1. Trang chủ
  2. » Giáo Dục - Đào Tạo

300 ĐỀ THI THỬ MÔN TOÁN – TRẮC NGHIỆM 2017 – CÓ LỜI GIẢI CHI TIẾT ĐÃ ĐƯỢC THẨM ĐỊNH – IN DÙNG NGAY – ĐỀ 1

17 634 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,08 MB

Nội dung

Đây là ĐỀ THI THỬ THPT QUỐC GIA MÔN TOÁN - TRẮC NGHIỆM – CÓ LỜI GIẢI CHI TIẾT (ĐÃ ĐƯỢC THẨM ĐỊNH KĨ) – BÁM SÁT ĐỀ THI CỦA BỘ - FILE WORD. Toàn bộ hệ thống đề bao gồm 300 đề (mỗi đề có giá 7000đ). Khác biệt với các đề thi thử chia sẻ trên mạng. Các đề của Yank Kerry đều có lời giải chi tiết cho từng câu, có bình luận, hướng dẫn sử dụng máy tính bỏ túi CASIO để giải nhanh. Hãy theo dõi và download đủ cả bộ 200 đề nhé. Các thầy /cô chỉ cần download và in đề cho hs giải, sau đó in lời giải (có thể thu nhỏ để tiết kiệm giấy) và phát cho học sinh sẽ tiết kiệm tới 70% thời gian chữa đề. Các bạn học sinh download đề tự giải và sau đó xem lời giải để rút kinh nghiệm, nâng cao kiến thức. NẾU CẦN MUA TOÀN BỘ 300 ĐỀ + RẤT NHIỀU TÀI LIỆU ĐẶC BIỆT ÔN THI THPT QUỐC GIA VUI LÒNG LIÊN HỆ - yankkerry@gmail.com. Thanks

HTTP://TAILIEUTOAN.TK/ ĐỀ THI MINH HỌA KỲ THI THPT QUỐC GIA NĂM 2017 Môn: TOÁN Đề số 001 Thời gian làm bài: 90 phút Câu 1: Hàm số y = x − 3x + 3x − có cực trị ? A B C D Câu 2: Cho hàm số y = − x − 2x − x − Khẳng định sau ? 1  A Hàm số cho nghịch biến  −∞; − ÷ 2    B Hàm số cho nghịch biến  − ; +∞ ÷   1    C Hàm số cho nghịch biến  −∞; − ÷∪  − ; +∞ ÷ 2    D Hàm số cho nghịch biến ¡ Câu 3: Hàm số sau đồng biến ¡ ? A y = tan x B y = 2x + x C y = x − 3x + D y = x + Câu 4: Trong hàm số sau, hàm số đồng biến ¡ ? A y = 4x − x B y = 4x − 3sin x + cos x C y = 3x − x + 2x − D y = x + x Câu 5: Cho hàm số y = − x Khẳng định sau ? A Hàm số cho đồng biến [ 0;1] B Hàm số cho đồng biến ( 0;1) C Hàm số cho nghịch biến ( 0;1) D Hàm số cho nghịch biến ( −1;0 ) Câu 6: Tìm giá trị nhỏ hàm số y = A y = − x∈[ 0;2] B y = − x∈[ 0;2] x2 − đoạn [ 0; 2] x +3 y = −2 C xmin ∈[ 0;2] y = −10 D xmin ∈[ 0;2] Câu 7: Đồ thị hàm số y = x − 3x + 2x − cắt đồ thị hàm số y = x − 3x + hai điểm phân biệt A, B Khi độ dài AB ? A AB = B AB = 2 C AB = D AB = Câu 8: Tìm tất giá trị thực m cho đồ thị hàm số y = x − 2mx + 2m + m có ba điểm cực trị tạo thành tam giác Trang A m = B m = 3 C m = − 3 Câu 9: Tìm tất giá trị thực m để đồ thị hàm số y = D m = x2 + mx + có hai đường tiệm cận ngang A m = B m < Câu 