Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 69 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
69
Dung lượng
1,36 MB
Nội dung
TRƢỜNG ĐẠI HỌC TÂY BẮC BÁO CÁO TỔNG KẾT ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CỦA SINH VIÊN RÈNLUYỆNKỸTHUẬTTỰHỌCTÍCHCỰCTRONGHỌCGIẢIBÀITẬPTHEO PHƢƠNG PHÁPTỌAĐỘCHOHỌCSINHLỚP10THPT Thuộc nhóm ngành: Khoa học giáo dục Sơn La, tháng 05 năm 2017 TRƢỜNG ĐẠI HỌC TÂY BẮC BÁO CÁO TỔNG KẾT ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CỦA SINH VIÊN RÈNLUYỆNKỸTHUẬTTỰHỌCTÍCHCỰCTRONGHỌCGIẢIBÀITẬPTHEO PHƢƠNG PHÁPTỌAĐỘCHOHỌCSINHLỚP10THPT Thuộc nhóm ngành: Khoa học giáo dục Sinh viên thực hiện: Đàm Thị Thanh Hoa Nữ Dân tộc: Kinh Đỗ Thị Thùy Trang Nữ Dân tộc: Kinh Hà Thị Lan Hương Nữ Dân tộc: Thái Nguyễn Thị Mỹ Huyền Nữ Dân tộc: Kinh Nguyễn Thị Thoa Lớp: K55 ĐHSP Toán Nữ Dân tộc: Kinh Khoa: Toán - Lý – Tin Năm thứ 3/ số năm đào tạo: Ngành học ĐHSP Toán Sinh viên chịu trách nhiệm chính: Đàm Thị Thanh Hoa Người hướng dẫn: TS Vũ Quốc Khánh Sơn La, tháng 05 năm 2017 LỜI CẢM ƠN Lời xin bày tỏ lòng biết ơn sâu sắc tới: Ban Chủ nhiệm khoa Toán - Lý - Tin, phòng Khoa học Công nghệ Hợp tác Quốc tế, phòng Đào tạo Đại học, giảng viên tổ Bộ môn PPDH Toán, đặc biệt GVC TS Vũ Quốc Khánh - người định hướng nghiên cứu, hướng dẫn, động viên có thêm nghị lực hoàn thành đề tài Nhân dịp xin cảm ơn tới người thân bạn sinh viên K55 ĐHSP Toán Những ý kiến đóng góp, giúp đỡ, động viên thầy cô bạn bè tạo điều kiện thuận lợi để hoàn thành đề tài Chúng xin chân thành cảm ơn! Sơn La, tháng năm 2017 Ngƣời thực Đàm Thị Thanh Hoa Đỗ Thị Thùy Trang Hà Thị Lan Hƣơng Nguyễn Thị Mỹ Huyền Nguyễn Thị Thoa MỤC LỤC MỞ ĐẦU 1 Lý chọn đề tài Lịch sử nghiên cứu vấn đề Mục đích nghiên cứu Đối tượng nghiên cứu, phạm vi nghiên cứu Nhiệm vụ nghiên cứu Phươngpháp nghiên cứu Giả thuyết khoa học Cấu trúc đề tài Chƣơng 1: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 1.1 Cơ sở lý luận kỹthuậttựhọctíchcực 1.1.1 Tựhọctíchcực 1.1.2 Kỹthuậttựhọctíchcực 1.1.2.1 Kỹthuật khăn phủ bàn 1.1.2.2 Kỹthuật mảnh ghép 1.1.2.3 Sơ đồtư 1.1.2.4 Kỹthuậthọctập hợp tác 1.1.2.5 Kĩ thuật “KWL” (trong đó: K (know) – điều biết; W (want to know) – điều muốn biết; L (learned) – điều học ) 1.1.3 Vấn đề rènluyệnkỹthuậttựhọctíchcựcchohọcsinhlớp10 1.2 Cơ sở thực tiễn việc rènluyệnkỹthuậtTựhọctíchcực HS THPT 1.2.1 Phiếu khảo sát nhận thức kỹthuậttựhọctíchcực giáo viên HS Xem Phụ lục 1,2 1.2.2 Thực trạng rènluyệnkỹthuậttựhọctíchcực HS lớp10THPT 1.3 Vấn đề rènluyệnkỹthuậttựhọctíchcựcchokỹthuậttựhọctíchcựctựhọcgiảitập Kết luận chương 10 CHƢƠNG 2: MỘT SỐ BIỆN PHÁPRÈNLUYỆNKỸTHUẬTTỰHỌCTÍCHCỰC 11 2.1 Một số vấn đề phươngpháptọađộlớp10THPT 11 2.1.1 Phân tích chương trình hình họclớp10 11 2.1.2 Rènluyệnkỹthuậttựhọctíchcựcgiảitập hình họclớp10 11 2.2 Kỹthuậttựhọctíchcựctựgiảitậpphươngpháptọađộ mặt phẳng 21 2.2.1 Kỹthuậttựhọctíchcựctựhọc bốn bước chung giảitập 21 2.2.2 Kỹthuậttựhọctíchcực sáng tạo tập 23 2.3 Nhóm biện pháprènluyệnkỹthuậttựhọctíchcựctựhọcgiảitập 27 2.3.1 Nhóm biện pháp 1: Rènluyện KTTHTC qua phân tích toán theo nhiều góc độ qua sử dụng Kỹthuật khăn phủ bàn 27 2.3.2 Nhóm biện pháp 2: Rènluyện KTTHTC qua sử dụng kỹthuật mảnh ghép sâu nghiên cứu toán 28 2.3.3 Nhóm biện pháp 3: Rènluyện KTTHTC qua sử dụng sơ đồtư nghiên cứu tìm ý khác từ toán 28 2.3.4 Nhóm biện pháp 4: Rènluyện KTTHTC qua sử dụng kỹthuật KWL nghiên cứu sâu toán 29 2.3.5 Nhóm biện pháp 5: Rènluyện KTTHTC qua khai thác sáng tạọ toán 29 Kết luận chương 30 CHƢƠNG 3: THỬ NGHIỆM SƢ PHẠM 31 3.1 Mục đích thực nghiệm 31 3.2 Nội dung thử nghiệm 31 3.3 Tổ chức thử nghiệm 31 3.3.1 Chọn lớp thử nghiệm 31 3.3.2 Biên soạn tài liệu thử nghiệm 31 3.3.3 Bài kiểm tra đánh giá kết thử nghiệm 37 3.3.4 Tiến trình thử nghiệm 41 3.4 Đánh giá kết thử nghiệm 41 3.4.1 Bảng tổng hợp kết thử nghiệm 41 3.4.2 Đánh giá kết thử nghiệm 43 3.4.2.1 Đánh giá biện pháprènluyện KTTHTC trình dạy học thử nghiệm 43 3.4.2.2 Đánh giá trình tiếp thu kiến thức họcsinh 43 3.4.2.3 Đánh giá kết thử nghiệm qua kiểm tra 44 KẾT LUẬN ĐỀ TÀI 46 TÀI LIỆU THAM KHẢO 47 PHỤ LỤC DANH MỤC TỪ VIẾT TẮT Viết tắt Dịch ĐHSP Đại học sư phạm GS-TSKH Giáo sư tiến sĩ khoa học HS Họcsinh GV Giáo viên KTTHTC Kỹthuậttựhọctíchcực SGK Sách giáo khoa THPT Trung học phổ thông vtpt Vectơ pháp tuyến vtcp Vectơ phương MỞ ĐẦU Lý chọn đề tài Trong năm gần yêu cầu định hướng đổi toàn diện giáo dục thực trường trung học phổ thông (THPT) Trong đổi phươngpháp dạy học (PPDH) nhằm phát huy tính tíchcựchọcsinh (HS) thực tất cấp học, môn học Nội dung đổi PPDH thể việc đổi nội dung, chương trình sách giáo khoa (SGK) yêu cầu vận dụng phươngpháp (PP) dạy tựhọc phát huy tính tíchcựctựhọccho HS Phát huy kỹtựhọctíchcực sáng tạo cho HS trực tiếp góp phần nâng cao chất lượng hiệu giáo dục Đổi PPDH dạy học môn Toán có yêu cầu quan trọng dạy HS cách tựhọcTrongtựhọc HS vấn đề quan trọng HS phải rènluyện được, phát huy kỹthuậttựhọctíchcực (KTTHTC) Các nhà giáo dục học, tâm lý họccho tính tíchcựctựhọc HS huy động chức tâm lý mức độ cao nhằm nhận thức cải tạo giới đồng thời nhận thức cải tạo thân Tính tíchcựchọctập HS nảy sinh, hình thành phát triển hoạt động hoạt động Muốn đào tạo HS thành người đáp ứng yêu cầu xã hội giúp cho HS biết tự học, tự chiếm lĩnh khám phá tri thức, từtựrèn luyện, hoàn thiện thân hướng dẫn, đạo giáo viên Tính tíchcựchọctập HS thể KTTHTC hoạt động họctập Lịch sử nghiên cứu vấn đề * Ngoài nước: Nhiều công trình nghiên cứu tính tựhọctíchcực HS: - Trước hết phải kể đến tác giả nghiên cứu tính tích cực, tính tíchcựchọctập tác giả L.X.Vưgôtxki, X.L.Rubinstein, A.N.Leoonchiep J.Piaget cho rằng: Cá nhân hoạt động Không có hoạt động cá nhân không tồn môi trường tự nhiên xã hội xung quanh Chỉ có hoạt động tính tíchcực tâm lí, ý thức người bộc lộ - Các nhà giáo dục Nga cho tính tích cực, độc lập trình dạy học sở vững chohọctập có hiệu - G.Polya, I.K.Babanxki 1981, I.F.Khavlamôp cho rằng: tính tíchcực trạng thái hoạt động chủ thể Đã có dự án Việt Bỉ nghiên cứu kỹthuật dạy họctíchcực * Trong nước: Vấn đề phát huy tíchtíchcực nói chung tính tíchcựctựhọc HS nhà lãnh đạo, nhà Giáo dục học, nhà Tâm lý học có tâm huyết với nghề thường xuyên trăn trở, lẽ yếu tố định kết họctập Có thể kể đến số tác giả nghiên cứu vấn đề cách bật, là: Các nhà Tâm lý học Việt Nam Phạm Minh Hạc, Trần Trọng Thủy, Hồ Ngọc Đại, Trần Hữu Luyến, Nguyễn Kế Hào, tiếp cận quan điểm vật biện chứng hoạt động Tính tíchcực thuộc tính nhân cách bao gồm thành tố tâm lí nhu cầu, động cơ, hứng thú, niềm tin, lý tưởng Tính chủ thể bao hàm trước hết tính tíchcực Đây đặc tính chung sống đến người tính tíchcực phát triển với đỉnh cao thành tích, chủ động, say mê, nhiệt tình Con người chủ thể hoạt động, đồng thời người tíchcực hoạt động tính tíchcực chủ thể phát triển cao người hoàn thiện Thực tế trường THPT tỉnh Sơn La, số giáo viên (GV) sử dụng PPDH theo dạng thông báo kiến thức định sẵn, dạy HS cách học thụ động, sách Do đó, tình trạng chung hàng ngày thầy đọc trò chép, giảng giải xen kẽ vấn đáp tài liệu hay giải thích Tronghọctậptựhọc đối tượng HS gặp nhiều hạn chế vận dụng KTTHTC Như biết hình học môn có ý nghĩa quan trọng việc hình thành người học giới quan khoa học, phát triển óc sáng tạo nâng cao khả cảm nhận đẹp Nhất HS lớp 10, em đầu cấp nhà trường THPT, việc sử dụng KTTHTC từlớp10 bước tập dượt, tạo sở cho em làm quen với phươngpháphọctập để tựhọc suốt bậc họcTHPT Xuất phát từ lí chọn đề tài nghiên cứu: Rènluyệnkỹthuậttựhọctíchcựchọcgiảitậptheo phƣơng pháptoạđộchohọcsinhlớp10THPT Mục đích nghiên cứu - Đề xuất biện pháprènluyện kĩ thuậttựhọctíchcựchọcgiảitậpcho HS lớp10THPT Đối tƣợng nghiên cứu, phạm vi nghiên cứu - Đối tượng nghiên cứu trình rènluyệnkỹthuậttựhọctíchcựchọcgiảitậptheophươngpháptọađộchohọcsinhlớp10THPT - Phạm vi nghiên cứu biện pháp sư phạm rènluyệnkỹthuậttựhọctíchcựchọcgiảitậptheophươngpháptọađộchohọcsinhlớp 10A lớp 10B Trường THPT Tô Hiệu Nhiệm vụ nghiên cứu - Nghiên cứu lí luận tựhọc - Nghiên cứu lí luận tựhọctíchcực - Nghiên cứu lí luận kỹthuậttựhọctíchcực - Nghiên cứu thực trạng tựhọc - Biện pháprènluyệnkỹthuậttựhọctíchcựctựhọcgiảitập hình họccho HS lớp10 - Thử nghiệm sư phạm Phƣơng pháp nghiên cứu - Phươngpháp nghiên cứu lý luận liên quan đến đề tài - Nhóm phươngpháp nghiên cứu thực tiễn: Quan sát; điều tra - Phươngpháp thử nghệm Giả thuyết khoa học Nếu có biện pháprènluyệnkỹthuậttựhọctíchcựchọcgiảitậptheophươngpháptọađộcho HS lớp10 phát huy tính tích cực, tính tự nhận thức, tính tự giác HS học tập, hình thành họ lực giải vấn đề, góp phần nâng cao chất lượng hiểu trình giáo dục đào tạo Cấu trúc đề tài Ngoài phần mở đầu kết luận đề tài gồm chương: Chương 1: Cơ sở lý luận thực tiễn Chương 2: Biện pháprènluyệnkỹ thuận tựhọctíchcựccho HS lớp10THPT Chương 3: Thử nghiệm sư phạm PHỤ LỤC PHIẾU PHỎNG VẤN HỌCSINH VỀ SỰ RÈNLUYỆNKỸTHUẬTTỰHỌCTÍCHCỰCTRONGHỌCGIẢIBÀITẬPTHEO PHƢƠNG PHÁPTỌAĐỘLỚP10THPT Em vui lòng trả lời câu hỏi cách khoanh tròn vào chữ trước câu trả lời 1.Thông tin cá nhân Họ tên:………………………………………………Nam/Nữ:…………………… Tên trường em học:……………………………………………………………… Lớp em học:………………………………………………………… 2.Nội dung vấn Câu 1: Theo bạn, tựhọc có vai trò việc giải tập? A.Rất cần thiết B.Bình thường C.Không cần thiết Câu 2: Bạn có hay thường tựhọc không? A Có B Không Câu 3: Bạn có thường dùng kỹthuậttựhọc hay không? A.Thường xuyên B.Thỉnh thoảng C.Không Câu 4: Tronghọcgiải tập, bạn thực kỹthuậttựhọc nào? A.Đặt câu hỏi B Họctập hợp tác C Không có Câu 5: Theo bạn, giáo viên dạy bạn có dùng kỹthuậttựhọc không? A Thường xuyên B.Thỉnh thoảng C.Không Chúng xin chân thành cảm ơn hợp tác em! PHIẾU PHỎNG VẤN GIÁO VIÊN VỀ SỰ RÈNLUYỆNKỸTHUẬTTỰHỌCTÍCHCỰCTRONGHỌCGIẢIBÀITẬPTHEO PHƢƠNG PHÁPTỌAĐỘLỚP10THPT Thầy (cô) vui lòng trả lời câu hỏi cách khoanh tròn vào chữ trước câu trả lời 1.Thông tin cá nhân Họ tên:………………………………………………Nam/Nữ:…………………… Tên trường thầy (cô) dạy:……………………………………………………… Lớp thầy (cô) dạy:………………………………………………………… 2.Nội dung vấn Câu 1: Theo thầy (cô) việc dạy tựhọc có vai trò dạy học? A Rất cần thiết B.Bình thường Câu 2:Thầy (cô) dạy tựhọc nào? C.Không cần thiết A Thường xuyên B.Thỉnh thoảng Câu 3: Thầy cô có áp dụng kỹthuậttựhọc không? C Không A Thường xuyên B.Thỉnh thoảng C.Không Câu 4: Trong dạy họcgiải tập, thầy (cô) thường hướng dẫn họcsinhkỹthuậttựhọc nào? A Đặt câu hỏi B Họctập hợp tác C.Không có Câu 5: Theo thầy (cô), họcsinh có áp dụng kỹthuậttựhọc không? A Thường xuyên B Thỉnh thoảng C Không Chúng xin chân thành cảm ơn hợp tác thầy (cô)! PHỤ LỤC Giáo án thử nghiệm số 2: BÀI 2: LUYỆNTẬP (Rèn