 1, P{x) ve so va de = a {a la bang s6) t h i thay vao (1) ta dirdc = a a(a - 1) = p Vay G(x) = Vay p(x) = (x^ + 1)"" T h i l lai thay thoa man Do t i t ca cac da thiic thoa man de bai la = P{h) + R{h) Hai da tlnlc dan tien t'f ve t r a i cua (2) c6 cimg bac la n + r va c6 the xay sir trict tieu k h i thac hien plicp cong Tuy nhien, xet he so cao nhat ciia hai da thiic nay, ta c6 he so ciia x"+'' da thiic t h i i nhat va da thiic t h i i hai Ian ludt la P'.R' R\P* Nhir the b§c ciia tOng hai da thiic bang :v,, ^, r , + • TvJt (ii) suy vdi n G Z, n > 1, t a c6 / ( n x ) > n / ( x ) , Vx G Q>o, suy !C« (3) = f > q Vq G Q>() Gia sii ton tai so hiiu t i q G (0; i j cho fiq) finq) • fix) G i a i Trong (i), lay x = va y = a, ta dUdc > /(I) ^ /(

Ngày đăng: 22/10/2017, 13:54

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan