I MỞ ĐẦU Lý chọn đề tài: Ứng dụng công nghệ thông tin và truyền thông vào dạy học là một những nội dung quan trọng của định hướng đổi mới phương pháp, hình thức tổ chức dạy học hiện Hình học là bộ môn có tính trừu tượng, tính trực quan cao, đòi hỏi người học phải có tính tư và quan sát tốt vậy nó là môn học khó đối với phần nhiều học sinh, đặc biệt là đối với học sinh miền núi, vùng đồng bào dân tộc thiểu số Geometer’s SketchPad (GSP) là phần mềm hình học rất có ích cho việc dạy và học hình học, nó giúp cho người học có thể vẽ hình chính xác, quan sát hình vẽ dễ từ đó đưa được nhận xét đúng… Đặc biệt đối với Geometer’s SketchPad 5.0 Việt hóa ( GSP 5.0 Việt hóa) đã được việt hóa, không phải cài đặt nên thuận tiện cho người sử dụng Qua quá trình dạy học thấy chương trình Sách giáo khoa Toán phần Hình học có nhiều mục, bài liên quan đến định tính, định lượng (vẽ hình, đo đạc, quan sát trực quan để đưa nhận xét) song việc định tính và định lượng của học sinh nhiều có sự sai lệch dẫn đến nhận xét kết quả chưa chính xác và tính thuyết phục chưa cao, tốn nhiều thời gian mà hiệu quả mang lại thấp Do vậy đã lựa chọn đề tài : “Sử dụng phần mềm GSP 5.0 Việt hóa đê dạy các bài hình học có yếu tố định tính, định lượng chương trình hình học nhằm nâng cao hiệu quả dạy và học Hình học” Mục đích nghiên cứu: Qua việc sử dụng Phần mềm GSP 5.0 Việt hóa vào dạy học giúp học sinh được quan sát với các mô hình, nhận thức về biểu hiện của mô hình các trạng thái khác để từ đó phát hiện những quy luật để đưa được những nhận xét, dự đoán chính xác Từ đó có hứng thú học tập, thích khám phá và yêu thích môn học Sử dụng Phần mềm GSP 5.0 Việt hóa vào dạy học góp phần đổi mới phương pháp và hình thức tổ chức dạy học Đối tượng nghiên cứu: - Phần mềm GSP 5.0 Việt hóa - Sách giáo khoa, sách giáo viên Toán ( Tập 1, 2) phần Hình học - Học sinh miền núi, vùng đồng bào dân tộc thiểu số nói chung và học sinh trường THCS – DTNT Quan Sơn nói riêng - Quá trình học Hình học của học sinh khối trường THCS – DTNT Quan Sơn – Thanh Hóa Phương pháp nghiên cứu: a Phương pháp nghiên cứu xây dựng sở lý thuyết - Nghiên cứu “Hướng dẫn sử dụng GSP 5.0 Việt hóa” để thiết kế bài dạy - Nghiên cứu sách giáo khoa Toán ( tập 1,2 ) phần Hình học để lựa chọn mục, bài có thể sử dụng GSP 5.0 Việt hóa vào dạy học b Phương pháp điều tra khảo sát thực tế - Điều tra kết quả học tập hình học của học sinh khối năm học 2014 – 2015 (khi chưa áp dụng đề tài này) so với kết quả học tập hình học của học sinh khối năm học 2015 – 2016 (khi đã áp dụng đề tài này) - Khảo sát thực tế tình hình học tập Hình học của học sinh miền núi nói chung và học sinh khối Trường THCS – DTNT Quan Sơn nói riêng - Điều tra sự yêu thích môn học Hình học của học sinh ( chưa áp dụng và đã áp dụng đề tài này) c Phương pháp thống kê, sử lý số liệu - Thống kê kết quả học tập của học sinh - Lập bảng biểu so sánh sớ liệu… II NỢI DUNG SÁNG KIẾN KINH NGHIỆM Cơ sở lí luận của sáng kiến kinh nghiệm Với việc giáo viên sử dụng phần mềm hỗ trợ giảng dạy, kiến thức đưa đến học sinh được thể hiện bằng những hình ảnh, âm thanh, màu sắc, phim ảnh tạo môi trường tác động đến nhiều giác quan của học sinh Việc sử dụng phần mềm hỗ trợ dạy học giúp cho giáo viên có điều kiện tốt “đổi mới phương pháp và hình thức tổ chức dạy học” mà nếu sử dụng các thiết bị truyền thống khó có thể thực hiện được Các phần mềm có thể giúp mô phỏng nhiều quá trình, hiện tượng tự nhiên, xã hội không thể hoặc khó có thể được thể hiện được từ những phương tiện khác Với công nghệ tri thức có thể tiếp nối trí thông minh của người, thực hiện những công việc mang tính chất trí tuệ cao Với môi trường đa phương tiện được trình bày bằng máy tính theo kịch bản vạch sẵn nhằm đạt hiệu quả tối đa môi trường học tập đa giác quan, với những ngân hàng dữ liệu khổng lồ và đa dạng kết nối với và với người sử dụng qua những mạng máy tính hoặc qua Internet tạo nên những điều kiện hết sức thuận lợi để học sinh học tập hoạt động và bằng hoạt động tự giác, tích cực, chủ động và sáng tạo Hơn nữa điều này còn giúp học sinh phát huy được tính động sáng tạo qua việc được cập nhật những thành tựu của nền kinh tế tri thức Sử dụng phần mềm GSP dạy học hình học có các tác dụng rất tốt việc ứng dụng công nghệ thông tin dạy học và nó có những hiệu quả sau: Dùng GSP để thể hiện một khái niệm hoặc một ý tưởng mới toán học Dùng GSP để khám phá sâu khái niệm hoặc khám phá những góc độ khác của khái niệm Từng bước hướng dẫn để giúp học sinh xây dựng các cấu trúc và hiểu được mối liên hệ giữa các thành phần Học sinh dùng mô hình để trả lời các câu hỏi phiếu học tập hoặc máy tính Giáo viên sử dụng các mô hình để dẫn dắt thảo luận quá trình dạy học Học sinh thao tác mô hình để hình thành tri thức Học sinh làm việc để tạo những đối tượng mới mô hình theo yêu cầu của giáo viên và phản hồi với giáo viên quá trình dạy học Học sinh sử dụng GSP để giải quyết các bài tập lớn hoặc các thách thức Sử dụng GSP đồng thời với các chương trình khác hoặc với các vật thể thao tác được Sử dụng GSP để kiểm tra các giả thiết đặt hoặc kiểm chứng một kết quả nào đó Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Thực tế quá trình dạy học thấy phần nhiều các định lý hay tính chất Sách giáo khoa môn Toán phân môn Hình học các lớp cấp THCS nói chung và lớp nói riêng được trình bầy theo kiểu quy nạp: Tức là trước mỗi định lý hay tính chất đều có “bài tập tình huống” để học sinh tiếp cận và giải quyết tình huống từ đó đưa dự đoán ( đó chính là định lý hoặc tính chất ) và khẳng định dự đoán đó ( chứng minh định lý, tính chất ) Trong các “bài tập tình huống” đó có không ít bài tập mang tính định tính, định lượng ( yêu cầu học sinh phải đo đạc, quan sát ) rồi đưa dự đoán Ví dụ: Trong bài §1 Hai góc đới đỉnh ( Chương I Hình học ) mục ( tính chất của hai góc đối đỉnh ) có bài tập tình huống sau: ?3 Xem hình a) Hãy đo góc O1, góc O3 So sánh số đo hai góc đó b) Hãy đo góc O2, góc O4 So sánh số đo hai góc đó c) Dự đoán kết quả rút từ câu a), b) Khi giáo viên yêu cầu học sinh thực hiện bài tập này thì có những học sinh đo đúng, có những học sinh đo sai và mất nhiều thời gian dẫn đến việc đưa dự đoán có sự sai khác và học sinh còn có sự phân vân dự đoán đó Do vậy giáo viên lại phải mất thêm thời gian để hướng dẫn học sinh đo lại để đưa dự đoán đúng Như vậy chúng ta thấy được những bất cập của các bài tập tình huống dạng này đó là quá trình định tính hay định lượng của học sinh sẽ có sự sai lệch, tốn thời gian, giáo viên phải hướng dẫn học sinh định tính hay định lượng lại rồi mới đưa dự đoán, những dự đoán dạng này thường thiếu tính thuyết phục Vì vậy cần có một công cụ nào đó hỗ trợ tốt cho việc dạy học các bài tập dạng này Trong đó phần nhiều các giáo viên, đặc biệt là giáo viên miền núi việc tiếp cận với các phần mềm ứng dụng dạy học còn hạn chế ( chủ yếu dùng PowerPoint ) một phần cũng điều kiện kinh tế xã hội địa phương, sở vật chất, trang thiết bị trường học còn thiếu thốn Đối với học sinh miền núi gặp các bài tập dạng này các em thường “ngại” đo, chỉ được một số ít em thực hiện dẫn đến các em “thờ ơ”, ít để ý tới bài tập và hậu quả là không thuộc, không hiểu được các định lý, tính chất dẫn đến không làm được bài tập dẫn đến chán nãn, không yêu thích môn học và sợ môn học Vì vậy nếu có được một công cụ nào đó có thể giúp các em, kích thích các em chú ý, hứng thú, tập trung với các bài tập dạng này là điều trăn trở, suy nghĩ của Trong quá trình tự học, học hỏi bạn bè, xem sách báo, tài liệu, Internet thấy phần mềm GSP 5.0 Việt hóa rất có ích cho giáo viên và học sinh việc dạy và học các bài tập hình học có yếu tố định tính, định lượng Giải pháp đã sử dụng đê giải quyết vấn đề Trong chương trình Hình học có nhiều định lý, tính chất trước phát biểu đều có bài tập, câu hỏi mang tính định tính, định lượng Trong đề tài này xin liệt kê và đưa các bước dạy bài tập dạng này đồng thời gửi kèm các tình huống đã soạn sẵn GSP 5.0 Việt hóa ( để sử dụng được người dùng chỉ cần dowload miễn phí GSP 5.0 Việt hóa mạng về nháy đúp vào biểu tượng GSP5Viet.exe là dùng được) cùng với video hướng dẫn chi tiết từng bước soạn đĩa CD Tiết §1 Hai góc đối đỉnh ( Chương I Hình học ) ?3 Xem hình a) Hãy đo góc O1, góc O3 So sánh số đo hai góc đó b) Hãy đo góc O2, góc O4 So sánh số đo hai góc đó c) Dự đoán kết quả rút từ câu a), b) Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và làm sau: - Nhấn vào nút “Do goc O1,O3 va so sanh” đó số đo của hai góc O 1, O3 sẽ hiện ra; Học sinh quan sát và nhận xét - Nhấn vào nút “Do goc O2,O4 va so sanh” đó số đo của hai góc O 2, O4 sẽ hiện ra; Học sinh quan sát và nhận xét - Tiếp theo giáo viên nhấn vào nút “Thay doi goc” để học sinh thấy được góc thay đổi số đo của hai góc đối đỉnh bằng - Từ đó học sinh đưa kết luận: “Hai góc đối đỉnh thì bằng nhau” và chứng minh kết luận đó ( Các bước soạn chi tiết có video CD kèm theo) Tiết §5 Tiên đề Ơ – Lit về đường thẳng song song (Chương I Hình học 7) ? a) Vẽ hai đường thẳng a, b cho a//b b) Vẽ đường thẳng c cắt a tại A, cắt b tại B c) Đo một cặp góc