luyện KTTHTC qua sử dụng kỹthuật mảnh ghép sâu nghiên cứu toán) I Mục tiêu: Vận dụng kỹthuật mảnh ghép Kiến thức - HS biết cách xác định yếu tố liên quan đến đường thẳng: Vectơ phương, vectơ pháp tuyến đường thẳng - HS nắm mối quan hệ vectơ phương vectơ pháp tuyến đường thẳng - HS nắm cách lập phương trình đường thẳng, phương trình đường thẳng qua hai điểm phân biệt Kĩ - Thành thạo cách lập phương trình đường thẳng biết yếu tố xác định, đường thẳng qua hai điểm phân biệt - Thành thạo cách xác định yếu tố liên quan đến đường thẳng: Vectơ phương, vectơ pháp tuyến đường thẳng; chuyển đổi từ vectơ phương sang vectơ pháp tuyến ngược lại - Nâng cao kỹ tham gia hoạt động cách tự giác hiệu nhóm chuyên sâu nhóm mảnh ghép Tham gia thảo luận nhóm thống kết nhóm theokỹthuật mảnh ghép Tƣ duy, thái độ - Tư duy: Phân tích, tổng hợp, so sánh, khái quát hóa, trừu tượng hóa - Thái độ: Cẩn thận, xác, hăng hái phát biểu ý kiến, có tinh thần hợp tác hoạt động nhóm mảnh ghép II Chuẩn bị Giáo viên - Giáo án, đồ dùng dạy học… Họcsinh - Đồ dùng họctập như: Thước, bút, SGK, nháp… - Kiến thức mối quan hệ vectơ phương vectơ pháp tuyến đường thẳng, tính chất đường cao, đường trung tuyến, phân giác, trung bình tam giác, cách xác định tọađộ trung điểm đoạn thẳng III Tiến trình dạy Kiểm tra cũ:Kết hợp với dạy nội dung Nội dung mới: Hoạt động 1:(15 phút) Bàitập 1: Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là: x y 31 0, hai đỉnh B, D lần lượt thuộc các đườngd1 : x y 0, d2 : x y Tìm tọa độ đỉnh hình thoi biết diện tích hình thoi 75 và đỉnh A có hoành độ âm Hoạt động GV Chia Hoạt động HS nhóm B d1 B(b;8 b), Nội dung Giải: chuyên sâu D d (2d 3; d ) xác định nhóm mảnh ghép B d1 - HS thực hiê ̣n I A C BD (b 2d 3; b d 8) - B d1, D d2 có tọađộ tổng quát b 2d b d I ; 2 - HS thực D d2 B d1 B(b;8 b), D d2 (2d 3; d ) thế nào? - Lúc BD Khi BD (b 2d 3; b d 8) trung điể m I của trung điểm BD BD có to ̣a đô ̣ thế nào? BD AC I AC b 2d b d I ; 2 u BD AC I AC Theo tính chất hình thoi ta có : 8b 13d 13 6b 9d b d B(0;8); D(1;1) 1 I ; 2 - HS nhắ c la ̣i tính chấ t của hiǹ h thoi - HS thực AC.BD 2S AC ABCD 15 BD 15 IA S ABCD Từ dó suy đươ ̣c tọađộ B , D thế nào? - HS: A(-11;6); C(10;3) - Tìm đươc tọađộ - HS ghi nhận trung điể m I của - HS nhắ c la ̣i công BD thức tiń h diê ̣n tić h hình thoi Từ đó suy khoảng cách BD AC u BD AC I AC I AC 8b 13d 13 b b d d Suy B(0;8); D(1;1) Khi 9 I ; ; 2 A AC A(7a 31; a) S ABCD AC.BD AC 2S ABCD BD 15 IA 2 63 225 9 7a a a 2 2 2 a A(10;3) (ktm) a A(11;6) Suy C (10;3) 15 xB xD y yD yI B xI - GV nhận xét, xác hóa câu IA nào? - Tìm tọađộ A; suy to ̣a đô ̣ C trả lời HS Hoạt động 