1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ ÔN THI THPT QG MÔN TOÁN CÓ ĐÁP ÁN

23 208 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 2,29 MB

Nội dung

ĐỀ THI MINH HỌA KỲ THI THPT QUỐC GIA NĂM 2017 Mơn: TỐN Thời gian làm bài: 90 phút Đề số 041 Câu Đồ thị hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án A, B, C, D Hỏi hàm số hàm số ? x +1 2x +1 A y = x − B y = x − C y = x − D y = − x x+2 x+2 Câu Tìm tất đường tiệm cận đứng đồ thị hàm số y = A y = −2; y = −3 C x = 2; x = − x2 ( x − 2)( x − 3) B x = −2; x = −3 D y = 2; y = Câu Hàm số y = x − x nghịch biến khoảng ? A ( −1;0 ) B ( −1;0 ) ;(1; +∞) C ( −∞; −1) ; ( 0;1) D ( −1;1) Câu Cho hàm số y = x3 − x − x − có hai điểm cực trị x1 , x2 Hỏi tổng x1 + x2 ? A x1 + x2 = −5 C x1 + x2 = −8 B x1 + x2 = D x1 + x2 = Câu Tìm giá trị cực tiểu yCT hàm số y = − x + x + A yCT = B yCT = −1 C yCT = D yCT = Câu Tìm giá trị lớn nhất hàm số y = x3 − x − x đoạn [1;3] y = −4 A max [1;3] y = −8 B max [1;3] y = −6 C max [1;3] y= D max [1;3] 176 27 Câu Đồ thị hình bên đồ thị hàm số y = − x + x Dựa vào đồ thị bên tìm tấ giá trị thực tham số m cho phương trình x − x + m − = có hai nghiệm A m < 2, m = C m < B m < D m < 0, m = Câu Tìm tất giá trị thực tham số m cho hàm số y = x3 − mx − x + m + có cực trị x1 , x2 thỏa mãn x12 + x22 + x1 x2 = A m = B m = ±3 C m = ±1 D m = Câu Tìm tất giá trị thực tham số m cho tiệm cận ngang đồ thị hàm số y = mx + qua điểm M (10; −3) x +1 A m = B m = − C m = D m = −3 Câu 10 Cho x, y hai số không âm thỏa mãn x + y = Tìm giá trị nhỏ biểu thức P = x3 + x + y − x + A P = B P = 17 C P = 115 D P = Câu 11 Với giá trị tham số m phương trình x + − x = m có nghiệm A −2 < m < B −2 < m < 2 C −2 ≤ m ≤ 2 D −2 ≤ m ≤ Câu 12 Phương trình 52 x−1 = có nghiệm A x = B x = C x = D x = Câu 13 Đạo hàm hàm số y = ln ( x + x + 1) hàm số sau đây? A y′ = 2x + x + x +1 B y′ = x + x +1 2 − ( x + 1) x2 + x + C y′ = D y′ = x −1 Câu 14 Nghiệm bất phương trình 3x−4 >  ÷ 9 A x > −1 x + x +1 7 C x > B x < D x < Câu 15 Tìm tập xác định hàm số y = log ( x − 3x − 4) A (−∞; −1) ∪ (4; +∞) B [ − 1; 4] C (−∞; −1] ∪ [4; +∞) D (−1; 4) Câu 16 Cho a > , a ≠ , x, y số dương Tìm mệnh đề đúng: A log a ( x + y ) = log a x + log a y B log a ( x y ) = log a x + log a y C log a ( x y ) = log a x.log a y D log a ( x + y ) = log a x.log a y Câu 17 Đạo hàm hàm số: A 2a( x2 + x)a- C a( x2 + x)a- (2 x + 1) y = (x + x)a là: B a( x2 + x)a +1 (2 x + 1) D a( x + x)a- Câu 18 Cho log = a; log3 = b Khi log tính theo a b là: A a+b B ab a+b C a + b D