hay lammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
Khoá h c Toán cao c p: Gi i tích (Th y Lê Bá Tr n Ph ng) Gi i h n hàm s TÍNH GI I H N B NG QUY T C LOPITAN ÁP ÁN BÀI T P T LUY N Giáo viên: LÊ BÁ TR N PH NG 2sin x cos x sin x sin x 0 sin x lim lim 2 x x 0 x 2x 0 x sin x L lim x0 lim x0 2cos2 x 2sin cos x x 4 sin x x 2 sin x sin x cos x cos x lim cos x L lim lim x0 x0 cos x tan x x0 tan x cos x x 1 x 1 1 lim x x2 L lim x 3 x 6 3cot x cot x 3cot x sin x sin x lim 24 L lim x x -sin( x ) cos( x ) 6 3 L lim x0 e 1 2x lim ln(cosx) x0 x e lim x0 x x x lim e x x0 tan x x sin x 0 cosx ex ex 1 2x 1 2x 1 x tan x cos x 2x 2 sin x ln(cosx) cos x lim tan x lim cos x lim L lim x0 x0 x x0 x2 x0 x 2 0 Hocmai.vn – Ngôi tr ng chung c a h c trò Vi t T ng đài t v n: 1900 58-58-12 - Trang | - Khoá h c Toán cao c p: Gi i tích (Th y Lê Bá Tr n Ph ng) Gi i h n hàm s x 1 0 L lim x tan x (0.) lim lim 1 x x 4 4 cot x x 4 sin ( x) lim sin ( x) x arcsin x x2 lim x0 x x0 L lim arctan x x2 L lim lim x0 x x0 10 L lim arctan x x x 0 xlim x2 lim x lim x x x x2 2x x e x 3x ex ex lim lim x x x2 x x x 11 L lim Khi x L Khi x L e x 3x x x2 x V y không t n t i lim 2 x ln x x 12 L lim lim lim x1 x x ln x x ln x ln x x1 ln x x 13 L lim(tan x) x x 1 L y ln c v , ta đ c ln L ln lim(tan x) x x lim ln(tan x) x x ln(tan x) lim 2 x sin xcosx x x 4 lim L e2 Hocmai.vn – Ngôi tr ng chung c a h c trò Vi t T ng đài t v n: 1900 58-58-12 - Trang | - Khoá h c Toán cao c p: Gi i tích (Th y Lê Bá Tr n Ph ng) Gi i h n hàm s 14 L lim ( arc tan x) x (1 ) x L y ln c v , ta đ c 2 ln L ln lim ( arc tan x) x lim ln( arc tan x) x lim x ln( arc tan x) x x lim ln( arc tan x) x x x2 arc tan x x 0 xlim 0 x x2 x (1 x )arc tan x lim 2x 2 lim x x.arc tan x x 2x 2x 2arc tan x lim 2arc tan x lim x x x2 1 x lim 2 0 Le 2 x x 1 arcsin x 0 15 L lim arcsin co t( x 2) 0. lim lim x2 x2 tan( x 2) 2 x2 cos ( x 2) ln( x 1) x 1) ln( x 1) 0. lim 16 L lim( lim x lim(1 x) x1 x1 x1 x1 x 1 ( x 1) 17 L lim xsin x 00 x0 L y ln c v ,ta đ c ln L ln lim xsin x lim ln xsin x lim sin x ln x lim x0 x0 x0 x0 ln x sin x sin x sin x x lim lim lim L e0 x0 cos x x0 x cos x x0 cos x x sin x sin x Giáo viên : Lê Bá Tr n Ph Ngu n Hocmai.vn – Ngôi tr ng chung c a h c trò Vi t T ng đài t v n: 1900 58-58-12 : ng Hocmai.vn - Trang | -