1. Trang chủ
  2. » Giáo án - Bài giảng

PT lượng giác_QUÁCH DUY TUẤN_Hà Tây_0914342498

4 702 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 281,5 KB

Nội dung

Trang 1

Chuyên Đề 1: PT bậc 2 với một HSLG

1) 2sin2x - cos2x - 4sinx + 2 = 0

2) 9cos2x - 5sin2x - 5cosx + 4 = 0

3) 5sinx(sinx - 1) - cos2x = 3

4) cos2(3x +

2

π) – cos23x – 3cos(

2

π - 3x) + 2 = 0 5)[cđsphn_97] cos2x + sin2x + 2cosx + 1 = 0

6) 3cos2x + 2(1 + 2 + sinx)sinx – (3 + 2) = 0

7) tg2x + ( 3 - 1)tgx – 3 = 0

sin

3

2 = gx+

x

2 cos 2 cot

4 sin 2 cot 3 2 cos

=

+ +

x x

g

x x

g x

10)[ĐHBKHN_94]

0 cos

2 cos 3 9 sin

6

2

sin

=

− +

x

x x

x

11)[ĐH Thuỷ Sản Nha Trang_01]

1 1

2 sin

) 2 (sin

sin 3 ) sin 2

(cos

+ +

+

x

x x x

x

x

Chuyên Đề 2: PT bậc 3 với một HSLG

1) 4sin3x – 8sin2x + sinx + 3 = 0

2)[ĐH Luật HN_00] 4(sin3x – cos2x) = 5(sinx – 1)

3)4 cos 3x+ ( 6 − 2 3 ) cos 2x− ( 4 + 3 3 ) cosx+ 2 3 = 0

4) cos3x + 3cos2x = 2(1 + cosx)

5) 2tg3x + 5tg2x – 23tgx + 10 = 0

6) 6tg3x+ ( 3 − 2 3 )tg2x− ( 3 + 3 )tgx+ 3 = 0

7) tg3x – tgx = 2

8) cotg3x + 2cotg2x – 3cotgx - 6 = 0

9) 2cotg3x – cotg2x – 13cotgx – 6 = 0

10)[ĐHNN HN_00] 2cos2x – 8cosx + 7 = 1/cosx

Chuyên Đề 3: PT bậc nhất đối với Sin và cos

1) 3 cos 3x+ sin 3x= 2

2)[ĐH Mỏ_95] 3 sin 3x− 3 cos 9x= 1 + 4 sin 3 3x

3)[ĐH Mỹ Thuật Công Nghiệp HN_96]

x x x

x

xcos 5 3 sin 2 1 sin 7 sin 5

7

4)[ĐHKT_97] Tìm các nghiệm x )

7

6

; 5

2 ( π π

cos 7x− 3 sin 7x= − 2

5)[ĐHGT_00] 2 2 (sinx+ cosx) cosx= 3 + cos 2x

6 5 sin(

5 ) 6 sin(

4 ) 3 sin(

3 x−π + x+π + x+π =

7)[HVCNBCVT_01]

3 4 cos 3 3 3 sin cos 4 3 cos

sin

8) 2sin4x + 3cos2x + 16sin3xcosx – 5 = 0

9)[CĐHQ TPHCM_98] 4sin3x – 1= 3sinx - 3cos3x

10)[ĐH Kỹ Thuật Công Nghệ TPHCM_00]

cos2x - 3sin2x = 1 + sin2x

11)[ĐH Văn Lang TPHCM_98]

4(sin4x + cos4x) + 3sin4x = 2

12)[ĐHNN I_95]

x x

x

x 3 sin 2 sin 3 cos 2

cos

13)[ĐHTM_00] 3 sin 2x− 2 cos 2 x= 2 2 + 2 cos 2x

14)[ĐHSP Quy Nhơn_98]

2 cos 3 sin cos

3

Chuyên Đề 4: PT đcấp bậc 2 đối với sin và cos

1) sin2x + 2sinxcosx + 3cos2x - 3 = 0 2) sin2x – 3sinxcosx + 1 = 0

3) 4 3sinxcosx + 4cos2x = 2sin2x + 5/2

2 cos(

) 2

5 sin(

2 ) 3 ( sin

3 2 π−x + π +x π +x

) 0

2

3 ( sin

5)[ĐHAN_98]

a

x x

x

cos

1 cos

sin

b

x x

x

cos

1 cos

6 sin

6) cos2x – 3sinxcosx – 2sin2x – 1 = 0 7) 6sin2x + sinxcosx – cos2x = 2

Chuyên Đề 5: PT đcấp bậc 3 đối với sin và cos

1)[ĐHL_96] 4sin3x + 3cos3x – 3sinx – sin2xcosx = 0

2)[ĐHNT_96] cos3x – 4sin3x – 3cosxsin2x + sinx = 0 3)[ĐH Huế_98] cos3x + sinx – 3sin2xcosx = 0