a + b Câu 19 Đạo hàm hàm số y = x3 + là: A y ' = C y ' = 3x 5 ( x3 + 8) 3x B y ' = D y ' = 5 x3 + 3x3 x3 + 3x 5 ( x3 + 8) Câu 20 Giả sử ta có hệ thức a2 + b2 = 7ab (a, b > 0) Hệ thức sau đúng? A log ( a + b ) = log a + log b C log a+b = ( log a + log b ) a+b = log a + log b a+b = log a + log b D log B log Câu 21 Ông Minh gửi tiết kiệm vào ngân hàng số tiền tỷ đồng, với lãi suất 0, 7% tháng, theo phương thức lãi đơn Hỏi sau năm tháng ông Minh nhận số tiền gốc lãi tính theo cơng thức nào? A.109 + 12.108.7% B.12.108.7% C 109 (1 + 7.10−1%)12 D.12.109 (1 + 7.10−1%) Câu 22 Hàm số A nguyên hàm hàm số sau? B Câu 23 Tích phân A B C D C D C D B Câu 25 Tích phân A D Câu 24 Tích phân A C B Câu 26.Tính diện tích hình phẳng giới hạn đường A B C Câu 27 Tính diện tích hình phẳng giới hạn đồ thị hàm số độ A B D trục tọa C D Câu 28 Tính thể tích vật thể trịn xoay hình phẳng giới hạn đường quay quanh trục Ox A B C D Câu 29 Cho số phức z = −6 − 3i Tìm phần thực phần ảo số phức z A Phần thực −6 phần ảo −3i B.Phần thực −6 phần ảo C Phần thực phần ảo D Phần thực phần ảo 3i Câu 30 Cho hai số phức z1 = + 2i z2 = − i Tính mơđun số phức z1 − z2 A z1 − z2 = B z1 − z2 = C z1 − z2 = D z1 − z2 = Câu 31 Cho số phức z = a + bi; a,b ∈ R Để điểm biểu diễn z nằm dãi (-2;2) (hình 1), điều kiện a b là: a ≥ b ≥ A   a ≤ −2  b ≤ -2 C −2 < a < b ∈ R B  y D a, b ∈ (-2; 2) x O -2 (H×nh 1) Câu 32 Cho số phức z = + 3i Tìm số phức w = 2iz - z A w = −8 + 7i B w = −8 + i C w = + 7i D w = −8 − 7i Câu 33 Kí hiệu z1 , z2 , z3và z bốn nghiệm phức phương trình z + z − 20 = Tính tổng T = z1 + z2 + z3 + z4 A T = B T = + C T = + D T = + Câu 34 Cho số phức z thỏa mãn z = Biết tập hợp điểm biểu diễn số phức w = (2 - i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 15 C r = 16 D r = Câu 35 Cho lăng trụ đứng ABC.A/B/C/ có đáy ABC tam giác vuông B, AB=3a, BC= a , mặt bên (A/BC) hợp với mặt đáy (ABC) góc 60 Tính thể tích khối lăng trụ a3 A a3 B a3 C a3 D Câu 36 Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a , SA ^ ( ABCD ) SA = a Thể tích khối chóp S.ABCD a3 A V = 2a 3 B V = a3 C V = D V = a3 Câu 37 Cho hình chóp S.ABC có đáy ABC tam giác vng B , AB = a , BC = a , SA vng góc với mặt phẳng đáy Biết góc SC ( ABC) 600 Tính thể tích khối chóp S.ABC A 3a B a 3 C a a3 D Câu 38 Hình chóp S.ABC có đáy ABC tam giác vuông B, BA = 3a, BC=4a · ( SBC ) ^ ( ABC ) Biết SB = 2a 3,SBC = 300 Tính khoảng cách tư B đến mp( SAC ) A 6a 7 B 3a 7 C 5a 7 D 4a 7 Câu 39 Gọi l , h, R độ dài đường sinh, chiều cao bán kính đáy khối nón (N) Thể tích V khối nón (N) là: B V = π R h A V = π R h C V = π R 2l D V = π R 2l Câu 40 Cho hình trụ có bán kính đáy cm, đường cao 4cm, diện tích xung quanh hình trụ là: A 24π (cm ) B 22π (cm ) C 26π (cm ) D 20π (cm ) Câu 41 Một hình trụ ngoại tiếp hình lăng trụ tam giác với tất cạnh a có diện tích xung quanh ? 