cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3cơ học kết cấu phần 3
TRƯỜNG ĐẠI HỌC THỦY LỢI CƠ HỌC KẾT CẤU NHÀ XUẤT BẢN XÂY DỰNG LÝ TRƯỜNG THÀNH (chủ biên) LỀU MỘC LAN - HOÀNG ĐÌNH TRÍ CƠ HỌC KẾT CẤU NHÀ XUẤT BẢN XÂY DỰNG LÝ TRƯỜNG THÀNH (chủ biên) LỀU MỘC LAN - HOÀNG ĐÌNH TRÍ CƠ HỌC KẾT CẤU NHÀ XUẤT BẢN XÂY DỰNG HÀ NỘI - 2006 LỜI NÓI ĐẦU Giáo trình Cơ học kết cấu lần biên soạn theo đề cương “Chương trình giảng dạy môn Cơ học kết cấu” tiểu ban môn học Bộ Giáo dục Đào tạo soạn thảo So với lần xuất trước, giáo trình lần viết ngắn gọn, rõ ràng có bổ sung, sửa chữa, điều chỉnh số phần để thuận tiện cho việc học tập sinh viên Sách dùng làm tài liệu học tập cho sinh viên ngành Trường Đại học Thủy lợi, làm tài liệu tham khảo cho ngành trường Đại học khác, đồng thời làm tài liệu tham khảo cho kỹ sư, nghiên cứu sinh cán kỹ thuật có liên quan đến tính toán kết cấu công trình Phân công biên soạn sau: TS Lý Trường Thành viết chương mở đầu, Chương Chương chủ biên; Ths Lều Mộc Lan viết Chương 1, 4, 5; PGS.TS Hoàng Đình Trí viết Chương 6, 7, 8; Ths Phạm Viết Ngọc giúp đỡ chế sửa chữa thảo sách Tuy có nhiều cố gắng biên soạn, song khó tránh khỏi thiếu sót Chúng mong nhận ý kiến đóng góp bạn đồng nghiệp, sinh viên bạn đọc để hoàn thiện lần xuất sau CÁC TÁC GIẢ Hệ phương trình tắc dạng số: 97 42 46 X1 + X2 P=0 27 42 40 0=0 X1 + X2 27 0,2988P 0,246P Từ tìm được: X1 = 1,4984P, 0,5106P X2 = -0,5244P 0,5244P 0,5106P Mp 1,6483P Biểu đồ mô men uốn cuối vẽ hình 8.15 Hình 8.15 8.5.3 Tính hệ không gian siêu tĩnh theo phương pháp chuyển vị Tương tự hệ phẳng, ẩn số phương pháp chuyển vị chuyển vị góc xoay chuyển vị thẳng nút khung Mỗi nút khung không gian có sáu chuyển vị: Ba chuyển vị góc xoay quanh ba trục tọa độ ba chuyển vị thẳng hướng theo ba trục Với giả thiết sử dụng trước đây, ta có số ẩn chuyển vị góc ba lần số nút cứng hệ (vì nút cứng có ba ẩn góc xoay); số ẩn chuyển vị thẳng số chuyển vị thẳng độc lập có hệ Cũng giống hệ phẳng, để xác định số ẩn chuyển vị thẳng ta đưa hệ cho hệ khớp cách thay tất nút cứng liên kết ngàm khớp xét tính biến hình hệ khớp Số ẩn chuyển vị thẳng số liên kết chống thêm vào vừa đủ để cố định nút hệ khớp theo phương Hệ cho hình 8.16a có 12 ẩn chuyển vị góc ẩn chuyển vị thẳng b) a) Hình 8.16 Hệ hệ các nút hoàn toàn cố định, lập cách đưa liên kết ngàm chống xoay (theo ba trục) vào nút cứng đặt thêm liên kết chống ngăn chuyển vị thẳng nút Hệ khung cho vẽ hình 8.16b Trên hình 8.17 vẽ số biểu đồ tải trọng, ẩn chuyển vị đơn vị tác dụng hệ Khi ẩn chuyển vị góc xoay tác dụng nối với nút biến dạng: Các nằm mặt phẳng góc xoay bị uốn, khác vuông góc với mặt phẳng bị xoắn Mô men xoắn góc xoay đơn vị bằng: GJ xoan GJ xoan EJ Mz = i= = i; EJ l l 237 Hệ phương trình tắc có dạng trước đây: ri1Z1 + ri2Z2 + + rinZn + RiP = (i = 1, 2, n) Ý nghĩa phương trình, hệ số số hạng tự hệ phẳng Giải hệ phương trình tắc tìm ẩn chuyển vị mô men cuối xác định theo biểu thức cộng tác dụng: MP = M1 Z1 + M Z2 + + M n Zn + M oP Pl1 a) Pl1 P i1 i2 h z =1 Mz l1 4i2 l Hình 8.17 238 2i1 b) 4i1 2i2