4)[ĐH Đà Nẵng_99] cos3x – sin3x = sinx – cosx 5)[CĐSPTW1_01] 4cos3x + 2sin3x – 3sinx = 0 6)[HVKTQS_96] 2cos3x = sin3x

7)[ĐHD TPHCM_97] sinxsin2x + sin3x = 6cos3x 8)[ĐHY HN_99] sinx + cosx - 4sin3x = 0

9)[ĐHQGHN_96] 1 + 3sin2x = 2tgx 10)[ĐHNN B_99] sin2x(tgx + 1) = 3sinx(cosx – sinx) +3

11)[PVBCTT_98] x ) 2 sinx

4 ( sin

2 3 +π = 12)[ĐHQGHN_98] x ) cos 3x

3 ( cos

8 3 +π = 13)[ĐHQG TPHCM_98] x ) 2 sinx

4 ( sin 3 −π = 14)[ĐHYHN_95]

x

x x x

x

2 cos 2

cos 4 sin 5 cos 2 sin

Chuyên Đề 6: PT đối xứng và nửa đối xứng Với sin và cos

1) 2(sinx + cosx) - sinxcosx = 1 2) (1 – sinxcosx)(sinx + cosx) =

2 2

3)

3

10 sin

1 sin cos

1

x

x x

x

4) sin3x + cos3x =

2 2

5) 1 + sin3x + cos3x =

2

3

sin2x 6)[HVCTQG TPHCM] 2sin2x – 2(sinx + cosx) +1 = 0 7)[ĐH Huế D_00] sinxcosx + 2sinx + 2cosx = 2 8)[ĐHM_99] 1 + tgx = 2 2sinx

Trang 2

9) sinx + cosx = 1 sinx cos x

3

3 2

+ 10) sinx – cosx + 7sin2x = 1

11) ( 1 + 2 )(sinx− cosx) + 2 sinxcosx= 1 + 2

4 sin(

2 2 sin x+ x−π = 13) sinx− cosx + 4 sin 2x= 1

Chuyên Đề 7: PTLG đối xứng với tg và cotg

1) 3(tgx + cotgx) = 4

2)[ĐHCĐ_97] 2(sinx + cosx) = tgx + cotgx

3)[ĐHNN_97] cotgx – tgx = sinx + cosx

4)[ĐH Cần Thơ_D99] 3(tgx + cotgx) = 2(2 + sin2x)

5)[ĐHGT_95] tg2x + cotgx = 8cos2x

6)[ĐHQG_B96] tgx = cotgx + 2cotg32x

7)[ĐH Đông Đô_97] tgx + cotgx = 2(sin2x + cos2x)

8)[ĐH Đông Đô_99] cotgx = tgx + 2tg2x

9)[97II] 6tgx + 5cotg3x tg2x

10)[ĐHYHN_98] 2(cotg2x – cotg3x) = tg2x + cotg3x

11)[ĐHQG TPHCM_A96] tg2x – tgxtg3x = 2

12)[ĐHTH_A93] 3tg2x – 4tg3x = tg23xtg2x

13)[CĐ Hải Quan_00]

3tg2x + 4tgx + 4cotgx + 3cotg2x +2 = 0

14) tgx + tg2x + tg3x + cotgx + cotg2x + cotg3x = 6

15) tg2x – tg3x – tg5x = tg2xtg3xtg5x

16) tg22xtg23xtg5x = tg22x – tg23x + tg5x

17)[ĐHDHN_01]

tg2x.cotg22x.cotg3x = tg2x – cotg22x + cotg3x

18)[CĐGT_01]

tg2x.tg23x.tg4x = tg2 – tg23x + tg4x

19)[ĐHNT TPHCM_97] 2tgx + cotgx =

x

sin

2

3 + 20)[71 III] 3tg3x + cotg2x = 2tgx +

x

4 sin

2

21)[ĐHQG_A98] 2tgx +cotg2x = 2sin2x +

x

2 sin 1

22) 3tg6x -

x

8 sin

2

= 2tg2x – cotg4x 23)[130 III] cotg2x + cotg3x +

x x

xsin 2 sin 3 sin

1

= 0 24)[ĐHBK_98]

