1. Trang chủ
  2. » Giáo án - Bài giảng

Tai lieu HD tu hoc dai so 10 2016 2017

134 321 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 134
Dung lượng 3,41 MB

Nội dung

Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn CHƯƠNG I MỆNH ĐỀ TẬP HỢP - oOo -  CHUẨN BỊ KIẾN THỨC: Tập hợp: • Tập hợp khái niệm toán học, thường đặt tên chữ in hoa Ví dụ tập hợp A tập hợp chữ a, b, c Để a phần tử A, ta kí hiệu: a ∈ A đọc a thuộc A Để e không chứa tập A, ta kí hiệu: e ∉ A đọc e không thuộc A hay e không phần tử A • Các phần tử tập hợp thường viết hai dấu ngoặc nhọn "{" "}", cách dấu ";" (nếu có phần tử số) dấu "," • Có hai cách viết tập hợp: Liệt kê phần tử tập hợp: Ví dụ: Tập hợp B tập hợp số tự nhiên nhỏ viết: B = {0, 1, 2, 3, 4} Chỉ tính chất đặc trưng cho phần tử tập hợp Ví dụ: Tập hợp B tập hợp số tự nhiên nhỏ viết: B = {x ∈ N  x < 4}, N tập số tự nhiên • Tập hợp minh họa vòng kín (gọi giản đồ Ven) • Một tập hợp có phần tử, có hiều phần tử, có vô số phần tử, phần tử Ví dụ: C = {a} D = {1; 2; 3; ; 100} E = {2; 4; 6; 8; } Tập hơp phần tử gọi tập rỗng, kí hiệu ∅ Tập hợp con: Nếu phần tử tập hợp A thuộc tập hợp B tập A gọi tập hợp tập hợp B Ví dụ: Tập hợp A = {2; 4; 6; 8} tập hợp B = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} Các tập hợp số thường sử dụng: N = {0; 1; 2; 3; 4; } N* = {1; 2; 3; 4; } Z: tập hợp số nguyên Q: Tập hợp số hữu tỷ R: Tập hợp số thực  Ghi chú: - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn §1 MỆNH ĐỀ I- MỆNH ĐỀ MỆNH ĐỀ CHỨA BIẾN: Mệnh đề: • Mệnh đđề câu khẳng định câu khẳng định sai • Một câu khẳng định mệnh đề Một câu khẳng định sai mệnh đề sai • Một mệnh đề vừa vừa sai Ví dụ: "Hà Nội thủ đô Việt Nam" mệnh đề " Số số chẵn" mệnh đề sai  Trong câu sau đậy, câu mệnh đề, câu mệnh đề: a) "Các em khỏe không ?" b) "2 + > 6" c) "Các em thật tuyệt vời !" d) "Ngày mai trời nắng." * Chú ý: Người ta thường dùng chữ in hoa P, Q, để kí hiệu cho mệnh đề Ví dụ: Cho mệnh đề P:"4 số chẵn" Mệnh đề chứa biến: Xét câu: "n chia hết cho 3", chưa phải mệnh đề ta không khẳng đònh tính sai • Khi n = ta "4 chia hết cho 3" mệnh đề sai • Khi n = 15 ta "15 chia hết cho 3" mệnh đề Ta gọi P(n): "n chia hết cho 3" mệnh đề chứa biến Ví dụ: Tìm hai giá trò thực x để từ mệnh đề chứa biến Q(x): "x + x - = 0" ta mệnh đề mệnh đề sai Giải: II- PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ: Cho mệnh đề P Mệnh đề "không phải P" gọi mệnh đề phủ định P kí hiệu P Ta có: P P sai, P sai P Ví dụ: Lập mệnh đề phủ đònh mệnh đề sau đây: P: "3 số nguyên tố", Q: "7 không chia hết cho 5", R: "Tổng ba góc tam giác 1800", S: "Tổng ba cạnh tam giác lớn cạnh thứ ba" Giải: - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn III- MỆNH ĐỀ KÉO THEO: Cho hai mệnh đề P Q Mệnh đề " Nếu P Q" gọi mệnh đề kéo theo, kí hiệu P ⇒ Q Mệnh đề P ⇒ Q phát biểu " P kéo theo Q" hay "Từ P suy Q" hay " Vì P nên Q" Mệnh đề P ⇒ Q sai P Q sai Ví dụ: Xét tính sai mệnh đề sau: a) P: "-3 < -2 ⇒ (-3)2 < (-2)2", b) Q: " < ⇒ < 4" Giải: Các đònh lí toán học mệnh đề thường có dạng P ⇒ Q Khi ta nói: P giả thiết, Q kết luận đònh lí; P điều kiện đủ để có Q; Q điều kiện cần để có P Ví dụ 1: Đònh lí Pitago: ∆ABC vuông A ⇒ BC = AB + AC Ví dụ 2: Cho tam giác ABC Từ mệnh đề: P: "Tứ giác ABCD hình thoi" Q: "Tứ giác ABCD có đường chéo vuông góc" Hãy phát biểu đònh lí P ⇒ Q Nêu giả thiết, kết luận phát biểu lại đònh lí dạng điều kiện cần, điều kiện đủ Giải: IV- MỆNH ĐỀ ĐẢO - HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG: - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn Mệnh đề Q ⇒ P gọi mệnh đề đảo mệnh đề P ⇒ Q Nếu hai mệnh đề P ⇒ Q Q ⇒ P ta nói P Q hai mệnh đề tương đương Khi ta kí hiệu P ⇔ Q (đọc P tương đương Q P điều kiện cần đủ để có Q P Q) Mệnh đề P ⇔ Q P Q sai sai trường hợp lại Ví dụ 1: Cho mệnh đề P: "ABC tam giác đều", Q: "ABC tam giác cân" Lập mệnh đề P ⇒ Q mệnh đề đảo của Xét tính sai mệnh đề Giải: Ví dụ 2: Đònh lí Pitago: "Nếu ∆ABC vuông bình phương cạnh tổng bình phương hai cạnh lại" Mệnh đề đảo: "Nếu ∆ABC có bình phương cạnh tổng bình phương hai cạnh lại ∆ABC vuông" Mệnh đề đảo mệnh đúng, ta gọi mệnh đề đònh lí đảo Từ đònh lí Pitago phát biểu: "∆ABC vuông bình phương cạnh tổng bình phương hai cạnh lại" V- KÍ HIỆU ∀ VÀ ∃ : (được sử dụng mệnh đề chứa biến) Mệnh đề chứa kí hiệu ∀, ∃ : • Kí hiệu: ∀ (đọc "với mọi") • Kí hiệu: ∃ (đọc "có một" (tồn một) hay "có một" (tồn một)) • Mệnh đề:  "Với x thuộc X cho P(x)" kí hiệu " ∀x ∈ X : P( x)"(*) (*) với x0 ∈ X ta có P(x0) mệnh đề (*) sai có x0 ∈ X cho P(x0) mệnh đề sai Ví dụ: Viết lại mệnh đề "Bình phương số thực lớn không" kí hiệu xét tính sai mệnh đề Giải: Ví dụ 2: Phát biểu thành lời mệnh sau "∀n∈Z: n + > n" Mệnh đề hay sai? Giải: - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn  "Tồn x thuộc X cho P(x)" kí hiệu " ∃x ∈ X : P ( x ) "(**) (**) có x0 ∈ X ta có P(x0) mệnh đề (**) sai với x0 ∈ X cho P(x0) mệnh đề sai Ví dụ: Viết lại mệnh đề "Có số nguyên nhỏ không" kí hiệu xét tính sai mệnh đề đó, lí Giải: Ví dụ 2: Phát biểu thành lời mệnh sau "∃ x∈Z: x2 = x" Mệnh đề hay sai? sao? Giải: Phủ đònh mệnh đề chứa kí hiệu ∀, ∃ : • Phủ đònh mệnh đề" ∀x ∈ X : P( x) " mệnh đề " ∃x ∈ X : P ( x ) " • Phủ đònh mệnh đề" ∃x ∈ X : P ( x ) " mệnh đề " ∀x ∈ X : P( x) " Ví dụ: Lập mệnh đề phủ đònh mệnh đề sau xét tính sai nó? a) P: "∀x ∈ R : x2 ≠ 1"; b) Q: "∃ n ∈ N: 2n = 1"; c) R: "∀x ∈ R: x2 + < 1" Giải: - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn VI - MỆNH ĐỀ GHÉP: Cho ba mệnh đề A, B, C Khi đó: • "A B" mệnh đề hai mệnh đề A B A đúng, kí hiệu:  B • "A B" mệnh đề hai mệnh đề A, B có A mệnh đề đúng, kí hiệu:  B • A vàB ⇔ A hoặ cB • A hoặ c B ⇔ A vàB  A A   B • A (B C) ⇔ (A B) (A C) hay   B ⇔   A   C    C  Ghi chú: - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn BÀI TẬP RÈN LUYỆN Bài 1: Trong câu sau đây, câu mệnh đề, câu mệnh đề chứa biến, câu mệnh đề: a) "3 + = 7"; b) "4 + x = 3"; c) "10 số nguyên tố"; d) "x + y > 1"; e) "2 - < 0"; f) "Ngày mai trời nắng" Bài 2: Xét tính sai mệnh đề sau phát biểu mệnh đề phủ đònh a) "Số 11 số nguyên tố"; b) "Số 111 chia hết cho 3"; c) "π < 3,15"; d) "1794 chia hết cho 3"; e) "-125≤ 0"; f) " số hữu tỉ" Bài 3: Cho mệnh đề kéo theo P: "Nếu a b chia hết cho c a + b chia hết cho c (a, b, c số nguyên) Q: "Các số nguyên có tận chia hết cho 5" R: "Tam giác cân có hai đường trung tuyến nhau" S: "Hai tam giác có diện tích nhau" a) Hãy phát biểu mệnh đề đảo mệnh đề b) Phát biểu mệnh đề trên, cách sử dụng khái niệm "điều kiện đủ" c) Phát biểu mệnh đề trên, cách sử dụng khái niệm "điều kiện cần" Bài 4: Xét hai mệnh đề P:"π số vô tỉ" Q: "π không số nguyên" a) Hãy phát biểu mệnh đề P ⇒ Q b) Phát biểu mệnh đề đảo mệnh đề c) Xém xét tính đúng, sai mệnh đề Bài 5: Cho hai tam giác ABC A'B'C' Xét hai mệnh đề: P: "Tam giác ABC tam giác A'B'C' Q: "Tam giác ABC tam giác A'B'C' có diện tích nhau" a) Xét tính sai mệnh đề P ⇒ Q b) Xét tính sai mệnh đề Q ⇒ P c) Xét tính sai mệnh đề P ⇔ Q Bài 6: Xét hai mệnh đề P: "24 số chia hết cho 3", Q: "24 số chia hết cho 6" a) Xét tính sai mệnh đề P ⇒ Q b) Xét tính sai mệnh đề Q ⇒ P c) Mệnh đề P ⇔ Q có không? Bài 7: Phát biểu mệnh đề sau, cách sử dụng khái niệm "điều kiện cần đủ" a) Một số có tổng chữ số chia hết cho chia hết cho ngược lại b) Một hình bình hành có đường chéo vuông góc hình thoi ngược lại c) Phương trình bậc hai có hai nghiệm phân biêt biệt thức dương Bài 8: Dùng kí hiệu ∀, ∃ để viết mệnh sau: a) Mọi số nhân với nó; b) Có số cộng với 0; - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn c) Mọi số cộng với số đối Bài 9: Phát biểu thành lời mệnh đề sau xét tính sai nó: a) ∀x ∈ R : x2 > 0; b) ∃ n ∈ N : n2 = n; c) ∀n ∈ N : n ≤ 2n; d) ∃ x ∈ R : x < x Bài 10: Lập mệnh đề phủ đònh mệnh đề sau xét tính sai nó: a) ∀n ∈ N : n  n; b) ∀x∈R : x < x + 1; c) ∃ x∈R : 3x = x2 + 1; d) ∃ x∈Q : x2 = 10 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn ; c) - ; d) Bài 2: Các đẳng thức sau xảy đồng thời không? 