2pa pa 4pa A B C D pa 3 3 Câu 42 Cho hình chóp tứ giác S.ABCD có cạnh đáy a cạnh bên 2a Thể tích khối cầu ngoại tiếp hình chóp S.ABCD là: A 16a 3π 14 49 B 2a 3π 14 C 64a 3π 14 147 D 64a 3π 14 49 Câu 43 Trong không gian với rhệ trục tọa độ Oxyz, phương trình mặt phẳng qua A(1;4;-3) có vectơ pháp tuyến n = (2; −4;3) là: A 2x-4y+3z-23 = B 2x+4y+3z-10 = C 2x-4y+3z+23 = D 2x-4y+3z-10 = Câu 44 Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu tâm I(2;1;-2) bán kính R=2 là: 2 A x + y + z − x − y + z + 10 = B ( x + 1) + ( y + ) + ( z − 3) = 22 C ( x − ) + ( y − 1) + ( z + ) = 32 2 D x + y + z − x − y + z + = Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD ,biết (BCD) có phương trình là: − x + y − z − = , điểm A (6;1;1) Đường cao AH tứ diện ABCD có độ dài là: A AH=2 B AH=1 C.AH= 10 D AH=5 Câu 46 Trong không gian Oxyz cho (P): x − y + z − = , điểm A (1; −1;0) Tọa độ hình chiếu vng góc A lên (P) là: A H (3; −3; 4) B H (1; 2; −2) C H (−3; 2;0) D.H ( ; − ; − ) Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(0;2;1) vng góc với đường thẳng d : A x – y + z – = C x + 2y – 3z +16 =0 x −1 y +1 z = = −1 B 6x + 3y + 2z – = D x – y + 2z =0 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I (2; −1;1) mp(P): 2x – 2y + z +2 = 0.Biết mp(P) cắt mặt cầu (S) theo đường trịn có bán kính 1.Viết phương trình mặt cầu (S) 2 2 2 A ( x − ) + ( y + 1) + ( z − 1) = 10 B ( x − ) + ( y + 1) + ( z − 1) = C ( x + ) + ( y − 1) + ( z − 1) = 2 D ( x − ) + ( y − 1) + ( z − 1) = 10 2 Câu 49.Trong không gian Oxyz cho A(1 ; -5 ; 2) ; B(0 ; -2 ; 1) ; C(1 ; -1 ; 4) ; D (5; ; 2).Viết phương trình đường thẳng ∆ , biết ∆ cắt đường thẳng AB , ∆ cắt đường thẳng CD song song với đường thẳng d:  x = + 4t  A  y = + t  z = −5 + t   x=t  B  y = −2 − 3t  z = 1+ t  x −1 y z + = = x = 1+ t  C  y = −1 − 2t  z = − 3t   x = −1 + 3t  D  y = + 2t  z=t  Câu 50 Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x + y + 2z + 1= mặt cầu (S) : x2 + y2 + z2 – 2x +4y –6z +8 = Viết phương trình mặt phẳng (Q) song song với mp(P) tiếp xúc với mặt cầu (S) A 2x + y + 2z – 11 = B x + y + 2z – 11 = C.x + y + z – 11 = D x + y + 2z – = ĐÁP ÁN 1C 11C 21A 31C 41A 2C 12B 22B 32A 42C 3B 13A 23C 33D 43C 4D 14C 24A 34B 