1 cot

) sin (cos 2 2

cot

1

=

x x x

g tgx

cos

1 sin

1

(

x

2

1 2

sin

cos sin 4 4

gx tgx

x

x x

+

= +

Chuyên Đề 8: PTLG Đxứng đối với sin 2n và

cos 2n

1)[ĐHBKHN_96] sin4x + cos4x = cos2x

2)[ĐH Huế_99] sin6x + cos6x = 7/16

3) sin6x + cos6x = sin 2x

4

4) sin6x + cos6x = cos4x

5)[HVCTQG TPHCM_00]

16(sin6x + cos6x – 1) + 3sin6x = 0 6)[ĐHQG_98] cos6x – sin6x =

8

13

cos22x 7)[ĐHKT_95]

8

5 ) 3 ( cos ) 3 ( sin 4 x + 4 x = 8)[ĐHCĐ_01] x x) 1 2 sinx

2 ( cos ) 2 (

9)

8

3 3 sin

1 3

cos

1

2

x x

Chuyên Đề 9: sử dụng ct hạ bậc

1) cos2x + cos22x + cos23x = 3/2 2) cos2x + cos22x + cos23x = 1 3)[ĐH Huế] sin2x + sin22x + sin23x = 3/2 4)[ĐHY_98] sin23x – sin22x – sin2x = 0 5)[ĐHQG_98] sin2x = cos22x + cos23x 6)[ĐH_B02] sin23x – cos24x = sin25x – cos26x 7) cos2x + cos22x + cos23x + cos24x = 2

8) cos2x + cos22x + cos23x + cos24x = 3/2 9)[Đ52II] cos2x = cos

3

4x

10)[Đ15III]

5

4 cos 3 5

3 cos 2

11)[Đ48II] sin22x – cos28x = 10 )

2

17 sin( π+ x

12)[ĐHD_99] sin24x – cos26x = sin( 10 , 5π+ 10x)

13)[ĐHTDTT_01]

cos3x+sin7x=

2

9 cos 2 ) 2

5 4 ( sin

− +

π

14)[ĐHHH_95] sin4x +

4

1 ) 4 ( cos 4 x+π = 15)[ĐHBKHN_95]

2sin2x(4sin4x – 1) = cos2x(7cos22x + 3cos2x – 4) 16)[ĐHXD_97]

x x

tg x tg

x

) 4 ( ) 4 (

2 cos 2

+

+

π π

11)[ĐHGT_99]

6 ( cot ) 3 ( cot 8

7

x g x

12)[ĐHGT_01]

Sin4x +

8

9 ) 4 ( sin ) 4 ( sin 4 x+π + 4 x−π = 13)[ĐHNT TPHCM_95] sin8x + cos8x=

16

17

cos22x 14)[HVKTMM_99] sin8x + cos8x =

32 17

15)[Vô Địch New York_73]

sin8x + cos8x =

128 97

16)[HVQY_97] sin82x + cos82x = 1/8 17)[ĐHKT_99] sin2x + sin23x = cos22x + cos24x 18)[Đ135II] cos3xcos3x + sin3xsin3x =

4 2

Trang 3

19)[Đ142III] cos3xcos3x + sin3xsin3x = cos34x

20)[ĐHNT_99] cos3xsin3x + sin3xcos3x = sin34x

21)[HVBCVT_01]

4sin3xsin3x + 4sin3xcos3x + 3 3cos4x = 3

22)[ĐHSP TPHCM_00]

2cos2x + 2cos22x + 2cos23x – 3 = cos4x(2sin2x +

1)

23)[ĐHN_01]

cos3xcos3x – sin3xsin3x = cos34x + 1/2

Chuyên Đề 10: sử dụng CT góc nhân đôi

1)[ĐHY_97] cos4x + sin6x = cos2x

2)[ĐHNN_97] cos2x + 5sinx + 2 = 0

3)[ĐHNN_99] 2sin3x – cos2x + cosx = 0

4)[Đ68II] 2cos3x + cos2x + sinx = 0

5)[Đ72II] cos4x – cos2x + 2sin6x = 0

6)[ĐHNT_95] 4cosx – 2cos2x – cos4x = 1

7)[ĐHHH_99] cos2x + 5 = 2(2 – cosx)(sinx- cosx)

8)[ĐHYHN_00] sin3x + cos3x = cos2x

9)[ĐH Huế_98] 2sin3x + cos2x = sinx

10)[ĐHQGHN_95] 4sin2x – 3cos2x = 3(4sinx – 1)

11)[Đ16III] Tìm nghiệm ; 3 )

2 (π π

x x

2

7 cos(

3 ) 2

5 2

12)[Đ81III]