3 a) sinα = cosα = ; b) sinα = − cosα = − ; c) sinα = 0,7 5 3 cosα = 0,3 π Bài 3: Cho < α < Xác đònh dấu giá trò lượng giác 3π a) sin(α - π); b) cos( - α); c) tan(α + π); d) cot(α + π ) 7π − 4π Bài 4: Dùng đònh nghóa, xác đònh giá trò lượng giác góc: 180 0; ; Bài 5: Tìm giá trò tan4200, sin8700, cos(-2400) 3π Bài 6: a) Cho sina = − , π < a < Tính cosa, tana, cota π b) Cho tana = − , < a < π Tính sina, cosa 2 Bài 7: Tính giá trò lượng giác góc α, π 3π a) cosα = < α < ; b) sinα = -0,7 π < α < ; 13 2 15 π 3π c) tanα = − < α < π; d) cotα = -3 < α < 2π 2 Bài 8: Chứng minh (với x giá trò để biểu thức có nghóa), ta có: a) (cotx + tanx)2 - (cotx - tanx)2 = 4; b) cos4x - sin4x = - 2sin2x Bài 9: Chứng minh tam giác ABC ta có: A+ C B a) sin(A + B) = sinC; b) tan = cot 2 Bài 10: Tính α, biết a) cosα = 1; b) cosα = -1; c) cosα = 0; d) sinα = 1; e) sinα = -1; f) sinα = a) -0,7; b) CÂU HỎI CHUẨN BỊ BÀI 120 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn - Tài liệu lưu hành nội - 121 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn §3 CÔNG THỨC LƯNG GIÁC I- CÔNG THỨC CỘNG Với số thực a, b biểu thức có nghóa, ta có: cos(a - b) = cosacosb + sinasinb cos(a + b) = cosacosb - sinasinb sin(a - b) = sinacosb - cosasinb sin(a + b) = sinacosb + cosasinb tana − tanb tan(a − b) = 1+ tanatanb tana + tanb tan(a + b) = 1− tanatanb π Ví dụ1: Tính tan 12 Giải: sin(a + b) tana + tanb = Ví dụ 2: Chứng minh sin(a − b) tana − tanb Giải: II- CÔNG THỨC NHÂN ĐÔI Với số thực a, ta có: sin2a = 2sinacosa cos2a = cos2a - sin2a = cos2a - = - 2sin2a 2tana tan2a = 1− tan2a • Công thức hạ bậc: 122 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn 1+ cos2a − cos 2a sin2 a = 1− cos2a tan2 a = 1+ cos2a cos2 a = Ví dụ 1: Biết sina + cosa = Giải: Tính sin2a π Ví dụ 2: Tính cos Giải: III- CÔNG THỨC BIẾN ĐỔI TÍCH THÀNH TỔNG, TỔNG THÀNH TÍCH Công thức biến đổi tích thành tổng: cosacosb = [cos(a + b) + cos(a - b)] sinasinb =- [cos(a + b) - cos(a - b)] sinacosb = [sin(a + b) + sin(a - b)] π 3π 13π 5π sin Ví dụ: Tính giá trò biểu thức A = sin cos , B = sin 8 24 24 Giải: - Tài liệu lưu hành nội - 123 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn Công thức biến đổi tổng thành tích: u+ v u− v cosu + cosv = 2cos cos 2 u+ v u− v cosu - cosv = -2sin sin 2 u+ v u− v sinu + sinv = 2sin cos 2 u+ v u− v sinu - sinu = 2cos sin 2 π 5π 7π Ví dụ 1: Tính A = cos + cos + cos 9 Giải: Ví dụ 2: Chứng minh tam giác ABc ta có: sinA + sinB + sinC = A B C cos cos cos 2 Giải: 124 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn  Ghi chú: BÀI TẬP RÈN LUYỆN Bài 1: Tính - Tài liệu lưu hành nội - 125 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn a) cos2250, sin2400, cot(-150), tan750, cos1050, tan150 ; π 13π ), tan 12 12 Bài 2: Tính b) sin 7π , cos( 12 − a) cos(α + − π π ), biết sinα = < α < ; 3 b) tan(α - π < α < π; c) cos(a + b), sin(a - b), biết sina = π ), biết cosα = 4 , < a < 900 sinb = , 900 < b < 1800 Bài 3: Rút gọn biểu thức: π π π a) sin(a + b) + sin( - a)sin(-b); b) cos( + a)cos( - a) + sin2a; 4 π π c) cos( - a)sin( - b) - sin(a - b) 2 Bài 4: Chứng minh đẳng thức: cos(a − b) cotacotb + = a) ; b) sin(a + b)sin(a - b) = sin 2a - sin2b = cos2b cos(a + b) cotacotb − cos a c) cos(a + b)cos(a - b) = cos2a - sin2b = cos2b - sin2a Bài 5: Chứng minh rằng: a) sin4x + cos4x = - sin22x; b) cos4x - sin4x = cos2x Bài 6: Tính sin2a, cos2a, tan2a, biết 3π π a) sina = -0,6 π < a < ; b) cosa = < a < π; 13 3π c) sina + cosa = < a < π; d) sina - cosa = 5 π Bài 7: Cho sin2a = − < a < π Tính sina cosa Bài 8: Biến đổi thành tích biểu thức sau: a) - sinx; b) + sinx; c) + 2cosx; d) - 2sinx sinx + sin3x + sin5x Bài 9: Rút gọn biểu thức A = cosx + cos3x + cos5x CÂU HỎI CHUẨN BỊ BÀI 126 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn * ÔN TẬP CHƯƠNG VI * - Tài liệu lưu hành nội - 127 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn BÀI TẬP RÈN LUYỆN Bài 1: Tính a) sin α , cos α = − 128 π < α < π ; b) cos α , tan α = 2 π < α < - Tài liệu lưu hành nội - 3π ; Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn 3π < α < 2π ; Bài 2: Rút gọn biểu thức: 2sin2α − sin4α a) ; 2sin2α + sin4α c) tan α , sin α = − π d) cot α , cos α = − < α < π  1+ cos2 α  − sinα  ; b) tanα   sinα  π  π  sin − α  + cos − α  sin5α − sin3α 4  4  c) ; d) π  π  2cos4α sin − α  − cos − α  4  4  Bài 3: Không sử dụng máy tính, tính 22π 23π 25π 10π π π − tan a) cos ; b) sin ; c) sin ; d) cos2 − sin2 3 8 Bài 4: Không sử dụng máy tính, chứng minh a) sin750 + cos750 = b) tan2670 + tan930 = ; 0 c) sin65 + sin55 = cos50 ; d) cos120 − cos480 = sin180 Bài 5: Chứng minh đồng thức sinx + sin 1− cosx + cos2x x = tanx ; = cotx ; a) b) x sin2x − sinx 1+ cosx + cos sin(x − y) 2cos2x − sin4x π  = tan2  − x ; c) d) tanx − tany = cosx cosy 2cos2x + sin4x 4  Bài 6: Chứng biểu thức sau không phụ thuộc vào x π  π  π  π  a) A = sin + x − cos − x ; b) B = cos − x − sin + x ; 4  4  6  3  1− cos2x + sin2x π  π  cotx c) C = sin x + cos − x cos + x ; d) D = 1+ cos2x + sin2x 3  3  CÂU HỎI CHUẨN BỊ BÀI - Tài liệu lưu hành nội - 129 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn * ÔN TẬP CUỐI NĂM * 130 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn BÀI TẬP RÈN LUYỆN Bài 1: Cho hàm số f ( x) = x + 3x + − − x + x − 15 a) Tìm tập xác đònh A hàm số f(x); b) Giả sử B = { x ∈ R | < x ≤ 5} Hãy xác đònh tập A \ B R \ (A \ B) Bài 2: Cho phương trình: mx2 – 2x – 4m – = a) Chứng minh với giá trò m ≠ 0, phương trình cho có hai nghiệm phân biệt b) Tìm giá trò m để -1 nghiệm phương trình Sau