2:(15 phút) Bàitập 2: Các đường trung tuyến tam giác ABC kẻ từ đỉnh B C nằm đường thẳng có phương trình y x y , đỉnh A 2; Viết phương trình đường thẳng BC Hoạt động GV - Giả sử M, N, H lần Hoạt động Nội dung HS - Nghe giảng A lượt trung điểm H cạnh AC, AB, AG M N - HS phân tích tính G chất đường trung truyến tam giác - HS: HM // CN để tìm mối quan hệ HN // BM C B Kí hiệu G trọng tâm tam giác ABC, ta G 4; HM với CN, HN có với BM + Gọi M, N, H trung điểm cạnh AC, AB, AG Ta thấy HM // CN - Lập phương trình HN // BM đường thẳng: + Phương trình đường thẳng HM có HM // CN dạng: x y m HN có dạng: HN // BM - Phương trình y n - Hướng dẫn HS xác đường thẳng Các đường thẳng qua định tọađộ điểm H từ HM : suy phương x 2y m trình đường thẳng HN: HM HN y n - Từphương trình - HS thực đường thẳng vừa tìm H 1;1 nên m 3, n 1 + Tọađộ M nghiệm hệ: y x y M 3; + Tọađộ N nghiệm hệ xác định tọađộ hai điểm M, N - HS xác định tọađộ - HS thực hai điểm B, C dựa - HS thực y 1 x y N 2;1 vào tính chất trung Từ kết ta suy ra: điểm đoạn thẳng C 8; 2 AB, AC đường thẳng BC là: x y B 6; Phương trình Hoạt động 3:(10 phút) Bàitập 3: Cho ABC có đỉnh A(1;2), đường trung tuyến BM: x y phân giác CD: x y Viết phương trình đường thẳng BC Hoạt động GV Hoạt động HS - Tìm tọađộ C Điểm thông qua phương C CD : x y trình đường thẳng CD, điểm M thế C t ;1 t nào? Suy trung điể m M AC là: Nội dung Điểm t 1 t M ; C CD : x y C t;1 t Suy trung điể m M của AC là : Điể m t 1 t M ; M BM : x y 2 Điể m t 1 t 2 1 M BM : x y t t 2 t 7 C 7;8 t 7 C 7;8 Từ A(1;2), kẻ Kẻ AK CD Khi đó K BC - Biế t phương triǹ h - Hs thực hiê ̣n AK : x 1 y AK CD : x y I (điểm K BC ) Suy đường phân giác x y 1 CD, kẻ thêm Tọạđộ điểm I Tọạđộ điểm I thỏa hệ: đường phu ̣ gì? thỏa hệ: - Viế t phương trình x y 1 I 0;1 x y x y 1 I 0;1 x y tọađộ AK, tìm tọađộ I (là giao AK CD) - Xác định tọađộ K? - Viế t phương trình đường thẳ ng BC? - Củng cố lại kiến thức của bài K 1;0 - HS thực hiê ̣n AK : x 1 y x y Tam giác ACK cân C nên I trung điểm AK tọađộPhương triǹ h đường K 1;0 thẳ ng BC qua Phương trình đường thẳ ng BC qua điể m K và C là : điể m K và C là : 6 x y 6 x y - HS ghi nhận Củng cố, luyệntập (5 phút) - Củng cố lại chohọcsinh dạng toán lập phương trình cạnh tam giác, sử dụng tính chất đường cao, đường trung tuyến, phân giác tam giác để phân tích, tìm lời giải toán - Bàitập làm thêm: Cho ABC có phương trình cạnh AB là: 5x y , đường cao qua đỉnh A B là: d1 : 4x y , d2 : 7x y 22 Lập phương trình hai cạnh AC, BC và đường cao thứ ba tam giác Đáp án: Phương trình cạnh AC: 2x y Phương trình cạnh BC: 3x y 22 Phương trình đường cao hạ từ đỉnh C: 3x y 23 Giáo