) 2 4 ( cos 2 sin 2 cos sin

2

sin

x x x

13)[ĐHQGHN _98] sin3x + cos3x = 2(sin5x + cos5x)

14)[ĐHNT_00]

sin8x + cos8x = 2(sin10x + cos10x) +

4

5

cos2x 15)[HVCNBCVT_98] sin4x –cos4x = 1 + 4(sinx –

cosx)

16)[Đ97II] 6tgx = tg2x

17)[HVNH TPHCM_98] 2 + cosx =

2

2tg x

18)[ĐHTC_97] (1 – tgx)(1 + sin2x) = 1 + tgx

19)[ĐHM_99] tgxsin2x – 2sin2x = 3(cos2x +

sinxcosx)

20)[ĐHQGHN_D00] 1 + 3tgx = 2sin2x

21)[viện ĐH Mở HN_98] cosx +

2

x

tg = 1 22)[ĐH Dân Lập Đông Đô_99] cotgx = tgx + 2tg2x

Chuyên Đề 11: sử dụng CT góc nhân ba

1)[ĐHY Hải Phòng_00] sin3x + sin2x = 5sinx

2) sin3x + sinx – 2cos2x = 0

3)[ĐHY Thái Nguyên] 4cos2x–

cos3x=6cosx+2(1+cos2x)

4)[Đ76II]

cos10x+2cos24x+6cos3xcosx = cosx +8cosxcos33x

5) 32cos6x – cos6x = 1

6)[ĐHTH_B92] 2sin3x(1 – 4sin2x) = 1

7)[ĐHQGHN_01]

sin3x = cosxcos2x(tg2x + tg2x)

8)[ĐHTM_99]

x

x x

x

cos

1 3 cos 2 sin

1 3 sin

2

3 10

sin(

2

1 ) 2 10

3 sin( π −x = π + x

4 sin(

2 sin ) 4 3 sin( x−π = x x

11)[ĐHQG_99] x ) cos 3x

3 ( cos

8 3 +π = 12)[HVNH TPHCM_00]

sin3x + cos3x + 2cosx = 0

Chuyên Đề 12: biến đổi tổng, hiệu thành tích và phân tích ra thừa số

1) sinx + sin2x + sin3x = 1 + cosx + cos2x 2) sinx + sin2x + sin3x = cosx + cos2x + cos3x 3)[ĐH Nông Lâm TPHCM_01]

1 + cosx + cos2x + cos3x = 0 4)[HVQHQT_99] cosx + cos2x + cos3x + cos4x = 0 5)[ĐHSP Vinh_97]

sinx + sin2x + sin3x + sin4x + sin5x + sin6x = 0 6)[ĐH Đà Nẵng_B97] sin3x – sinx + sin2x = 0

7) cos10x – cos8x – cos6x + 1 = 0 8)[HVQHQT_00] cosx + cos3x + 2cos5x = 0 9)[ĐHNTHN_97] 9sinx + 6cosx – 3sin2x + cos2x = 8 10)[ĐHNT TPHCM_00]

1 + sinx + cos3x = cosx + sin2x + cos2x 11)[ĐHYHN_00] sin4x = tgx

12) (2sinx – 1)(2sin2x + 1) = 3 – 4cos2x 13)[ĐHYHN_96] (cosx – sinx)cosxsinx = cosxcos2x 14)[ĐHHH_00]

(2sinx + 1)(3cos4x + 2sinx – 4) + 4cos2-x = 3 15)[ĐH Đà Nẵng_99] cos3x – sin3x = sinx – cosx 16)[ĐH Thuỷ Sản Nha Trang_96]

cos3x + sin3x = sinx – cosx 17)[ĐHCSND_00] cos3x + sin3x = sin2x + sinx +cosx 18)[HVQY_00] cos2x + sin3x + cosx = 0

19)[HVNH_99] cos3x + cos2x + 2sinx – 2 = 0 20)[HVNH TPHCM_00] sinx + sin2x + cos3x = 0 21)[HVBCVT TPHCM_97] cos2x – 4sinxcosx = 0 22)[HVKTQS_99] 2sin3x – sinx =2cos3x –cosx + cos2x

23)[ĐHSPI_00] 4cos3x +3 2sin2x = 8cosx 24)[ĐHNTHN_98]

sinx +sin2x +sin3x +sin4x =cosx+cos2x+cos3x+cos4x 25)[ĐH Thuỷ Sản Nha Trang_97]

x x

x

2 sin 2

sin 2 cos 4 − 4 = 26)[HVQY_97]

