1. Trang chủ
  2. » Khoa Học Tự Nhiên

luyện thi đại học môn toán

30 410 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 13,18 MB

Nội dung

Tuye'n chQtt & Giai thifu dethi Todn UQC - Nguyen Phu Khanh, Nguyen Tai nen A H = D H =^ => ( A B C ) Ke D K va Thu Cty TNHH MTV DWH £)e t u M CO the ke dugc hai tiep tuyen den ( C ) thi I M > R 2t^ + 4t +1 > BC±(AHD) (AHD) A H => D K „ , > ^ h o , c , < - : ^ ( ) (ABC) Phuong trinh di qua hai tiep diem A , B c6 dang: =>DAK = 45°, D A H = 45° ( t - l ) ( x - l ) + (t + 3)(y + ) - = => ADAK vuong can tai K : =>K = H : ^ D H l ( A B C ) Di^n tich tarn giac ABC la: SABC = •^ABACsin60° = — ^ a^Vs a^ AB) = 2V2t^+4t + 10 3t + l Xet f ( t ) = thoa dieu ki^n (•) 2V2t2+4t + 10 2t + 14 Voi t > — thi f (t) > thi ham so f (t) dong bien tren niia khoang Ta hai duang thSng DE va HE va bang DEH s/ Gpi CF la duong cao xuat phat tir C cua tarn giac deu ABC canh a ™ aVs , HE = - C F = 2 DH = =>DEH = arctan2 nen tan DEH = HE , ^(2t2+4t + 10)^ T " =IT Ke HE AB => DE A B Vay goc giiia mp (ABD) va (ABC) la goc giua ro /g om c ok Vay, goc giua hai mp ( D A B ) va ( A B C ) la DEH = arctan2 ce bo Cau 6: Xet ham so: f ( t ) = ln(t + ) - Vt+T voi t > - w fa va f ( t ) = o t = ^' ww f ' ( t ) doi dau t u duong sang am qua nen f (3) la gia tri Ion nhat Suy f (t) < f (3) < 0, do f(x) + f ( y ) + f ( y ) < hay In(x +1) + In(y +1) + ln(z +1) < Vx + + ^ y + + Vz + I I PHAN RIENG Thi sinh chi dupe chpn lam mpt hai phan (phan A hole B) Voi t < - | thi f ' ( t ) = o t = - L^p bang bien thien, suy f (t) < ^ hay d ( N , AB) < ^ DMng thiic xay t = -7 tuc M ( - ; - ) Vay, M ( - ; - ) thi gia trj Ion nhat bSng ^ la diem can tim Cau8.a:GQi M e A j = > M ( l + t i ; + t j ; l - t i ) , N e A j =>N(2-t2;3-t2;-2) => M N = (l - - tpl - - t i ; - + tj) Aj CO vecto chi phucng U j = ( l ; ; - l ) , v i la mat phSng ( P ) vuong goc Aj nen (p) c6 vecto phap tuyen n = U j =(l;2;-l) Gia thie't dau bai ( P ) cat Aj va A j tai M va N , the nen M N nam ( P ) , suy n M N = l ( l - t - t i ) + ( l - t j - t i ) - l ( - + t i ) = A Theo chi/ang trinh chuan = > t = - t i = > M N = ( t i - l ; - l ; - + t i ) M N = ^ ( t i - ) ^ + Cau 7.a: Duong tron c6 tam l ( l ; - ) , b a n kinh R = Giai thie't Vi M e ( d ) nentpa dp M ( t ; t + l ) up aS Taco: f ( t ) = ^ " , ^ ^' 2(t + l ) Ta c6: d ( N ; Taco: f ( t ) = 1 aJs The tich khoi t u dien ABCD la V = - D H S A B C = , ^„ 3t + l iL ie uO nT hi Da iH oc 01 / ADAH vuong can tai H nen co CF = Khang Vift M N = VlT o - ) ^ + = N / T T o tj =0 hoac tj =4 Do CO diem M(1;2;1) hoac M(5;10;-3) 123 TwygH chgn & Giai thifu dethi Toan hpc - Nguyen Phu Khanh, Nguyht Tat Thu ^ I t t S b : T i m d u g c tpa d p d i e m A ( ; 16; ) M $ t p h i n g (P) d i q u a M(l; 2; 1) c6 vecto phap t u y e n n = U j = ( l ; ; - l ) G(?i U j , i ^ , r i p Ian l u g t la cac vecto chi p h u o n g ciia d , A va vecto p h a p p h u o n g t r i n h la: l ( x - l ) + ( y - ) - l ( z - l ) = hay x + y - z - = t^yeh ciia ( P ) Gia s u u j = (a; b; c) a^ + b^ + c^ > M^i p h a n g (P) d i qua M(5; 10; - ) c6 vecto phap t u y e n n = U j = ( l ; ; - l ) Vi d c ( P ) p h u o n g t r i n h la: l ( x - ) + ( y - ) - l ( z + 3) = hay x + y - z - = (d':^)=45° hoac x + y - z - = = > a - b + c = b = a + c ( l ) ^ 2(a + 2b + c ) ' = ( a + b + c ) i^^^^^^^i (2) sVa^+b^+C iL ie uO nT hi Da iH oc 01 / Vay, C O m a t p h a n g ( P ) : x + y - z - = : n e n xx^Ln^ Tir (1) v a (2) suy ra: 14c^ + 30ac = z = a - b i , z - l - i = : a - l + ( b - ) i r : > | z - l - i | = ^ ( a - l f + ( b - ) ^ Thay vao (l) ta c6: ( a - i f + ( b - f + ( a + b i ) i + a - b i = l l + i Cau 9.b: D i e u k i f n: x > s/ a = b+2 a-b =2 up a =4 ro b =2 /g \c b = -1 | ( a - l ) ' + ( b - f =9 om Suy c6 so p h u c can t i m la z = - i va z = + 2i 2V5 c K h i d o |z| = V i va |z| = ok B Theo chUorng trinh nang cao bo C a u 7.b: D u o n g t r o n (C) c6 t a r n ! ( - ; 2), R = va d i e m I thuoc d u o n g thang A ce D u o n g t r o n ( C ) c6 t a m J ban k i n h R ' = l va tiep xiic ngoai v o i d u o n g tron w fa ( C ) suy q u y tich cua d i e m I la d u o n g tron ( K ) C t a m I ban k i n h R + R ' = =25 ww h a y ( K ) : (x + l f + ( y - f V-2 Ta = ll x = + 7t V o i 15a + 7c = 0, chpn a = 7, c = - , b = - , ta tim d u g c d : y = - t < : > ( a - l ) ^ + ( b - f + a - b + i ( a - b ) = l l + 2i (a-lf+(b-2)'+a-b z = 14 K h o a n g each ciia I t o i A la I o n nhat k h i I la giao d i e m cua d u o n g t h i n g d d i z = 14-15t va x > 0, y > Phuong trinh dau tuong duong: - y"* = | l + x^y^ j l o g i x - l o g j y V 5 Neu X > y t h i p h u o n g t r i n h cho v n g h i ^ m N e u x < y t h i p h u o n g t r i n h cho v n g h i ^ m Neu X = y t h i p h u o n g t r i n h t h u t r o thanh: x + V2x + = + Vx + O x - l =V ^ - V x + l = o(x-l) , + , ~^^~]) Vx + + V2x + l Vx + + 72x + l , = O o x= l v i l+- >/x + + V2x + l >0 V^y, h? p h u o n g t r i n h da cho c6 n g h i f m (x; y ) = ( l ; l ) qua J va v u o n g goc v o i A v o i d u o n g t r o n (K) d C O p h u o n g t r i n h : 4x - 3y +10 = Tpa dQ d i e m I thoa m a n h$: 4x - 3y +10 = | ( x - f l ) + ( y - f =25' x = 2,y = x = -4,y = -2 Voi l ( ; ) = > ( x - f + ( y - f = , v o i I ( - ; - ) = > ( x + ) ^ + ( y + ^ = Vay, k h o a n g each t