án thử nghiệm số 3: BÀI 3: LUYỆNTẬP (Rèn luyện KTTHTC qua phân tích toán theo nhiêu góc độ có sử dụng kỹthuật khăn phủ bàn) I Mục tiêu Kiến thức - HS biết phân tích toán theo nhiêu góc độtừ cách xác định yếu tố liên quan đến đường thẳng: vtcp, vtpt đường thẳng - HS phân tích toán theo nhiêu góc độ nhằm nắm vững mối quan hệ vtcp vtpt đường thẳng với cách viết phương trình - HS phân tích toán theo nhiêu góc độ giúp nắm cách lập phương trình đường thẳng Kỹ năng: - Thành thạo cách lập phương trình đường thẳng biết yếu tố xác định - Thành thạo cách xác định yếu tố liên quan đến đường thẳng:vtcp, vtpt đường thẳng; chuyển đổi từ vtcp sang vtpt ngược lại - Nâng cao kỹ tham gia thảo luận nhóm thống kết nhóm theokỹthuật khăn phủ bàn Tƣ duy, thái độ - Tư duy: Phân tích, tổng hợp, so sánh, khái quát hóa,… - Thái độ: Cẩn thận, xác, có tinh thần hợp tác hoạt động nhóm II Chuẩn bị Giáo viên - Giáo án, đồ dùng dạy họcHọcsinh - Sách giáo khoa, thước, bút, nháp,… III Tiến trình dạy Kiểm tra cũ - Kết hợp với dạy nội dung Nội dung Hoạt động 1: (15p) Bàitập 1: Cho A(2;1), B(4;3), C(6;7) Hãy lập phương trình tổng quát đường cao AH, BK, CM ∆ABC Hoạt động Hoạt động họcsinh Nội dung giáo viên Chia nhóm họcsinh - Thực yêu cầu Đường cao AH ∆ABC xác định nhiệm vụ giáo viên thành viên nhóm có vtpt là: n BC (2;4) Phương trình AH là: 2( x 2) 4( y 1) - Yêu cầu họcsinh vẽ hình, tóm tắt liệu đề 2x y x 2y Vậy đường cao AH có phương trình tổng quát là: x 2y - Nêu mối quan hệ - Họcsinh trả lời: đường thẳng BC với BC AH AH? - Xác định tọađộ vtpt - Họcsinh trả lời: đường AH n BC (2;4) - Lập phương trình tổng - Họcsinh trả lời: quát đường thẳng AH biết tọađộ điểm Phương trình đường thẳng AH: A vtpt 2( x 2) 4( y 1) - Nêu mối quan hệ - Họcsinh trả lời: Đường cao BK ∆ABC đường thẳng AC với có vtpt là: n AC BK? BK AC (4;6) Phương trình BK là: 4( x 4) 6( y 3) x y 34 x y 17 Vậy đường cao BK có phương trình tổng quát là: x y 17 - Xác định tọađộ vtpt - Họcsinh trả lời: đường BK n AC (4;6) - Lập phương trình tổng - Họcsinh trả lời: quát đường thẳng BK biết tọađộ điểm Phương trình đường thẳng BK: B vtpt 4( x 4) 6( y 3) - Nêu mối quan hệ - Họcsinh trả lời: Đường cao CM ∆ABC đường thẳng AB với có vtpt là: n AB CM AB CM? (2;2) Phương trình CM là: 2( x 6) 2( y 7) x y 26 x y 13 Vậy đường cao CM có phương trình tổng quát là: x y 13 - Xác định tọađộ vtpt - Họcsinh trả lời: đường CM n AB (2;2) - Lập phương trình tổng - Họcsinh trả lời: quát đường thẳng CM biết tọađộ điểm C vtpt Phương trình thẳng CM: 2( x 6) 2( y 7) đường Hoạt động 2: (15p) Bàitập 2: Cho đường thẳng d: 3x - 2y + = Lập phương trình đường thẳng ∆ qua điểm M(1;2) tạo với d góc 45 Hoạt động Hoạt động họcsinh Nội dung giáo viên - Xác định dạng tổng - Họcsinh trả lời: Xét đường thẳng ∆ qua điểm quát đường thẳng ∆ M(1;2) có hệ số góc k qua điểm M có hệ : y k ( x 1) Phương trình ∆ có dạng: số góc k? y k ( x 1) Hay kx y k - Xác định mối quan hệ - Họcsinh trả lời: đường thẳng d đường thẳng ∆ (𝑑, ∆) 45 Ta có: (𝑑, ∆) 45 cos (𝑑, ∆) 2 3k 94 k 1 2 2(3k 2) 13(k 1) 2 5k 24k k 5 k - Áp dụng công thức - Họcsinh thực hiện: tính góc hai đường Suy có hai đường thẳng thỏa thẳng Lập phương 1 : 5x y trình đường thẳng ∆ : x y 45 mãn điều kiện đề bài: : 5x y Hay 5x y 1 : x y2 5 Hay x y 45 Hoạt động 3: (10p) Bàitập 3: Lập phương trình tổng quát đường thẳng ∆ trường hợp sau: a) Đường thẳng ∆ qua điểm A(3;-1) có vtpt n (2;3) b) Đường thẳng ∆ qua điểm B(2;0) có vtcp a (4; 3) c) Đường thẳng ∆ qua điểm C(1;1) có hệ số góc k 2 Hoạt động Hoạt động họcsinh Nội dung giáo viên a) Phương trình tổng quát a) - Lập phương trình ∆ - Họcsinh thực hiện: biết tọađộ điểm A vtpt b) (2;3) là: Phương trình đường thẳng ∆: 2( x 3) 3( y 1) 2x y Hay x y - Họcsinh thực hiện: b) Đường thẳng ∆ có vtcp a - Từtọađộ vtcp suy a (4; 3) tọađộ vtpt ∆ qua điểm A(3;-1) n n (3;4) (4; 3) Suy đường thẳng ∆ có vtpt n (3;4) Vậy phương trình tổng quát ∆ qua điểm B(2;0) n (3;4) là: 3( x 2) y Hay 3x y - Lập phương trình - Họcsinh thực hiện: đường thẳng ∆ biết tọađộ điểm B Phương trình đường thẳng ∆: vtpt 3x y c) - Họcsinh thực hiện: - Lập phương trình Phương trình đường thẳng đường thẳng ∆ ∆: biết tọađộ điểm C 2x y hệ số góc k c) Đường thẳng ∆ có hệ số góc k 2 ∆ qua điểm C(1;1) Suy đường thẳng ∆ có phương trình là: y 2( x 1) Hay x y Củng cố, luyệntập - Củng cố lại chohọcsinh dạng toán lập phương trình cạnh tam giác sử dụng tính chất đường cao, đường trung tuyến, đường trung trực tam giác để phân tích tìm lời giải toán - Bàitập làm thêm:Cho ∆ABC, biết tọađộ đỉnh A(1;4); B(3;-1); C(6;2) Lập phương trình cạnh AB, BC, CA Đáp án: Phương trình AB: 5x y 13 ; Phương trình BC: x y Phương trình CA: x y 22 ... chất lượng kỹ thuật tự học tích cực HS hạn chế 1.3 Vấn đề rèn luyện kỹ thuật tự học tích cực cho kỹ thuật tự học tích cực tự học giải tập Muốn HS chủ động tự học tích cực tự học giải tập giáo viên... cứu: Rèn luyện kỹ thuật tự học tích cực học giải tập theo phƣơng pháp toạ độ cho học sinh lớp 10 THPT Mục đích nghiên cứu - Đề xuất biện pháp rèn luyện kĩ thuật tự học tích cực học giải tập cho. .. thuật tự học tích cực giải tập hình học lớp 10 11 2.2 Kỹ thuật tự học tích cực tự giải tập phương pháp tọa độ mặt phẳng 21 2.2.1 Kỹ thuật tự học tích cực tự học bốn bước chung giải tập