0 1 2 sin ) 3 (sin 2 sin ) 3 (sinx+ 4 xx+ 2 x+ = 27)[ĐHQGHN_B97]

x x

x

cos

1 sin

1 ) 4 sin(

2

28)[ĐHKTHN_98]

x x

2 2

sin

1 cos

29)[ĐHTL_00] 5sin3x = 3sin5x

Trang 4

30)[ĐHM_97] 1

sin 5

5 sin

=

x x

31)[ĐHNNHN_00] 2cos2x – 8cosx + 7 = 1/cosx

Chuyên Đề 13: sd CT biến đổi tích thành

tổng

1) cos11x.cos3x = cos17x.cos9x

2) sin18x.cos13x = sin9x.cos4x

3) sin2x + sin2xsin4x + sin3xsin9x + sin4xsin16x = 1

4) (sinx + 3cosx)sin3x = 2

6 sin(

) 6 sin(

cos

6)[ĐHBK TPHCM_91]

sin3x -

3

2

sin2x = 2sinxcos2x 7) 8sinx =

x

x sin

1 cos

3 + 8)[ĐHGT_96] cos3xtg5x = sin7x

9)

) 3

2 cos(

cos 3 4 ) 3 sin(

).

3

sin(

.

sin

) 2

3

4 cos(x+ π = 10)[ĐHTHHN_92] 2sin3x(1 – 4sin2x) = 1

11)[ĐHDHN_00]

cos2x + cos4x + cos6x = cosxcos2xcos3x + 2

12)[ĐHYHN_97]

2

1 2

3 sin 2 sin sin 2

3 cos 2 cos

13)[HVQHQT_96]

2 sin cos 5 2

5

x

x = 14)[ĐHTL TPHCM_00]

tgx – 3cotgx = 4(sinx + 3 cosx)

15)[ĐHKT_00]

x x

x ) 1 8 sin 2 cos 2

4 3

sin(

Chuyên Đề 14: PTLG phối hợp(tg,sin),

(cotg,cos)

1) 2(tgx – sinx) + 3(cotgx – cosx) + 5 = 0

2)[ĐHGT_97] 3(cotgx – cosx) – 5(tgx – sinx) = 2

3)[ĐHDL Hồng Đức Thanh Hoá_99]

4sin2x + 3tg2x = 1

4)[ĐHM_99] 1 + tgx = 2 2 sinx

5)[ĐHQG_96] 1 + 3sin2x = 2tgx

6)[ĐHQGHN_95] tg2x(1 – sin3x) + cos3x – 1 = 0

7)[ĐHQG_A00] 2sinx + cotgx = 2sin2x + 1

8)ĐH Nông Lâm TPHCM_97]

x

x x

tg

sin 1

cos 1 2

+

= 9)[ĐH Thuỷ Sản Nha Trang_97]

x

x x

g

cos 1

sin 1 cot 2

+

+

= 10) tg2x = 11−−cossinx x

11)[CĐHQ_96] tg2x =

x

x

3

3

sin 1

cos 1

12) tg2x =

x

x

3 3

sin 1

cos 1

+ +

tgx

tgx

2 sin 1 1

1

+

= +

14)[ĐHSP Vinh_98] 1 + cotg2x =

x

x

2 sin

2 cos 1

2

15)[Đ56II] Tìm tổng các nghiệm x ∈ [ 1 ; 70 ] của PT cos2x – tg2x =

x

x x

2

3 2

cos

1 cos

16)[Đ140II] Tìm tổng các nghiệm x ∈ [ 2 ; 40 ] của PT 2cos2x + cotg2x =

x

x

2

3

sin

1 sin +

Chuyên Đề 15: PTLG dạng phân thức

1)[Đ30II]

x x

2 2

sin

1 cos

1 sin cos

2

cos sin 2 cos

+ +

x x

x x x

9 cos

5 cot

x

x g x

4)[Đ119II]

x

x x

x

4 cos 1

4 sin 2

sin 2

4 cos 1

+

=

3 cos 2 cos cos

3 sin 2 sin

+ +

+ +

x x

x

x x

x

2 sin ) cos (sin

2 cos 4 cos sin

2 2

=

− +

x x

x

x x

x

1 cos sin 2

2 sin sin 2 3 sin 2

=

+

− +

x x

x x

x

8)[Đ2II]

3

10 sin

1 sin

cos

1

x

x x x

1 sin 4 cos 3

6 sin

4 cos

+ +

+ +

x x

x x

10)[ĐHSP Vinh_98] 1 + cotg2x =

x

x

2 sin

2 cos 1

2

11) tg3x.cotgx = -1

Ngày đăng: 05/07/2013, 01:25

TỪ KHÓA LIÊN QUAN

w