u I t o i A I o n nhat bang 125 ^'^>A o£THiTHiirsdi9 + 51 *Su 9.a: Tim so phuc z thoa man z + —^ " z Theo chi/crng trinh nang cac I PHAN C H U N G C H O T A T CA CAC THI SINK Cau 1: Cho ham so y = 5i = Cau 7.b: Trong mat p h i n g tpa dp Oxy, cho hinh thang vuong ABCD, vuong tai - 3x^ + (3m - 3)x + c6 thi la ( C „ ) va D Phuong trinh AD: x - yyjl = Trung diem M eiia BC eo tpa dp M ( l ; 0) giet BC = CD = 2AB Tim tpa dp eiia diem A b) Tim m de ham so c6 eye d^i, eye tieu eiing voi diem l ( - l ; - l ) t^o Cau 8.b: Trong khong gian toa dp Oxyz, cho mat phang (?):2x + y + z - = iL ie uO nT hi Da iH oc 01 / a) Khao sat su bien thien va ve thi (C) cua ham so m = tam giae vuong tai I va m | t cau (S): x^ + y^ + z^ + 4x + 6y - 2z J-11 = T u diem M tren (P) dyng Cau 2: Giai phuong trinh: tiep tuyen M N den mat cau ( N la tiep diem) Tim M de M N ngan nhat, tinh sin^ X - Vscos^x - i s i n 2x Idioang each ngan nhat (sin x - cos x) - — s i n 2x Cau 9.b: Giai phuong trinh sau: ^ l o g ^ (x^ + 2x j - log j (x + 3) = logg - — ^ x + ( - y ) x + ( - y ) x - ( y +l) = Cau 3: Giai h§ phuong trinh: H(/dNGDiiNGlAl , Cau ,, ,^ r fln^x-31nx + I PHAN C H U N G C H O T A T C A C A C THf SINH -, r—dx J x { l n x ) Cau 5: Cho tam di?n Oxyz c6 xOy = yOz = zOx = a Tren Ox, Oy, Oz lay cac Caul: om trift tieu va doi dau qua moi nghi^m, nghla la phai eo: A'>0 ok c a^+b^+c^ II PHAN RIENG Thi sinh chi dugrc chpn lam mpt hai phan (phan A bo V i l y ' ^ ' ^ ^ = ° nen: jyi'^l) = ( m " ) x i + m + [y'(x2) = y(x2) = ( m - ) x + m + l fa w Cau 7.a: Trong mat phSng tpa dp Oxy, cho duong tron ( K ) : x^ + y^ = va hai Khi do: I A = ( x i + ; ( m - ) x i + m + 2), iB = ( x + ; ( m - ) x + m + 2) A, B) la hai diem thupe ( K ) va doi xung ww diem A (0; 2), B ( ; - ) Gpi C, D (A voi qua true tung Biet r i n g giao diem E eua hai duong t h i n g AC, BD n l m tren duong tron ( K J ) : x^ + y^ + 3x - = 0, hay tim tpa dp eua E Cau 8.a: Trong khong gian tpa dp Oxyz, cho hinh thoi ABCD eo dinh B thupc trye Ox, dinh D thupe mat p h l n g (Oyz) va duong eheo AC nam tren duong l-(m-l)>0om0 thoaman: (a + b - e ) ( b + c - a ) ( e + a - b ) = l Chung minh rang: s/ ro OABC CO the tich Ion nha't ' a +b +c a) Danh cho ban dpc up diem A, B, C cho OA = OB = OC = k > Tim dieu ki?n eua a de t u di^n Ta : Tmh tich phan: I = Tam giae lAB vuong tgi I nen c6: lA.IB = I o ( x i +l)(x2 + l ) + [ ( m - ) x j + m + 2][(2m-4)x2 + m + 2] = o ( m ^ - m + 17)xiX2 +(2m^ - ) ( x i +X2) + m^ + m + = (•) Theo dinh ly V i - et: xj + X2 = 2, Xj Xj = m - thing d : =^ = j Tim tpa dp cac dinh A, B, C, D ciia hinh thoi ABCP Khi (*) tro thanh: biet di?n tich hinh