so le Nhận xét d) Đo một cặp góc đồng vị Nhận xét Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào hộp “Do A3,B1 va so sanh” và hộp “Do A4,B2 va so sanh” để đo các góc so le trong, giáo viên thay đổi đường thẳng c để các góc thay đổi Từ đó học sinh nhận thấy cặp góc so le bằng và đưa nhận xét - Nhấn vào hộp “Do A1,B1 va so sanh” và hộp “Do A2,B2 va so sanh” để đo các góc đồng vị, giáo viên thay đổi đường thẳng c để các góc thay đổi Từ đó học sinh nhận thấy cặp góc đồng vị bằng và đưa nhận xét - Nhấn vào hộp “Do A3,B2 va tinh tong” và hộp “Do A4,B1 va tinh tong” để tính tổng hai góc cùng phía, giáo viên thay đổi đường thẳng c để các góc thay đổi Từ đó học sinh nhận thấy tổng số đo của hai góc cùng phía bằng 1800 và đưa nhận xét Tiết 17 §1 Tởng ba góc của mợt tam giác (Chương II Hình học 7) ?1 Vẽ hai tam giác bất kỳ, dùng thước đo góc đo ba góc của mỗi tam giác rồi tính tổng số đo ba góc của mỗi tam giác Có nhận xét gì về các kết quả Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào hộp “Do cac gocA,B,C cua tam giac” để đo góc của tam giác ABC - Nhấn vào hộp “Tong goc cua tam giac” để tính tổng góc của tam giác ABC - Nhấn vào hộp “Thay doi tam giac” để tam giác ABC thay đổi dẫn đến các góc thay đổi theo tổng góc của tam giác vẫn không thay đổi và bằng 1800 từ đó học sinh đưa nhận xét và chứng minh nhận xét đó Tiết 20 §2 Hai tam giác bằng (Chương II Hình học 7) ?1 Cho hai tam giác ABC và A’B’C’(h.60) Hãy dùng thước chia khoảng và thước đo góc để kiểm nghiệm rằng hình đó ta có: AB = A’B’, AC = A’C’, BC = B’C’, Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: Cho hai tam giác ABC và A’B’C’ bằng - Nhấn vào hộp “Do va so sanh dai cac canh tuong ung” để đo và so sánh các cạnh tương ứng của tam giác ABC, A’B’C’ - Nhấn vào hộp “Do va so sanh cac goc tuong ung” để đo và so sánh các góc tương ứng của tam giác ABC, A’B’C’ Từ đó học sinh đưa nhận xét và nêu định nghĩa Tiết 22 §3 Trường hợp bằng thứ nhất của tam giác ( c.c.c ) (Chương II Hình học 7) ?1 Vẽ thêm tam giác A’B’C’ có A’B’ = 2cm, B’C’ = 4cm, A’C’ = 3cm Hãy đo rồi so sánh các góc tương ứng của tam giác ABC ở mục và tam giác A’B’C’.Có nhận xét gì về hai tam giác Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào các hộp “Ve BC”, “Ve AB, AC”, “Tam giac ABC” để vẽ tam giác ABC theo yêu cầu của bài toán - Nhấn vào hộp “Ve tam giac A’B’C’ ” để vẽ tam giác A’B’C’ theo yêu cầu của bài toán - Nhấn vào các hộp “Do goc A va A’”, “Do goc B va B’”, “Do goc C va C’” để đo các góc tương ứng của hai tam giác Từ đó dựa vào định nghĩa hai tam giác bằng để học sinh đưa kết luận Tiết 25 §4 Trường hợp bằng thứ hai của tam giác ( c.g.c ) (Chương II Hình học 7) ?1 Vẽ thêm tam giác A’B’C’ có A’B’ = 2cm, B’C’ = 3cm Hãy đo để kiểm nghiệm rằng AC = A’C’ Ta có thể kết luận được tam giác ABC bằng tam giác A’B’C’ hay không? Các bước thực hiện (Tương tự cách thực hiện ở Tiết 22 §3 Trường hợp bằng thứ nhất của tam giác), có CD Tiết 28 §5 Trường hợp bằng thứ ba của tam giác ( g.c.g ) (Chương II Hình