10: Cho hàm số y = C m > D m > 3x − có đồ thị (C) Tìm điểm M thuộc đồ thị (C) cho x −3 khoảng cách từ M đến tiệm cận đứng hai lần khoảng cách từ M đến tiệm cận ngang A M1 ( 1; −1) ; M ( 7;5 ) B M1 ( 1;1) ; M ( −7;5 ) C M1 ( −1;1) ; M ( 7;5 ) D M1 ( 1;1) ; M ( 7; −5 ) Câu 11: Một đại lý xăng dầu cần làm bồn dầu hình trụ tôn tích 16π m Tìm bán kính đáy r hình trụ cho hình trụ làm tốn nguyên vật liệu A 0,8m B 1,2m Câu 12: Cho số dương a, biểu thức C 2m a a a viết dạng hữu tỷ là: A a B a Câu 13: Hàm số y = ( 4x − 1) −4 C a D a có tập xác định là: B ( 0; +∞ ] A ¡ D 2,4m  1 C ¡ \  − ;   2  1 D  − ; ÷  2 π Câu 14: Phương trình tiếp tuyến đồ thị hàm số y = x điểm thuộc đồ thị có hoành độ là: A y = π x +1 B y = π π x − +1 2 C y = π x −1 D y = π π x + −1 2 Câu 15: Cho hàm số y = 2x − 2x Khẳng định sau sai A Đồ thị hàm số cắt trục tung B Đồ thị hàm số cắt đường thẳng y = C Hàm số có giá trị nhỏ lớn -1 D Đồ thị hàm số cắt trục hoành điểm Câu 16: Tìm tập xác định D hàm số y = log ( x − 3x + ) A D = ( −2;1) B D = ( −2; +∞ ) Câu 17: Đồ thị hình bên hàm số nào: A y = −2 x Trang B y = −3x C D = ( 1; +∞ ) D D = ( −2; +∞ ) \ { 1} C y = x − D y = x − Câu 18: Tính đạo hàm hàm số y = A y ' = ln ( x − 1) − B y ' = (2 ) x 1− x 2x x−2 2x C y ' = 2−x 2x D y ' = ln ( x − 1) − 2x Câu 19: Đặt a = log 5; b = log Hãy biểu diễn log15 20 theo a b A log15 20 = C log15 20 = a (1+ a) b ( a + b) B log15 20 = b ( 1+ b) D log15 20 = a ( 1+ a ) b (1+ a) a ( 1+ b) a ( 1+ b) b (1+ a) Câu 20: Cho số t hực a, b thỏa < a < b Khẳng định sau A 1 0) x 32π , cho S' ( x ) = ⇔ x = x2 Lập bảng biến thiên, ta thấy diện tích đạt giá trị nhỏ x = ( m ) nghĩa bán kính 2m Câu 12: Đáp án D a 1 + + =a Câu 13: Đáp án C Điều kiện xác định: 4x − ≠ ⇔ x ≠ ± Câu 14: Đáp án B Phương trình tiếp tuyến có dạng: y = y ' ( x ) ( x − x ) + y Trong đó: y ' = π π2 −1 x x = ⇒ y0 = 1; y ' ( 1) = π Câu 15: Đáp án D Ta biểu diễn hàm số cho mặt phẳng tọa độ Tọa độ điểm đặc biệt x y -1 2 0 Dựa vào đồ thị ta thấy đáp án D sai Câu 16: Đáp án D x ≠ Hàm số cho xác định ⇔ x − 3x + > ⇔ ( x + ) ( x − 1) > ⇔   x > −2 Câu 17: Đáp án A Đồ thị qua điểm ( 0; −1) , ( 1; −2 ) có A, C thỏa mãn Tuy nhiên đồ thị nhận Ox làm tiếp cận nên đáp án A Câu 18: Đáp án D ( − x ) '.2x − ( x ) ' ( − x ) ln ( x − 1) − 1− x y = x ⇒ y' = = 2 2x ( 2x ) Trang 11 Câu 19: Đáp án D Ta có: log15 20 = log 20 log + log a ( + b ) = = log 15 + log b ( 1+ a ) Câu 20: Đáp án D Chỉ cần cho a = 2, b = dùng MTCT kiểm tra đáp án Câu 21: Đáp án A Kỳ khoản đầu toán năm sau ngày mua 5.000.000 đồng, qua năm toán 6.000.000 đồng, năm 3: 10.000.000 đồng năm 4:20.000.000 đồng Các khoản tiền có lãi Do giá trị xe phải tổng khoản tiền lúc chưa có lãi Gọi V0 tiền ban đầu mua xe Giá trị xe là: V0 = 5.1, 08−1 + 6.1, 08−2 + 10.1, 08−3 + 20.1, 08−4 = 32.412.582 đồng Câu 22: Đáp án B ∫ f ( x ) dx = ∫ ( 2x + 1) dx = ( 2x + 1) +C Câu 23: Đáp án C ∫ f ( x ) dx = ∫ ln 4x.dx dx   u = ln 4x du = ⇒ x Khi ∫ f ( x ) dx = x.ln 4x − ∫ dx = x ( ln 4x − 1) + C Đặt  dv = dx  v = x Câu 24: Đáp án A Công sinh kéo căng lò xo từ 0,15m đến 0,18m là: 0,03 W= ∫ 800xdx = 400x 0,03 = 36.10−2 J Chú ý: Nếu lực giá trị biến thiên (như nén lò xo) xác định hàm F(x) b công sinh theo trục Ox từ a tới b A = ∫ F ( x ) dx a Câu 25: Đáp án D  u = x du = dx ⇒ x x Ta có: I = ∫ x.e dx Đặt  dv = e dx  v = 2.e a ⇒ I = 2x.e x x a a x a − 2∫ e dx = 2ae − 4.e x a a = ( a − 2) e + a Theo đề ta có: I = ⇔ ( a − ) e + = ⇔ a = Trang 12 Câu 26: Đáp án C Phương trình hoành độ giao điểm y = S= ∫ −1 x +1 dx = x−2 x +1 ∫−1 x − dx =  x +1 = ⇒ x = −1 x−2  ∫ 1 + x − ÷ dx = ( x + 3ln x − ) −1 −1 = + 3ln = 3ln − Câu 27: Đáp án B Phương trình hoành độ giao điểm − x + 2x + = 2x − 4x + ⇔ 3x − 6x = ⇔ x = x = Diện tích cần tìm là: 2 S = ∫ ( − x + 2x + 1) − ( 2x − 4x + 1) dx = ∫ 3x − 6x dx = 2 0 = ∫ ( 3x − 6x ) dx = ( x − 3x ) 2 ∫ ( 3x − 6x ) dx = 23 − 3.22 = − 12 = Câu 28: Đáp án D Thể tích cần tìm: V = π∫ ( 1+ Đặt t = − 3x ⇒ dt = − dx − 3x ) dx ⇔ dx = − tdt ( x = ⇒ t = 2; x = ⇒ t = 1) − 3x 2 2π t 2π  1  2π   π  dt = −  ÷dt = Khi đó: V =  ln + t + ÷ =  ln − ÷ 2 ∫ ∫  ÷ ( 1+ t )  1+ t ( 1+ t )   1+ t    Câu 29: Đáp án A z1 + z = + 2i + − 3i = − i Câu 30: Đáp án C Mô đun số phức z = ( 1+ i) ( − i) + 2i = 1− i ⇒ z = Câu 31: Đáp án B z= ( ) ( ) + i − 2i = + 2i ⇒ z = − 2i Vậy phần ảo z là: − Câu 32: Đáp án A  iz = − + i z = 1− i ⇒  ⇒w= 3 3z = − i Câu 33: Đáp án C Trang 13 z.z ' = ( a + bi ) ( a '+ b 'i ) = aa '− bb'+ ( ab '+ a ' b ) i z.z’ số thực ab '+ a 'b = Câu 34: Đáp án A Đặt w = x + yi, ( x, y ∈ ¡ ) suy z = x + ( y − 1) i ⇒ z = x − ( y − 1) i Theo đề suy x − ( y − 1) i = ⇔ x + ( y − 1) = Vậy tập số phức cần tìm nằm đường tròn có tâm I ( 0;1) Câu 