thoi ABCD b i n g ISyJl 126 (dvdt) 127 Taco: S ^ g c = f ^ ^ - ^ C s i n e o " 4m^ - 15m^ + 37m - = 0m = l Do'i chieu dieu ki$n ta c6 m = la gia trj can tim Gpi N la trung diem BC, AN la duofng cao AABC deu sinx - cosx = tanx = o x = — + krt, k e Z iL ie uO nT hi Da iH oc 01 / Taco: A N = — B C = k V S s i n 2 It sin X + -v/Scosx = o sin x + — = l o x = - + k i , k € Z 3j Cau 3: Dieu kien y > -1 ^ A G = ^AN = ^ s i n P 3 Xet AAOG vuong t^i O , ta c6: Phuong trinh thu nhat tuong duong vai: x^ + 2x^ + 2x - = y ^x^ + 3x + sj OG2=A02-AG2=k2 l - - s m ^ l 2) o ( x - l ) ( x ^ +3x + 5) = y ( x + x + 5) R = Cau 2: Giai phuong trinh: tanx + cot2x = Nen (?) va (S) khong c6 diem chung Cau 3: Giai h? phuong trinh: Ta cua I len mat phang (?) s/ Cau 9.b: Dieu ki#n: x > ro up ?huong trinh cho tuong duong vol /g om c ok + 3)(x + 2)(x + l ) ] = « (x2+3x)(x2+3x + 2) =3 (*) bo o[x(x + 2)(x + 3)(x +1)] = log3 o [ x ( x + 2)(x + 3)(x +1)] = w fa ce D|t t = x^ + 3x, phuong trinh (•) tro thanh: t^ + 2t - = o t = -3, t = V6i t = l tuc x^ + 3x = x^ + 3x - = o x = ~^ thoa dieu ki?n ww Vol t = -3 tuc x^ + 3x = -3 o x^ + 3x + = phuong trinh v6 nghifm Vly, phuong trinh cho c6 nghi?m x = -3 + M sin4x x2-y2+l = ( ^ - V ^ - x ) n (67rx - 371^ jcosx.sin^ x + 47i(l + sin^ x) Cau 4: Tinh tich phan: I = '- = _ — ^ ^x Ma IN khong doi nen MN ngan nhat IM ngan nhat, tiic la M la hinh chieu o log3 (x^ + 2x) + logg (x + 3) = log3 - logg (x +1) 2(cosx-l) Vx+l+7y-3+x-y=2 GQi I la tam mat cau, tam giac IMN vuong tai N, ta c6: IN^ + MN^ = IM^ ]log3[x(x rKhangVi$t DETHITH(jfSd20 DUt AB = x =>BC = CD = 2x =>MH = ^ = - ^ Vay, AD = - Va AD = - s u y t = ^ 3 I )VVI Vl + sin-'x Cau 5: Cho hinh chop S.ABCD, day la hinh chu nhat c6 AB = 3, BC = 6, mSt phJing (SAB) vuong goc voi mat phMng day, cac mat phSng (SBC) va (SCD) cimg tao voi m | t phSng (ABCD) cae goc bang Biet khoang each giua hai duong thSng SA va BD bSng S Tinh the tich khoi chop S.ABCD va cosin goc giiia hai duong thing SA va BD Cau 6: Cho a, b, c la cac so thyc duong thoa man a + b + c = Chung minh rang : 8\/abc < 11 PHAN RIENG Thi sinh chi duQC chpn lam mpt hai phan (phan A hoac B) A Theo chiTorng trinh chuan Cau 7.a: Trong mat phang tpa dp Oxy, cho tam giac ABC vuong can tgi A, phuong trinh BA: 2x - y - = 0, duong thang AC di qua diem M ( - l ; 1) diem A nSm tren duong th3ng A: x - 4y + = Tim tpa dp cae dinh cua tam giac ABC biet rang dinh A eo hoanh dp duong Cau 8.a: Trong khong gian voi hq tpa dp Oxyz, cho hai duong thang x _ y + 1_ z 132 x - _ y +1_ z-4 133 Cty TNHHMTVjyWH Tuyen chqn & Gi&i thifu de thi Todn hqc - Nguyen Phu Khdnh , Nguyen Tat Thu Viet p