học 7) ?1 Vẽ thêm tam giác A’B’C’ có B’C’ = 4cm, Hãy đo để kiểm nghiệm rằng AB = A’B’ Vì ta kết luận được tam giác ABC bằng tam giác A’B’C’ ? Các bước thực hiện (Tương tự cách thực hiện ở Tiết 22 §3 Trường hợp bằng thứ nhất của tam giác), có CD Tiết 37 §7 Định lý Py – ta – go (Chương II Hình học 7) Thay ?1, ?2, 1,bằng tình huống Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào hộp “Do AB,AC,BC va so sanh AB^2+AC^2 voi BC^2” để đo và so sánh tổng các bình phương độ dài của hai cạnh góc vuông với bình phương độ dài cạnh huyền - Nhấn vào hộp “Thay doi cac canh ” để thay đổi độ dài các cạnh của tam giác vuông cho học sinh thấy dù độ dài các cạnh thay đổi tổng các bình phương độ dài của hai cạnh góc vuông bằng bình phương độ dài cạnh huyền Từ đó đưa kết luận Tiết 47 §1 Quan hệ giữa góc và cạnh đối diện một tam giác (Chương III Hình học 7) Giáo viên thay toàn bộ các ?1, ?2, ?3 bằng tình huống sau: Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào hộp “Do va so sanh AB,AC” để đo và so sánh AB, AC - Nhấn vào hộp “Do va so sanh goc C voi goc B” để đo và so sanh hai góc đối diện với hai canh AB, AC 10 - Nhấn vào hộp “Thay doi tam giac” để thay đổi tam giác cho học sinh thấy được quan hệ tỉ lệ thuận giữa góc và cạnh đối diện một tam giác Từ đó đưa kết luận Tiết 55 §4 Tính chất ba đường trung tuyến của tam giác (Chương III Hình học 7) Giáo viên thay ?1, ?3 bằng tình huống sau: Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào hộp “Ve trung tuyen CF” để vẽ đường trung tuyến thứ là CF - Nhấn vào hộp “Thay doi tam giac va nhan xet” để học sinh quan sát và trả lời câu hỏi : ba đường trung tuyến của tam giác có cùng qua một điểm không? Từ đó rút kết luận - Tiếp theo nhấn vào hộp “Do va so sanh cac ti so AG/AD, BG/BE, CG/CF” để học sinh thấy được các tỉ số này bằng và nhấn vào hộp “Thay doi tam giac va nhan xet” cho học sinh thấy được các cạnh của tam giác thay đổi các tỉ số AG/AD, BG/BE, CG/CF không đổi và bằng 2/3 Từ đó đưa kết luận Tiết 57 §5 Tính chất tia phân giác của mợt góc (Chương III Hình học 7) Khi dạy bài này giáo viên tạo tình huống sau: 11 Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Đối với định lý thuận nhấn vào hộp “M di chuyen” sau đó nhấn vào hộp “Do va so sanh MA, MB” để học sinh thấy được M di chuyển tia phân giác của góc xOy thì M cách đều hai cạnh của góc đó Từ đó đưa kết luận và chứng minh kết luận đó - Đối với định lý đảo nhấn vào hộp “M di chuyen” sau đó nhấn vào hộp “Do va so sanh cac goc MOA, MOB” để học sinh thấy được M nằm bên góc, di chuyển và cách đều hai cạnh của góc đó thì M nằm tia phân giác của góc đó Từ đó đưa kết luận và chứng minh kết luận đó Tiết 60 §6 Tính chất ba đường phân giác của tam giác (Chương III Hình học 7) Giáo viên thay ?1, bằng tình huống sau: Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Nhấn vào hộp “Ve tia phan giac cua goc C” để vẽ tia phân giác thứ sau đó nhấn vào hộp “Thay doi tam giac va nhan xet” để học sinh thấy được ba đường phân giác của tam giác qua một điểm Từ đó rút nhận xét 12 - Nhấn vào hộp “Do IH,IK,IL và so sanh” để học sinh quan sát và trả lời câu hỏi : Điểm I có cách đều cạnh của tam giác không? Từ đó rút kết luận và chứng minh Tiết 62 §7 Tính chất đường trung trực của một đoạn thẳng (Chương III Hình học 7) Giáo viên tạo tình huống cho định lý thuận và đảo sau: Các bước thực hiện Giáo viên soạn GSP sau: Khi dạy phần này giáo viên mở bài soạn lên và thực hiện các bước sau: - Đối với định lý thuận nhấn vào hộp “Do MA,MB va so sanh” sau đó nhấn vào hộp “M di chuyen tren d va nhan xet” để học sinh thấy được M di chuyển đường trung trực của AB thì M cách đều hai mút của đoạn AB Từ đó đưa kết luận và chứng minh kết luận đó - Đối với định lý đảo nhấn vào hộp “M di chuyen” sau đó vào mục Hiễn thị/tạo vết menu để học sinh thấy được M di chuyển và cách đều hai đầu đoạn thẳng AB thì M nằm đường trung trực của đoạn thẳng đó Từ đó đưa kết luận và chứng minh kết luận đó Tiết 64 §8 Tính chất ba đường trung trực của tam giác (Chương III Hình học 7) Giáo viên thay ?2 bắng tình huống sau: Các bước thực hiện (Tương tự cách thực hiện ở Tiết 60 §6 Tính chất ba đường phân giác của tam giác), có CD Tiết 66 §9 Tính chất ba đường cao của tam giác (Chương III Hình học 7) Giáo viên thay ?1 bắng tình huống sau: Các bước thực hiện (Tương tự cách thực hiện ở Tiết 60 §6 Tính chất ba đường phân giác của tam giác), có CD 13 Hiệu quả của sáng kiến kinh nghiệm đối với hoạt động giáo dục, với bản thân, đồng nghiệp và nhà trường Đối với hoạt động giáo dục của bản thân - Chất lượng học sinh đại trà ( phân môn Hình học ) được nâng lên rõ rệt Cụ thể: ( so sánh chất lượng học sinh khối giữa năm học 2014 – 2015 chưa áp dụng đề tài và 2015 – 2016 áp dụng đề tài qua các bài kiểm tra Hình học Kết quả này cũng chỉ là tương đối vì chất lượng học sinh giữa các năm học khác có thể khác ) Bài KT Số ( kỳ I) Số ( kỳ II) Năm học 2014 – 2015 2015 – 2016 2014 – 2015 2015 – 2016 Si sô 62 63 62 63 Giỏi SL % 9,7 12,7 8,1 14,3 Chất lượng Kha TB SL % SL % 16 25,8 29 46,8 17 27 31 49,2 17 27,4 28 45,2 18 28,6 30 47,6 Yếu - Kém SL % 11 17,7 11,1 12 19,3 9,5 - Học sinh có hứng thú học tập với các tiết dạy có ứng dụng GSP 5.0 Việt hóa - Giáo viên “Nhàn hơn” tiết dạy, chỉ việc đưa tình huống và dẫn dắt học sinh giải quyết Học sinh chú ý quan sát, chủ động và hoạt động tích cực các tình huống Đối với đồng nghiệp và nhà trường - Góp phần nâng cao hiệu quả dạy và học Nhà trường - Tạo dựng được phong trào chung Nhà trường về ứng dụng công nghệ thông tin vào dạy học; Mỗi thầy cô giáo tích cực tự học, tự bồi dưỡng, nghiên cứu ứng dụng các phần mềm vào dạy học một cách hiệu quả 14 III KẾT LUẬN, KIẾN NGHI Kết luận Môn Toán nói chung và phân môn Hình học nói riêng là môn học khó đối với phần nhiều các em học sinh và đặc biệt là đối với học sinh miền núi dẫn đến các em “sợ” môn học Làm thế nào để các em yêu thích môn học, có hứng thú với môn học là suy nghĩ của rất nhiều các thầy cô dạy Toán Có rất nhiều sáng kiến kinh nghiệm, giải pháp hiệu quả được các