1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bài tập TRẮC NGHIỆM PHÂN TÍCH CHI TIẾT quan hệ vuông góc

12 482 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 749,93 KB

Nội dung

www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ TRẮC NGHIỆM QUAN HỆ VUÔNG GÓC Môn : Toán 11 c0 Cho ba vectơ a, b, c không đồng phẳng Xét vectơ x  2a  b; y  4a  2b; z  3b  2c Chọn khẳng định đúng? B Hai vectơ x; y phương C Hai vectơ x; z phương D Ba vectơ x; y; z đồng phẳng iD A Hai vectơ y; z phương Hướng dẫn giải Th Chọn B uO n + Nhận thấy: y  2 x nên hai vectơ x; y phương Trong mặt phẳng cho tứ giác ABCD có hai đường chéo cắt O Trong khẳng định sau, khẳng định sai? ie Câu 2: Ho Câu 1: Biên soạn : Cộng đồng học sinh lớp 11 iL A Nếu ABCD hình bình hành OA  OB  OC  OD  Ta B Nếu ABCD hình thang OA  OB  2OC  2OD  C Nếu OA  OB  OC  OD  ABCD hình bình hành up s/ D Nếu OA  OB  2OC  2OD  ABCD hình thang Hướng dẫn giải om /g Cho hình hộp ABCD A1B1C1D1 Chọn khẳng định đúng? B CD1 , AD, A1B1 đồng phẳng C CD1 , AD, A1C đồng phẳng D AB, AD, C1 A đồng phẳng Hướng dẫn giải ww w fa ce bo Chọn C .c A BD, BD1 , BC1 đồng phẳng ok Câu 3: ro Chọn B Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ D C A D1 Ho c0 B B1 uO n A1 Th iD C1  M , N , P, Q trung điểm AB, AA1 , DD1 , CD Cho ba vectơ a, b, c không đồng phẳng Xét vectơ x  2a  b; y  a  b  c; z  3b  2c Ta Câu 4: iL ie Ta có CD1 / /(MNPQ); AD / /  MNPQ  ; AC / /( MNPQ)  CD1 , AD, A1C đồng phẳng Chọn khẳng định đúng? Chọn A  D Ba vectơ x; y; z đôi phương Hướng dẫn giải x  z nên ba vectơ x; y; z đồng phẳng Cho hình hộp ABCD A1B1C1D1 Tìm giá trị k thích hợp điền vào đẳng thức vectơ: c Câu 5:  B Hai vectơ x; a phương om /g Ta có: y  up ro C Hai vectơ x; b phương s/ A Ba vectơ x; y; z đồng phẳng B k  C k  Hướng dẫn giải D k  ce bo A k  ok AB  B1C1  DD1  k AC1 ww w fa Chọn B Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ D C A D1 Ho c0 B B1 uO n A1 Th iD C1 Cho hình hộp ABCD ABCD có tâm O Gọi I tâm hình bình hành ABCD Đặt AC  u , iL Câu 6: ie + Ta có: AB  B1C1  DD1  AB  BC  CC1  AC1 Nên k  Ta CA  v , BD  x , DB  y Trong đẳng thức sau, đẳng thức đúng? up ro om /g Chọn A B 2OI   (u  v  x  y ) D 2OI  (u  v  x  y ) Hướng dẫn giải s/ A 2OI   (u  v  x  y ) C 2OI  (u  v  x  y ) K D J A B fa ce bo ok c C w O ww D’ A’ + Gọi J , K trung điểm Hocmai – Ngôi trường chung học trò Việt C’ B’ AB, CD Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ + Ta có: 2OI  OJ  OK  Câu 7:   1 OA  OB  OC  OD   (u  v  x  y) Cho hình lăng trụ tam giác ABC A1B1C1 Đặt AA1  a, AB  b, AC  c, BC  d , đẳng thức sau, đẳng thức đúng? B a  b  c  d C b  c  d  Hướng dẫn giải D a  b  c c0 A a  b  c  d  A Ho Chọn C iD C iL ie uO n Th B C1 up s/ Ta A1 ro B1 Cho hình hộp ABCD.EFGH Gọi I tâm hình bình hành ABEF K tâm hình bình hành BCGF Trong khẳng định sau, khẳng định đúng? c Câu 8: om /g + Dễ thấy: AB  BC  CA   b  d  c  B BD, IK , GF đồng phẳng C BD, EK , GF đồng phẳng D BD, IK , GC đồng phẳng bo ok A BD, AK , GF đồng phẳng Hướng dẫn giải ww w fa ce Chọn B Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ D C A c0 B Ho K H I F uO n E Th iD G Trong khẳng định sau, khẳng định sai? s/ Câu 9: Ta iL ie  IK //( ABCD)  + GF //( ABCD)  IK , GF , BD đồng phẳng BD  (ABCD)  + Các véctơ câu A, C , D có giá song song với mặt phẳng up A Nếu giá ba vectơ a, b, c cắt đôi ba vectơ đồng phẳng ro B Nếu ba vectơ a, b, c có vectơ ba vectơ đồng phẳng om /g C Nếu giá ba vectơ a, b, c song song với mặt phẳng ba vectơ đồng phẳng .c D Nếu ba vectơ a, b, c có hai vectơ phương ba vectơ đồng phẳng Hướng dẫn giải bo ok Chọn A + Nắm vững khái niệm ba véctơ đồng phẳng ce Câu 10: Cho hình hộp ABCD A1B1C1D1 Trong khẳng định sau, khẳng định sai? fa A AC1  AC  AC B AC1  CA1  2C1C  D CA1  AC  CC1 ww w  AA1 C AC1  AC Hướng dẫn giải Chọn A + Gọi O tâm hình hộp ABCD A1B1C1D1 + Vận dụng công thức trung điểm để kiểm tra Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ D C A Ho c0 B B1 Câu 11: Hãy chọn mệnh đề mệnh đề sau đây: ie A1 uO n Th C1 iD D1 O iL A Tứ giác ABCD hình bình hành AB  BC  CD  DA  O Ta B Tứ giác ABCD hình bình hành AB  CD s/ C Cho hình chóp S ABCD Nếu có SB  SD  SA  SC tứ giác ABCD hình bình hành D Tứ giác ABCD hình bình hành AB  AC  AD up Hướng dẫn giải om /g ro Chọn C B c A D ok C bo SB  SD  SA  SC  SA  AB  SA  AD  SA  SA  AC ce  AB  AD  AC  ABCD hình bình hành ww w fa Câu 12: Cho hình lập phương ABCD.EFGH có cạnh a Ta có AB.EG bằng? A a 2 B a C a D a2 Hướng dẫn giải Chọn B Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ B A C D  Ho G H  c0 F E iD AB.EG  AB EF  EH  AB.EF  AB.EH  AB  AB AD ( EH  AD)  a (Vì AB  AD ) Th Câu 13: Trong không gian cho điểm O bốn điểm A, B, C, D không thẳng hàng Điều kiện cần đủ để A, B, C, D tạo thành hình bình hành là: 1 B OA  OC  OB  OD 2 uO n 1 A OA  OB  OC  OD 2 D OA  OB  OC  OD  Hướng dẫn giải iL ie C OA  OC  OB  OD Ta B C ro D up s/ A Chọn C om /g OA  OC  OB  OD  OA  OA  AC  OA  AB  OA  BC  AC  AB  BC ok c Câu 14: Cho hình hộp ABCD ABCD Gọi I K tâm hình bình hành ABB’ A’ BCCB Khẳng định sau sai ? 1 A Bốn điểm I , K , C , A đồng phẳng B IK  AC  AC  2 bo C Ba vectơ BD; IK ; BC  không đồng phẳng D BD  2IK  2BC ce Hướng dẫn giải ww w fa Chọn C A Đúng IK , AC thuộc  BAC        1 1 a  b  a  c  b  c  AC  AC  2 2 1 C Sai IK  IB  B ' K  a  b  a  c  b  c 2  BD  2IK  b  c  b  c  2c  2BC  ba véctơ đồng phẳng B Đúng IK  IB  B ' K        D Đúng theo câu C  BD  2IK  b  c  b  c  2c  2BC  2BC Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ Câu 15: Cho tứ diện ABCD Trên cạnh AD BC lấy M , N cho AM  3MD , BN  3NC Gọi P, Q trung điểm AD BC Trong khẳng định sau, khẳng A Các vectơ BD, AC, MN đồng phẳng B Các vectơ MN , DC, PQ đồng phẳng C Các vectơ AB, DC, PQ đồng phẳng D Các vectơ AB, DC, MN đồng phẳng c0 Chọn A định sai? Ho A P Th B iD M uO n D Q N iL ie C up s/ Ta    MN  MA  AC  CN  MN  MA  AC  CN A Sai      MN  MD  DB  BN 3MN  3MD  3DB  3BN  4MN  AC  3BD  BC  BD, AC, MN không đồng phẳng  MN  MP  PQ  QN   2MN  PQ  DC  MN  PQ  DC B Đúng    MN  MD  DC  CN om /g ro    MN , DC, PQ : đồng phẳng .c C Đúng Bằng cách biểu diễn PQ tương