h u o n g t r i n h d u o n g t h i n g A cat ca hai d u o n g t h i n g d ^ d j d o n g t h o i TU u - ' o AB.ACBC BC Theo bai toan, ta co: R = —— = —r- 4S \ A B C v u o n g goc v i m a t phang ( P ) : x + y - z + = Cau 2: D i e u k i ^ n : x 5^ m - , m e Z Cau 7.b: T r o n g m a t p h i n g toa d o O x y , cho d u o n g t h i n g Ian l u g t c6 p h u o n g iL ie uO nT hi Da iH oc 01 / „, u u A sinx cos2x 2{cosx-l) P h u o n g t r i n h cho t u o n g d u o n g : + =— '— cosx sin2x 2sin2xcos2x cos X - cos2x = cos X - o cos^ x = cos x sin2x sin2xcos2x t r i n h la ( d j ) : 2x - 3y - = v a ( d j ) : 5x + 2y - = Viet p h u o n g t r i n h d u o n g t h i n g d i qua giao d i e m cua ( d j ) , ( d j ) Ian l u g t cat cac tia Ox, O y tai A va B dat gia trj nho nha't 'AOAB J Cau 8.b: T r o n g k h o n g gian v o i h§ tga Oxyz, cho d i e m A(3; - ; - ) va mat p h i n g ( P ) : x - y - z + l = Viet p h u o n g t r i n h mat p h i n g (Q) d i qua A, v u o n g goc v o i mat p h i n g ( P ) biet rang mat p h i n g ( Q ) cat hai t r y c O y , Oz Ian l u g t ro up s/ C a u b : G i a i b a t p h u o n g t r i n h : l o g j Vx^ - x + + log^ V x - > ^ l o g j (x + 3) /g HI/OFNGDANGIAI om I PHAN C H U N G C H O TAT CA C A C T H I S I N H c Caul: ok a) D a n h cho ban doc X = cos X = — Giasu: A(0;-l), B ( - V m ; - m ^ - l ) , c(N/m;-m^-l) Ta CO d i ^ n tich t a m giac S ^ ^ B C = ^ B C d ( A , B C ) = m^%/m ( d v d t ) 134 « x =± - + k2n,keZ X e t h a m so: f { t ) = t^ + 2\/t v o i t > , ta c6: f ' ( t ) = 2t + - ^ > i : i f ( t ) vt dong bien t > , k h i p h u o n g t r i n h : f ( x + l) = f ( y ) o y ^ x + Thay vao p h u o n g t r i n h t h u hai ta dugc: Vx + + x - 2 = - x o =3 fx y = (thoa d i e u ki^n) x - x - = (5-x)' Vay, h? CO n g h i f m la { x ; y ) = (3;4) Cau «(67tx-371^1 COS x.sin^x 4: I = J^^ Tarn giac ABC can tai A nen canh day la BC v o l : BC = V m , AB = A C = V m + m * — + krt P h u o n g t r i n h t h u nha't t u o n g d u o n g : (x +1)^ + 2\/x + = y^ + ^ fa w m o i n g h i e m nen ham so da cho c6 cue t r i ww N e u m > t h i y ' = c6 n g h i ? m x = 0, x = - V m , x = \/m va d o i da'u qua X = D o i chieu dieu kien, n g h i f m p h u o n g t r i n h da cho la: x = ± - + k27:,k e Z x>-l Cau 3: D i e u kien: y>3 N e u m < t h i y ' = c6 n g h i e m x = va d o i da'u t u ( - ) sang ( + ) nen c6 cue t r j ( k h o n g thoa bai toan ) ce bo cos Ta tai d i e m phan biet M va N cho O M = O N b) T a c o : y' = x|x^ - m j = 4m Vay, m = thoa m a n yeu cau bai toan B Theo chi/tfng trinh nang cao AB 4m^%/rn m ' ^ - m N / m + = m = (thoa man) z - = va 17 z + z = z z V > cho + Khang