tìm nghiệm cón lại Bài 3: Cho phương trình: x2 – 4mx + 9(m - 1)2 = a) Xét xem với giá trò m, phương trình có nghiệm - Tài liệu lưu hành nội - 131 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn b) Giả sử x1, x2 hai nghiệm phương trình cho, tính tổng tích chúng Tìm hệ thức x1, x2 không phụ thuộc vào m c) Xác đònh m để hiệu nghiệm phương trình Bài 4: Chứng minh bất đẳng thức sau a) 5(x - 1) < x5 – < 5x4(x - 1), x – > 0; b) x5 + y5 – x4y – xy4 ≥ 0, biết x + y ≥ ; c) 4a + + 4b + + 4c + < , biết a, b, c lớn − a + b + c =  x + 3y + 2z =  Bài 5: Giải hệ phương trình 3x + 5y − z = cách đưa hệ phương trình 5x − 2y − 3z = −3  dạng tam giác Bài 6: a) Xét dấu biểu thức: f(x) = 2x(x + 2) – (x + 2)(x + 1) b) Lập bảng biến thiên vẽ hệ trục tọa độ Oxy đồ thò hàm số sau: y = 2x(x + 2) (C1) y = (x + 2)(x + 1) (C2) Tính tọa độ giao điểm A B (C1) (C2) c) Tính hệ số a, b, c để hàm số y = ax + bx + c có giá trò lớn đồ thò qua A B Bài 7: Chứng minh hệ thức sau: sina + sin3a + sin5a 1− 2sin2 a 1− tana = tan3a ; a) ; b) = cosa + cos3a + cos5a 1+ sin2a 1+ tana sin4 a − cos4 a + cos2 a a tan2x tanx = cos2 ; = sin2x c) d) 2(1− cosa) tan2x − tanx Bài 8: Rút gọn biểu thức sau: 1+ cosa a cos2x − sin4x − cos6x 1+ sin4a − cos4a tan − cos2 a ; a) ; b) c) 1+ cos4a + sin4a 1− cosa cos2x + sin4x − cos6x Bài 9: Tính: a) 4(cos240 + cos480 – cos840 – cos120); b) π π π π π 96 3sin cos cos cos cos ; 48 48 24 12 0 c) tan9 − tan63 + tan81 − tan270 Bài 10: Rút gọn: x 2x 4x 8x x 3x 5x a) cos cos cos cos ; b) sin + 2sin + sin 5 5 7 Bài 11: Chứng minh tam giác ABC ta có: π a) tanA + tanB + tanC = tanA tanB tanC (A, B, C khác ); b) sin2A + sin2B + sin2C = 4sinAsinB sinC Bài 12: Không sử dụng máy tính, tính sin400 − sin450 + sin500 + 3tan150 − cos400 − cos450 + cos500 − tan150 ( ) HƯỚNG DẪN ÔN TẬP HÈ 132 - Tài liệu lưu hành nội - Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn - Tài liệu lưu hành nội - 133 Tài liệu hướng dẫn tự học môn Đại số 10 - Chương trình chuẩn 134 - Tài liệu lưu hành nội - ... hơn? Trò tuyệt đối hiệu số S = πr2 với S1, S2 số lớn hơn? Sai số tuyệt đối số gần đúng: Nếu a số gần số a ∆ a = a − a gọi sai số tuyệt đối số gần a Độ xác số gần đúng:  Có thể tính sai số tuyệt... HP:  Giả sử A = {An, Minh, Bảo, Cường, Vinh, Hoa, Lan, Tu , Quý},là tập hợp học sinh giỏi lớp 10CB B = {An, Hùng, Tu n, Vinh, Lê, Tâm, Tu , Quý} tập hợp học sinh tổ lớp 10CB Gọi C tập hợp học... số thập phân hữu hạn vô hạn tu n hoàn a a a * Công thức đổi số thập phân sang số hữu tỉ: n,(a1a2 an) = n + 2n n 10 − Tập hợp số thực R: Các số thập phân vô hạn không tu n hoàn gọi số vô tỉ Tập

Ngày đăng: 04/07/2017, 04:14

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w