tự ta có PQ   1 AB  DC 4 bo ok D Đúng Biểu diễn giống đáp án A ta có MN   AB  DC ce Câu 16: Cho tứ diện ABCD có cạnh a Hãy mệnh đề sai mệnh đề sau đây: ww w fa A AD  CB  BC  DA  C AC AD  AC.CD B AB.BC   a2 D AB  CD hay AB.CD  Hướng dẫn giải Chọn C Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ A Ho c0 C B D iD Vì ABCD tứ diện nên tam giác ABC, BCD, CDA, ABD tam giác A Đúng AD  CB  BC  DA  DA  AD  BC  CB  Th a2 a2 ; AC.CD  CA.CD  a.a.cos 600   2 ie C Sai AC AD  a.a.cos 600  a uO n B Đúng AB.BC   BA.BC  a.a.cos 600  iL D Đúng AB  CD  AB.CD  Ta Câu 17: Cho tứ diện ABCD Đặt AB  a, AC  b, AD  c, gọi G trọng tâm tam giác BCD Trong s/ đẳng thức sau, đẳng thức đúng?  ro  abc om /g C AG  B AG     A ce bo ok c Chọn B  abc D AG  a  b  c Hướng dẫn giải up A AG  a  b  c B fa D G ww w M C Gọi M trung điểm BC   2 AG  AB  BG  a  BM  a  BC  BD 3 1  a  AC  AB  AD  AB  a  2a  b  c  a  b  c 3  Hocmai – Ngôi trường chung học trò Việt      Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ Câu 18: Cho hình hộp ABCD A1B1C1D1 Gọi M trung điểm AD Chọn đẳng thức A B1M  B1B  B1 A1  B1C1 B C1M  C1C  C1D1  C1B1 1 C C1M  C1C  C1D1  C1B1 2 D BB1  B1 A1  B1C1  2B1D c0 Hướng dẫn giải Ho Chọn B B A iD M C A1 uO n Th D iL ie B1 D1 Ta C1     up ro       c  om /g  s/ 1 BA  BD  BB1  B1 A1  B1D1 2 1  BB1  B1 A1  B1 A1  B1C1  BB1  B1 A1  B1C1 2 1 B Đúng C1M  C1C  CM  C1C  CA  CD  C1C  C1 A1  C1D1 2 1  C1C  C1B1  C1D1  C1D1  C1C  C1D1  C1B1 2 A Sai B1M  B1B  BM  BB1  C Sai theo câu B suy bo ok D Đúng BB1  B1 A1  B1C1  BA1  BC  BD1 ce Câu 19: Cho tứ diện ABCD điểm G thỏa mãn GA  GB  GC  GD  ( G trọng tâm tứ diện) Gọi GO giao điểm GA mp ( BCD) Trong khẳng định sau, khẳng định ww w fa đúng? A GA  2G0G B GA  4G0G C GA  3G0G D GA  2G0G Hướng dẫn giải Chọn C Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | 10 - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/ c0 A G B Ho D G0 iD M Th C uO n Theo đề: GO giao điểm GA mp  BCD   G0 trọng tâm tam giác BCD  G0 A  G0 B  G0C   ie Ta có: GA  GB  GC  GD     Ta iL  GA   GB  GC  GD   3GG0  G0 A  G0 B  G0C  3GG0  3G0G Câu 20: Cho tứ diện ABCD Gọi M , N trung điểm AD, BC Trong khẳng định sau, s/ khẳng định sai? B Các vectơ AB, AC, MN không đồng phẳng C Các vectơ AN , CM , MN đồng phẳng D Các vectơ BD, AC, MN đồng phẳng Chọn C   AB  DC c A Đúng MN  Hướng dẫn giải om /g ro up A Các vectơ AB, DC, MN đồng phẳng bo ok A B w fa ce M D ww N C B Đúng từ N ta dựng véctơ véctơ MN MN không nằm mặt phẳng  ABC  C Sai Tương tự đáp án B AN không nằm mặt phẳng  CMN  Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | 11 - www.facebook.com/groups/TaiLieuOnThiDaiHoc01 Hocmai.vn – Website học trực tuyến số Việt Nam Cộng đồng học sinh lớp 11 : https://www.facebook.com/congdonghocsinhlop11/   AC  BD ww w fa ce bo ok c om /g ro up s/ Ta iL ie uO n Th iD Ho c0 D Đúng MN  Hocmai – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 69 33 www.facebook.com/groups/TaiLieuOnThiDaiHoc01 - Trang | 12 -

Ngày đăng: 04/05/2017, 06:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w