thầy cô, các nhà quản lý giáo dục đưa Sử dụng GSP 5.0 Việt hóa vào dạy các bài hình học có yếu tố định tính, định lượng chương trình Hình học cũng là một giải pháp theo rất hiệu quả Ứng dụng CNTT việc đổi mới phương pháp dạy học môn Toán trường THCS là một đề tài mới và rộng không phải ai, giáo viên nào từ đầu cũng có thể làm được mà nó đòi hỏi phải có quá trình nghiên cứu, học hỏi, trải nghiệm mới có được kết quả Việc sử dụng các phần mềm dạy học để phục vụ cho dạy và học địa bàn huyện Quan Sơn còn rất ít Bản thân qua quá trình được học các lớp tập huấn, tự học, tự nghiên cứu, tìm hiểu tài liệu mạng thấy tâm đắc với đề tài này và đã chọn để nghiên cứu áp dụng Tuy nhiên mới chỉ là những nghiên cứu ban đầu nên việc trình bày đề tài này chắc chắn sẽ không tránh khỏi những thiếu sót, hạn chế Việc ứng dụng CNTT dạy học là một vấn đề rất rộng chờ đợi chúng ta khám phá Trong giới hạn của đề tài này chỉ đưa một số nghiên cứu ban đầu Tôi thực sự mong muốn nhận được nhiều ý kiến đóng góp xây dựng của các thày cô giáo, các bạn đồng nghiệp để đề tài này thực sự hấp dẫn và có hiệu quả đến với các em học sinh Kiến nghị Như đã trình bầy phần đầu: Ứng dụng CNTT dạy học là chủ đề xuyên suốt của các năm học gần đây, ứng dụng CNTT việc đổi mới phương pháp dạy học môn Toán trường THCS nói riêng và các môn học khác nói chung nếu được áp dụng và khai thác sẽ mang lại hiệu quả rất lớn cho quá trình dạy và học vì vậy có một số kiến nghị sau: Đối với giáo viên bộ môn thường xuyên trau dồi kiến thức, tự học, tự bồi dưỡng lực chuyên môn nhất là lĩnh vực CNTT Đối với Ban giám hiệu và chuyên môn nhà trường: Tìm kiếm, sưu tầm tài liệu, trang thiết bị cho việc dạy học; triển khai rộng rãi chuyên đề này tới toàn bộ các giáo viên Đối với Phòng GD & ĐT, Sở GD & ĐT mở các lớp tập huấn, bồi dưỡng về ứng dụng CNTT dạy học và quản lý; Tổ chức các buổi sinh hoạt chuyên đề về vấn đề này XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Quan Sơn, ngày 02 tháng năm 2016 Tôi xin cam đoan là SKKN của mình viết, không chép nội dung của người khác 15 TÀI LIỆU THAM KHẢO - Sách “Ứng dụng CNTT dạy học môn Toán trường phổ thông” của Trần Đình Châu và Đặng Thị Thu Thủy, NXB giáo dục Việt nam - Hướng dẫn sử dụng GSP 5.0 Việt hóa tại địa chỉ: http://violet.vn/thcshaidong-quangninh/present/show/entry_id/3012176 ; http://documents.tips/documents/huong-dan-su-dung-gsp-5-vi-com.html - Các video hướng dẫn sử dụng GSP trang Web Youtube 16 ... học 201 4 – 20 15 20 15 – 201 6 201 4 – 20 15 20 15 – 201 6 Si sô 62 63 62 63 Giỏi SL % 9 ,7 12 ,7 8,1 14,3 Chất lượng Kha TB SL % SL % 16 25, 8 29 46,8 17 27 31 49,2 17 27, 4 28 45, 2 18 28,6 30 47, 6 Yếu... tình huống đã soạn sẵn GSP 5. 0 Việt hóa ( để sử dụng được người dùng chỉ cần dowload miễn phí GSP 5. 0 Việt hóa mạng về nháy đúp vào biểu tượng GSP5 Viet.exe là dùng được)... ( phân môn Hình học ) được nâng lên rõ rệt Cụ thể: ( so sánh chất lượng học sinh khối giữa năm học 201 4 – 20 15 chưa áp dụng đề tài và 20 15 – 201 6 áp dụng đề tài qua các