44D 5D 15A 25D 35C 45C 6C 16B 26C 36A 46D 7A 17B 27B 37C 47D 8C 18B 28A 38A 48B 9D 19D 29B 39B 49D 10B 20B 30C 40A 50B Câu Đồ thị hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án A, B, C, D Hỏi hàm số hàm số ? x +1 A y = x − 2x +1 B y = x − x+2 GIẢI x+2 C y = x − D y = − x Nhìn đồ thị , x = vào A, B, C, D có C thỏa mãn: x = ⇒ y = -2 Mặt khác: y = −3 x+2 < ,TCĐ x=1 TCN y=1 ⇒ y/ = ( x − 1) x −1 Do chọn C Câu Tìm tất đường tiệm cận đứng đồ thị hàm số y = A y = −2; y = −3 B x = −2; x = −3 GIẢI C x = 2; x = − x2 ( x − 2)( x − 3) D y = 2; y = x=2  Cho ( x − 2)( x − 3) =0 ⇔  , với giá trị tử khác nên y → ∞ x = Nên đường thẳng x=2, x=3 đường TCĐ.Chọn C Câu Hàm số y = x − x nghịch biến khoảng ? A ( −1;0 ) B ( −1;0 ) ;(1; +∞) C ( −∞; −1) ; ( 0;1) GIẢI D ( −1;1) x = y / = x − x3 = ⇔  ,  x = ±1 Bảng xét dấu −∞ x y/ + -1 - 0 + +∞ - Qua BXD chọn B Câu Cho hàm số y = x3 − x − x − có hai điểm cực trị x1 , x2 Hỏi tổng x1 + x2 ? A x1 + x2 = −5 B x1 + x2 = C x1 + x2 = −8 D x1 + x2 = GIẢI x = − y / = x2 − 8x − = ⇔  ⇒ x1 + x2 = Chọn D  x2 = + Câu Tìm giá trị cực tiểu yCT hàm số y = − x + x + A yCT = B yCT = −1 C yCT = GIẢI D yCT =  x = ⇒ yCT = y / = − x3 + x = ⇔  a= -1 0, ∀m nên ln có nghiệm phân biệt x12 + x22 + x1 x2 = ⇔ ( x1 + x2 ) + x1 x2 = ⇔ 4m + 2(−1) = ⇔ m = ±1 Chọn C Câu Tìm tất giá trị thực tham số m cho tiệm cận ngang đồ thị hàm mx + qua điểm M (10; −3) x +1 A m = B m = − số y = C m = D m = −3 GIẢI ĐTH S có TCN y = m qua điểm M (10; −3) m = -3.Chọn D Câu 10 Cho x, y hai số không âm thỏa mãn x + y = Tìm giá trị nhỏ biểu thức P = x3 + x + y − x + A P = B P = C P = 17 D P = 115 GIẢI Ta có : x + y = ⇒ y = − x ≥ 0, ⇒ ≤ x ≤ 1 P? P = x + x + (2 − x) − x + ⇒ P = x + x − x + Tìm [0;2] 3 x =1 17 P/ = x2 + 4x − = ⇔  , P(1) = 73 , P(0) = 5, P(2) = Chọn B P = 3  x = −5( L) Câu 11 Với giá trị tham số m phương trình x + − x = m có nghiệm A −2 < m < B −2 < m < 2 C −2 ≤ m ≤ 2 D −2 ≤ m ≤ GIẢI Xét hàm số : f ( x) = x + − x , D = [ −2; 2] f / ( x) = − x − x2 = − x2 − x − x2 =0 10 x ≥ x ≥ − x2 = x ⇔  ⇔ ⇔x= 2 4 − x = x x = f / ( x) = ⇔ Bảng biến thên x / f (x) + f(x) − 2 2 để phương trình có nghiệm: −2 ≤ m ≤ 2 Chọn C Câu 12 Phương trình 52 x−1 = có nghiệm A x = 1 B x = x −1 = ⇔ x − = ⇔ x = C x = GIẢI D x = Chọn B 2 Câu 13 Đạo hàm hàm số y = ln ( x + x + 1) hàm số sau đây? 2x + x + x +1 − ( x + 1) C y′ = x + x +1 A y′ = x + x +1 −1 D y′ = x + x +1 B y′ = 2 GIẢI ( x + x + 1) / 2x +1 y′ = = Chọn A x + x +1 x + x +1 Câu 14 Nghiệm bất phương trình 3 A x > x−4 x−4 GIẢI x −1 C x > B x < 1 > ÷ 9 x −1 >  ÷ 9 ⇔ 3x − > 3−2(3 x −1) ⇔ x − > −6 x + ⇔ x > ⇔ x > D x < Chọn C Câu 15 Tìm tập xác định hàm số y = log ( x − 3x − 4) A (−∞; −1) ∪ (4; +∞) B [ − 1; 4] C (−∞; −1] ∪ [4; +∞) D (−1; 4) GIẢI  x < −1 Chọn A x > ĐK: x − 3x − > ⇔  Câu 16 Cho a > , a ≠ , x, y số dương Tìm mệnh đề đúng: 11 A log a ( x + y ) = log a x + log a y C log a ( x y ) = log a x.log a y B log a ( x y ) = log a x + log a y D log a ( x + y ) = log a x.log a y GIẢI Chọn B log a ( x y ) = log a x + log a y Câu 17 Đạo hàm hàm số: A 2a( x2 + x)a- C a( x2 + x)a- (2 x + 1) y = (x + x)a là: B a( x2 + x)a +1 (2 x + 1) D a( x + x)a- GIẢI y = (x + x)a Þ y / = a(x + x)a- (x + x)/ = a(x2 + x)a - (2 x + 1) Chọn B Câu 18 Cho log = a; log3 = b Khi log tính theo a b là: A a+b B ab a+b C a + b D a + b GIẢI 1 log = a ⇒ log = ; log3 = b ⇒ log = a b 1 ab 1 a+b log6 = = = Ta có: log = log + log = + = Do đó: log a + b a + b Chọn B a b ab ab Câu 19 Đạo hàm hàm số y = x3 + là: A y ' = C y ' = 3x 5 ( x3 + 8) B y ' = 3x D y ' = 5 x3 + 3x3 x3 + 3x 5 ( x3 + 8) GIẢI 4 − − 3 / y = x + = ( x + 8) ⇒ y = ( x + 8) ( x + 8) = ( x + 8) x 5 3 / y'= 3x 5 ( x3 + 8) Chọn D Câu 20 Giả sử ta có hệ thức a2 + b2 = 7ab (a, b > 0) Hệ thức sau đúng? A log ( a + b ) = log a + log b C log a+b = ( log a + log b ) a+b = log a + log b a+b = log a + log b D log B log GIẢI Dựa vào đáp án có vế phải có dạng: log a + log b = log ab 12 Do đó: a + b = 7ab ⇔ a + b + 2ab = 9ab ⇔ ( a + b) = ab a+b  a+b  a+b = log a + log b  ÷ = ab ⇔ log  ÷ = log ab ⇔ log Chọn B     Câu 21 Ông Minh gửi tiết kiệm vào ngân hàng số tiền tỷ đồng, với lãi suất 0, 7% tháng, theo phương thức lãi đơn Hỏi sau năm tháng ông Minh nhận số tiền gốc lãi tính theo cơng thức nào? A.109 + 12.108.7% C 109 (1 + 7.10−1%)12 B.12.108.7% D.12.109 (1 + 7.10−1%) GIẢI Đây toán lãi đơn nên tư giả thiết ta có số tiền lãi nar% (n: số tháng, a: tiền gốc, r lãi suất Do đó, số tiền gốc lãi 109 + 12.108.7% Chọn A Câu 22 Hàm số A nguyên hàm hàm số sau? B Ta có C GIẢI D Chọn B Câu 23 Tích phân A B C GIẢI Dùng MTBT ta Chọn C Câu 24 Tích phân A D B C GIẢI D Đặt Đổi cận Vậy, Câu 25 Tích phân Chọn A 13 A B C GIẢI Đặt D Chọn D Vậy, Chú ý: Dùng MTBT ta gần với nên chọn phương án D Câu 26.Tính diện tích hình phẳng giới hạn đường A B C GIẢI D x = x = 2 Xét phương trình x -x+3 = 2x + ⇔ x -3x+2=0 ⇔  Do đó, diện tích cần tìm Vậy, chọn C Câu 27 Tính diện tích hình phẳng giới hạn đồ thị hàm số độ A B trục tọa C GIẢI D Đồ thị hàm số cắt trục hồnh -1; Do đó, diện tích cần tìm • Cách 1: • Cách 2: Dùng MTBT ta gần với Vậy, chọn B Câu 28 Tính thể tích vật thể trịn xoay hình phẳng giới hạn đường quay quanh trục Ox A Phương trình B  C GIẢI  D  14 Thể tích vật thể trịn xoay Cách 1: Tính Đặt Đổi cận: Ta có Vậy, Cách 2: Dùng MTBT ta Vậy, chọn A Câu 29 Cho số phức z = −6 − 3i Tìm phần thực phần ảo số phức z A Phần thực −6 phần ảo −3i B.Phần thực −6 phần ảo C Phần thực phần ảo D Phần thực phần ảo 3i GIẢI Số phức liên hợp z Z = −6 + 3i , phần thực -6, phần ảo Chọn B Câu 30 Cho hai số phức z1 = + 2i z2 = − i Tính mơđun số phức z1 − z2 A z1 − z2 = B z1 − z2 = C z1 − z2 = D z1 − z2 = GIẢI ( −4 ) z1 − z2 = (1 + 2i ) − (5 − i ) = −4 + 3i ⇒ z1 − z2 = + 32 = Chọn C Câu 31 Cho số phức z = a + bi; a,b ∈ R Để điểm biểu diễn z nằm dãi (-2;2) (hình 1), điều kiện a b là: a ≥ b ≥ A   a ≤ −2  b ≤ -2 B  C −2 < a < b ∈ R y D a, b ∈ (-2; 2) x -2 O (H×nhGIẢI 1) Chọn C −2 < a < b ∈ R 15 Câu 32 Cho số phức z = + 3i Tìm số phức w = 2iz - z A w = −8 + 7i B w = −8 + i C w = + 7i GIẢI z = − 3i ⇒ w = 2i (2 + 3i ) − (2 − 3i) = −8 + 7i Chọn A D w = −8 − 7i Câu 33 Kí hiệu z1 , z2 , z3và z bốn nghiệm phức phương trình z + z − 20 = Tính tổng T = z1 + z2 + z3 + z4 A T = B T = + C T = + D T = + GIẢI  z = ±i 2 z + z − 20 = ⇔ ( z + ) ( z − ) = ⇔   z = ±2 ⇒ T = + + + = + Chọn D Câu 34 Cho số phức z thỏa mãn z = Biết tập hợp điểm biểu diễn số phức w = (2 - i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 15 C r = 16 D r = GIẢI x + y − +  ( y − 1) − x  i w = x + yi ( x, y ∈ R ) ⇒ z = w − i = x + ( y − 1)i = 2−i 2−i 2 2 x + ( y − 1)  2x + y −1   y − x −  z = = 45 ÷ + ÷ = 5     x + ( y − 1) = 225 ⇒ r = 15 Chọn B Câu 35 Cho lăng trụ đứng ABC.A/B/C/ có đáy ABC tam giác vng B, AB=3a, BC= a , mặt bên (A/BC) hợp với mặt đáy (ABC) góc 60 Tính thể tích khối lăng trụ A a3 B a3 C a3 D a3 6 GIẢI 16 1 3a 2 AB.BC = 3a.a = 2 / o Đường cao AA = AB tan 60 = 3a S ∆ABC = Vậy V = S∆ABC AA / = 3a 2 9a 3a = Chọn C 2 Câu 36 Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a , SA ^ ( ABCD ) SA = a Thể tích khối chóp S.ABCD a3 A V = 2a 3 B V = a3 C V = D V = a3 GIẢI 1 a3 V = B.h = a a = Chọn A 3 Câu 37 Cho hình chóp S.ABC có đáy ABC tam giác vuông B , AB = a , BC = a , SA vng góc với mặt phẳng đáy Biết góc SC ( ABC) 600 Tính thể tích khối chóp S.ABC A 3a B a C a a3 D GIẢI 17 1 a2 AB.BC = a.a = AC = 3a + a 2 , 1 a2 o SA = AC tan 60 = 2a Vậy V = B.h = 2a = a Chọn C a3 3 S ∆ABC = Câu 38 Hình chóp S.ABC có đáy ABC tam giác vng B, BA = 3a, BC=4a · ( SBC ) ^ ( ABC ) Biết SB = 2a 3,SBC = 300 Tính khoảng cách tư B đến mp( SAC ) A 6a 7 