Vie , ' \/l + sin^ x u = 67IX - 37r^ Dat dv = , dx + j47tVl + sin^ xdx d u = 6ndx cosx.sin^ X sm X t sin^x 135 Cty TNHH MTV P W H khang ruye'n chgn & Giai thifu dethi Todn hQC - Nguyen Phu Khdnh, Nguyen Tat Thu Khi I = (67rx - 3n^ j^Vl + sin' = 471^ Taco: f ( t ) = | Zau 5: Ha SH A B => S H ( A B C D ) (do (SAB) ( A B C D ) = AB) Nh$n thay, ( - t ) ^ - t ^ = ( l - t ) ( - t ) > Ke H K CD => t u giac H B C K la hinh chu nhat Ta thay B C ( S A B ) Dang thiic xay a = b = c = iL ie uO nT hi Da iH oc 01 / CD ( S H K ) => SKH = ( ( S C D ) , ( A B C D ) ) JI PHAN R I E N G Thi sinh chi du-grc chpn lam mpt hai phan (phan A SBH = SKH = > A S H B = ASHK (g - c - g) => HB = HK = BC = holcB) Do A la trung diem HB Ta thay Z7 A B D K la hinh binh hanh A Theo chi/orng trinh chuan => BD//AK Cau 7.a: Ggi diem A e A => A(4yo - 6; yg) BD//(SAK) ma SA e ( S A K ) => d(BD,SA) = d ( B D , ( S A K ) ) = d ( D , ( S A K ) ) = d ( H , ( S A K ) ) = ^6 = h h^ HS^ •+ HA^ Ta up s/ V V 5 V D|t t = abc, ta w ww ro om + c^ = (a + b + c)^ - 3{a + b)(b + c)(c + a) < 27 -24abc CO V 0 AB va n = (l;4;-2) ciing phuong AB = tn I l +k-m =t - k - m = 4t + k - m = -2t k =0 o t = -l=^A(2;3;2),B(l;-l;4) m =2 =>0 n h o nhat OH' P h u o n g t r i n h da cho t u o n g d u o n g : K h i d o A B nhan O M l a m vec t o phap tuyen Ta vie't d u o c p h u o n g t r i n h A B ' ^ + s/ ' a^' 1+ 3- /g a ^ D a t t=J , t>0 ok V^AOAB/ (x - 2) > ^ l o g ^ i (x + 3) « ilog3 (x^ - x + ) - i l o g ( x - ) > - i l o g ( x + 3) « log3 [(x - 2)(x - ) ] > log3 (x - 2) - log3 (x + 3) Olog3[(x-2)(x-3)]>log3 'x-2^ x+3 «('^x2-9>l« x/lO X>^[W Ket h(?p v o i dieu ki?n, ta dupe ng hi^m cua bat p h u o n g t r i n h da cho la: x>VlO w fa ce bo a t^ +1 X e t h a m s o : f ( t ) = 4.—^ — voi t > (3t4.l) ro ^ om •AB = c ^ AB ;0 , B up Theo bai toan, ta t i m du^c: (3a + h Ta Cach 2: P h u o n g t r i n h d u o n g thang d c6 dang: a ( x - 3) + b ( y - l ) = , ( a , b > O) ilog3 (x2 - 5x + 6) + \\og^-, ww Gia t r j n h o nhat ciia f ( t ) la - dat dug-c k h i t = hay a = 3b P h u o n g t r i n h d u o n g thang can t i m la: 3x + y - = C a u 8.b: Gia s u n g la m p t vecto phap t u y e n ciia ( Q ) Khi n Q l n p ( l ; - l ; - l ) M a t p h ^ n g ( Q ) cat hai tryc O y va Oz tai M ( ; a ; ) , N ( ; ; b ) phan bi?t cho O M = O N nen a = b o a 138 = b^O hoac a = - b * 139 Tuyen chgn & Giai thifu dethi Todn hgc - Nguyen Phu Khdnh, Nxuyht Tai Thu Cau 9.