35: Đáp án A Theo ta có, SA ⊥ ( ABCD ) , nên AC hình chiếu vuông góc SC lên mặt phẳng ( ) · · AC = SCA · = 600 (ABCD) ⇒ SC, ( ABCD )  = SC, Xét ∆ABC vuông B, có AC = AB2 + BC2 = a + 2a = a Xét ∆SAC vuông A, có ( SA ⊥ ( ABCD ) ) ⇒ SA ⊥ AC · = Ta có: tan SCA SA · ⇒ SA = AC.tan SCA = AC.tan 60 = a 3 = 3a AC Vậy thể tích hình chóp S.ABCD là: 1 VS.ABCD = SA.SABCD = 3a.a.a = a 3 Câu 36: Đáp án C Dễ nhận biết khối đa diện loại { 5;3} khối mười hai mặt Câu 37: Đáp án D Ta chứng minh tam giác ACD vuông cân C CA = CD = a , suy S∆ACD = a Gọi H trung điểm AB tam giác SAB nằm mặt phẳng vuông góc với đáy, suy SH ⊥ ( ABCD ) SH = a Vậy SS.ACD = a Câu 38: Đáp án B Kẻ OH ⊥ CD ( H ∈ CD ) , kẻ OK ⊥ SH ( K ∈ SH ) Ta chứng minh OK ⊥ ( SCD ) Vì MO 3 = ⇒ d ( M,( SCD ) ) = d ( O,( SCD ) ) = OK MC 2 Trang 14 Trong tam giác SOH ta có: OK = OH OS2 a = 2 OH + OS a Vậy d ( M,( SCD ) ) = OK = Câu 39: Đáp án C Gọi H, M, I trung điểm đoạn AB, AC, AM Theo giả thiết, A ' H ⊥ ( ABC ) , BM ⊥ AC Do IH đường trung bình tam giác ABM nên IH / /BM ⇒ IH ⊥ AC Ta có: AC ⊥ IH, AC ⊥ A ' H ⇒ AC ⊥ IA ' · 'IH = 450 Suy góc (ABC) (ACC’A’) A A ' H = IH.tan 450 = IH = a MB = Thể tích lăng trụ là: V = B.h = 1 a a 3a BM.AC.A 'H = a = 2 2 Câu 40: Đáp án C Gọi x, y, h ( x, y, h > ) chiều rộng, chiều dài chiều cao hố ga Ta có: k = h V V ⇔ h = kx V = xyh ⇔ y = = x xh kx Nên diện tích toàn phần hố ga là: S = xy + 2yh + 2xh = ( 2k + 1) V + 2kx kx Áp dụng đạo hàm ta có S nhỏ x = Khi y = 2kV ( 2k + 1) ,h = 3 ( 2k + 1) V 4k k ( 2k + 1) V Câu 41: Đáp án A Hình đa diện loại ( m; n ) với m > 2, n > m, n ∈ ¥ , mặt đa giác m cạnh, đỉnh điểm chung n mặt Câu 42: Đáp án B Trang 15 · Vì A ' B ' ⊥ ( ACC ' ) suy B'CA ' = 300 góc tạo đường chéo BC’ mặt bên (BB’C’C) mặt phẳng (AA’C’C) Trong tam giác ABC ta có AB = ABsin 600 = a Mà AB = A ' B' ⇒ A'B' = a Trong tam giác vuông A’B’C’ ta có: A 'C = A 'B = 3a tan 300 Trong tam giác vuông A’AC ta có: AA ' = A 'C − AC2 = 2a Vậy VLT = AA '.S∆ABC = 2a a2 = a3 Câu 43: Đáp án C Nếu mặt phẳng có dạng ax + by + cz + d = có vectơ pháp tuyến có tọa độ ( a; b;c ) , ( 2; −3; ) , vectơ pháp tuyến vectơ đáp án C r n = ( −2;3; −4 ) song song với ( 2; −3; ) Nên vectơ pháp tuyến mặt phẳng Chú ý: Vectơ pháp tuyến mặt phẳng vectơ có phuong vuông góc với mặt phẳng Câu 44: Đáp án D Phương trình mặt cầu viết lại ( S) : ( x − ) + ( y + ) + ( z − 3) = , nên tâm bán kính 2 cần tìm I ( 4; −5;3) R = Câu 45: Đáp án C d= 1− +1 −1 = 3 Câu 46: Đáp án D Đường thẳng ( d1 ) , ( d ) có vectơ phương là: uur uur uur uur u1 = ( 2; −m; −3) u = ( 1;1;1) , ( d1 ) ⊥ ( d ) ⇔ u1.u = ⇔ m = −1 Câu 47: Đáp án B uur d1 qua điểm M1 ( 1; −2;3) có vtcp u1 = ( 1;1; −1) uur d2 qua điểm M = ( 3;1;5 ) có vtctp u = ( 1; 2;3) uur uur  −1 −1 1  uuuuuur ; ; = 5; − 4;1 M ( ) ta có  u1 , u  =  ÷ 1M = ( 2;3; ) 2 3 1 2 uur uur uuuuuur suy  u1 , u  M1M = 5.2 − 4.3 + 1.2 = , d1 d2 cắt Mặt phẳng (P) chứa d1 d2 Trang 16 Điểm (P) M1 ( 1; −2;3) r uur uur Vtpt (P): n =  u1 , u  = ( 5; −4;1) Vậy, PTTQ mp(P) là: ( x − 1) − ( y + ) + 1( z − 3) = ⇔ 5x − 4y + z − 16 = Câu 48: Đáp án A Gọi (Q) mặt phẳng chứa đường thẳng d vuông góc với (P) r uur uur (Q) có vectơ pháp tuyến n Q =  u d , u P  = ( −1; −5; −7 ) Đường thẳng ∆ hình chiếu vuông góc d lên (P) giao tuyến (P) (Q) Do Điểm ∆ : A ( 1;1; −2 ) Vectơ phương ∆ : r uur uur  −3 2 1 −3  u =  n P , n Q  =  ; ; ÷ = ( 31;5; −8 )  −5 −7 −7 −1 −1 −5   x = + 31t  PTTS ∆ :  y = + 5t ( t ∈ ¡  z = −2 − 8t  ) Câu 49: Đáp án C Giả sử mặt cầu (S) cắt ∆ điểm A, B cho AB = => (S) có bán kính R = IA Gọi H trung điểm đoạn AB, đó: IH ⊥ AB ⇒ ∆IHA vuông H Ta có, HA = 2; IH = d ( I, ∆ ) = R = IA = IH + HA = ( 5) + 22 = Vậy phương trình mặt cầu cần tìm là: ( S) : ( x − 1) + ( y − 3) + ( z + ) = 2 Câu 50: Đáp án A Vectơ pháp tuyến mặt phẳng ( β ) : 2x + y + 3z − 19 = r n = ( 2;1;3) r Đường thẳng vuông góc với mặt phẳng ( β ) đường thẳng nhận n làm vectơ phương Kết hợp với qua điểm M ( 1; −1; ) ta có phương trình tắc đường thẳng cần tìm là: x −1 y +1 z − = = Trang 17 ... thị hàm số cắt trục tung B Đồ thị hàm số cắt đường thẳng y = C Hàm số có giá trị nhỏ lớn -1 D Đồ thị hàm số cắt trục hoành điểm Câu 16: Tìm tập xác định D hàm số y = log ( x − 3x + ) A D = ( −2;1)... 9  Câu 29: Cho hai số phức z1 = + 2i; z = − 3i Tổng hai số phức A − i B + i Câu 30: Môđun số phức z = A ( 1+ i) ( − i) + 2i A B − 2 ( D + 5i C D là: B Câu 31: Phần ảo số phức z biết z = C... C D Câu 32: Cho số phức z = − i Tính số phức w = iz + 3z A w = B w = 10 C w = + i D w = 10 +i Câu 33: Cho hai số phức z = a + bi z ' = a '+ b 'i Điều kiện a,b,a’,b’ để z.z ' số thực là: Trang

Ngày đăng: 14/03/2017, 10:43

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w