B 3a 7 C 5a 7 D 4a 7 GIẢI 1 SH = SB sin 30o = 2a = a ; S ∆ABC = AB.BC = 3a.4a = 6a 2 2 Suy VS ABC = 6a a = 2a 3 Càn tính: S∆SAC ? Do tam giác SBA vng B nên SA = (2a 3) + 9a = a 21 AC = 9a + 16a = 5a Dùng định lí cơsin SC = SB + BC − 2SB.BC.cos30o = 4a ⇒ SC = 2a a+b+c p( p − a )( p − b)( p − c) , với p = = 12a + 16a − 2.2a 3.4a Dùng công thức Hêrông: S = 18 a + a 21 ⇒ a + a 21 a 21 − 3a p − 5a = − 5a = 2 ⇒ p − 2a = a + a 21 − 2a = a 21 + 3a 2 ⇒ p − a 21 = a + a 21 − a 21 = a − a 21 2 S ∆ABC = 28a 12a = a 7.3 = a 21 4 3V 3.2a 6a 6a 6a = = Vậy h = S ABC = Chọn A S ∆SAC a 21 7 Ta có: p = Câu 39 Gọi l , h, R độ dài đường sinh, chiều cao bán kính đáy khối nón (N) Thể tích V khối nón (N) là: A V = π R h B V = π R h C V = π R 2l D V = π R 2l GIẢI Chọn B ta có : V = π R h Câu 40 Cho hình trụ có bán kính đáy cm, đường cao 4cm, diện tích xung quanh hình trụ là: A 24π (cm ) B 22π (cm ) C 26π (cm ) D 20π (cm2 ) GIẢI 19 S xq = 2π rl = 2π 3.4 = 24π Chọn A Câu 41 Một hình trụ ngoại tiếp hình lăng trụ tam giác với tất cạnh a có diện tích xung quanh ? A 2pa 3 B pa 3 C 4pa 3 D pa GIẢI S xq = 2π rl = 2π a 2π a a = Chọn A 3 20 Câu 42 Cho hình chóp tứ giác S.ABCD có cạnh đáy a cạnh bên 2a Thể tích khối cầu ngoại tiếp hình chóp S.ABCD là: 16a 3π 14 49 64a π 14 49 A 2a 3π 14 B C 64a 3π 14 147 D GIẢI S C D O A a Gọi O tâm đáy , ta có: SO = 4a + B 2a a 14 = SB 4a = = 2a Gọi M trung điểm SB, ta có: SI.SO = SM.SB= 2 2 2a 2a 4a R = SI = = 4 4a 4.64a 3π 64π a 14 ) = = Vậy V = π R = π ( SO a 14 = 14 3 147 14 3.14 14 64a 3π 14 Chọn C 147 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng qua r A(1;4;-3) có vectơ pháp tuyến n = (2; −4;3) là: A 2x-4y+3z-23 = C 2x-4y+3z+23 = B 2x+4y+3z-10 = D 2x-4y+3z-10 = GIẢI r Theo vectơ pháp tuyến n = (2; −4;3) loại B Ráp công thức ptmp: 2( x − 1) − 4( y − 4) + 3( z + 3) = ⇔ x − y + z + 23 = Chọn C 21 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu tâm I(2;1;-2) bán kính R=2 là: 2 A x + y + z − x − y + z + 10 = B ( x + 1) + ( y + ) + ( z − 3) = 22 C ( x − ) + ( y − 1) + ( z + ) = 32 2 D x + y + z − x − y + z + = GIẢI Theo GT loại B- C-A.Còn Chọn D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD ,biết (BCD) có phương trình là: − x + y − z − = , điểm A (6;1;1) Đường cao AH tứ diện ABCD có độ dài là: A AH=2 B AH=1 C.AH= 10 D AH=5 GIẢI −6 + − − 10 = Chọn C 3 Câu 46 Trong không gian Oxyz cho (P): x − y + z − = , điểm A (1; −1;0) Tọa độ hình AH = d ( A;( BCD )) = chiếu vng góc A lên (P) là: A H (3; −3; 4) B H (1; 2; −2) C H (−3; 2;0) D.H ( ; − ; − ) GIẢI x = 1+ t  Đường thẳng d qua A vng góc với mp(P):  y = −1 − t vào ptmp(P)  z = 2t   x = 1− =  −1  Ta được: 1+t-(-1-t)+2.2t-1=0 ⇔ 6t = −1 ⇔ t = Suy  y = − Chọn D 6   z = −  Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(0;2;1) vng góc với đường thẳng d : A x – y + z – = C x + 2y – 3z +16 =0 x −1 y +1 z = = −1 B 6x + 3y + 2z – = D x – y + 2z =0 GIẢI Theo GT loại A-B- C.Còn Chọn D Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I (2; −1;1) mp(P): 2x – 2y + z +2 = 0.Biết mp(P) cắt mặt cầu (S) theo đường trịn có bán kính 1.Viết phương trình mặt cầu (S) 2 2 2 A ( x − ) + ( y + 1) + ( z − 1) = 10 B ( x − ) + ( y + 1) + ( z − 1) = C ( x + ) + ( y − 1) + ( z − 1) = 2 D ( x − ) + ( y − 1) + ( z − 1) = 10 2 22 GIẢI Theo GT loại C-D Ta có: d ( I ;( P)) = 2.2 + + + = , R = r + d = 12 + 32 = 10 Chọn A Câu 49.Trong không gian Oxyz cho A(1 ; -5 ; 2) ; B(0 ; -2 ; 1) ; C(1 ; -1 ; 4) ; D (5; ; 2).Viết phương trình đường thẳng ∆ , biết ∆ cắt đường thẳng AB , ∆ cắt x −1 y z + = = x = 1+ t  C  y = −1 − 2t  z = − 3t  đường thẳng CD song song với đường thẳng d:  x = + 4t  A  y = + t  z = −5 + t   x=t  B  y = −2 − 3t  z = 1+ t   x = −1 + 3t  D  y = + 2t  z=t  GIẢI Theo GT loại A-B- C.Còn Chọn D  x = t1  −1 + 3t = t1 uuur   AB = (−1;3; −1) ⇒ AB :  y = −2 + 3t1 , xét hệ 1 + 2t = −2 + 3t1 ⇔ t = 0; t1 = z = 1− t t = − t 1   Vậy ∆ cắt AB B(0;-2;1).Tương tự ∆ cắt CD D(5;5;2) Câu 50 Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x + y + 2z + 1= mặt cầu (S) : x2 + y2 + z2 – 2x +4y –6z +8 = Viết phương trình mặt phẳng (Q) song song với mp(P) tiếp xúc với mặt cầu (S) A 2x + y + 2z – 11 = B x + y + 2z – 11 = C.x + y + z – 11 = D x + y + 2z – = GIẢI Theo GT loại A- C (Q)//(P) ⇒ (Q) : x + y + z + d = Mặt cầu (S) có tâm I(1;-2;3), bán kính R = + + − = (P) tiếp xúc (S) nên d ( I ;(Q)) = R ⇔ 1− + + d = ⇔ d +5 = ⇔ d + =  d = 1( L)  d + = −6 ⇔  d = −11   Chọn B 23 ... Đây toán lãi đơn nên tư giả thi? ??t ta có số tiền lãi nar% (n: số tháng, a: tiền gốc, r lãi suất Do đó, số tiền gốc lãi 109 + 12.108.7% Chọn A Câu 22 Hàm số A nguyên hàm hàm số sau? B Ta có C... y + 2z =0 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I (2; −1;1) mp(P): 2x – 2y + z +2 = 0.Biết mp(P) cắt mặt cầu (S) theo đường trịn có bán kính 1.Viết phương trình... ta có hệ thức a2 + b2 = 7ab (a, b > 0) Hệ thức sau đúng? A log ( a + b ) = log a + log b C log a+b = ( log a + log b ) a+b = log a + log b a+b = log a + log b D log B log GIẢI Dựa vào đáp án có

Ngày đăng: 11/04/2017, 07:00

TỪ KHÓA LIÊN QUAN

w