^: Tinh modun cua so'phiic z, biet: z = (2 - i)"^ + ( l + i)'* - ^ — i - OETHITHUfSdzi Theo chUomg trinh nang cao Cau 7.b: Trong mSt phSng tpa dp Oxy, cho hinh vuong ABCD eo phuong trinh duong thing AB: 2x + y - = 0, va C, D Ian lupt thupc dupng thing d j : 3x - y - = 0, d j : x + y - = Tinh di|n tich hinh vuong I P H A N C H U N G C H O T A T C A C A C T H I S I N H Cau 1: Cho ham so : y = x'^ - 3x^ + mx +1 c6 thi la (C^^) a) Khao sat sy bien thien va ve thi (C) cua ham so m = x = -t Cau 8.b: Trong khong gian Oxyz, cho duong thang (d): y = + 2t va mSt cau [z = - - t iL ie uO nT hi Da iH oc 01 / b) Tim m de ham so c6 cue dai, cxfc tieu Gpi ( A ) la duong thang di qua hai diem eye dai, cue tieu Tim gia trj ion nhat khoang each tir diem I - ; — den U 4j duong thSng ( A ) cosx + yfz sin f I X 7t — (S): x^ + y^ + z^ - 2x - 6y + 4z -11 = Viet phuong trinh mat phing (p) vuong goc duong thang (d), cat mat cau (S) theo giao tuyen la mpt duong tron c6 ban kinh r = \ Cau 9.b: Tim so phue z thoa man ( l - 3i) z la so thuc va z - + 5i = 4j Cau 3: Giai phuong trinh: sVZx + l + 2x = loVx-3 +13 HMGDANGIAI ixe" (e^+lj + l Cau 4: Tinh tich phan sau: I = f ^ —dx P H A N C H U N G C H O T A T C A C A C T H I S I N H Caul: a) Danh cho ban dpc s/ up b) Taco y' = 3x^-6x + m Ham so c6 eye dai, eye tieu phuong trinh y' = c6 hai nghi^m phan bi?t.Tuclaeanc6: A ' - - m > o m < om /g ro e^+l ^ Cau 5: Cho hinh hpp dung ABCD.A'B'C'D' eo day la hinh thoi e^nh a, BAD=a voi cosa=-, canh ben AA' = 2a Gpi M la diem thoa man DM = k.DA va N la trung diem cua canh A'B' Tinh the tich khoi tu dien C'MD'N theo a va tim kde C ' M I D ' N Ta I c Chia da thiic y cho y ' , ta dupe: y = y' x _ l _ 3 ok Cau 6: Cho so thuc khong am a, b, c thoa man a + b + c = Tim gia tri nho nhai cua bieu thuc: P = a + b^ + c^ II P H A N R I E N G Thi sinh chi dupe chpn lam mpt hai phan (phan A hoac B) bo Vi y'(xj) = 0,y'(x2) = nen phuong trinh duong thing (A)qua hai diem eye dgi, eye tieu la: y = r2m_2^ ww Cau 7.a: Trong mat phang tpa dp Oxy, cho tam giac ABC vuong tai A va diem B(1;1) Phuong trinh duong thSng AC: 4x + 3y - 32 = Tia BC lay M cho (d;): ^ = = ~^ \ \g (P): x + y - z + = Lap phuong trinh duong thSng (d) song song voi m^t phSng (P) va cat (d^), ( d j ) Ian lupt tai A, B cho dp dai doan AB nho nhat 140 + ^ + hay y = —(2x + l ) - x + l ( 5>/2 BM.BC = 75 Tim C biet ban kinh duong tron ngoai tiep tam giac AMC la — ^ Cau 8.a: Trong khong gian Oxyz, cho hai duong thSng ( d j ) : m , -2 x + — + Gia sir ham so c6 eye d^i, eye tieu t^ii cae diem (xi;yi),(x2;y2) • ce fa w A Theo chUorng trinh chuan 2m \ Ta thay, duong thang (A) luon di qua diem co'djnh A — ; so'goc |*a duong thing lA la k = | Ke IH ( A ) ta thay d ( l ; A ) = I H ^ I A = | I Ding thuc xay I A ± ( A ) o ^ - = - i = - - < » m = l V^y, max d ( l ; A ) = | k h i m = 141 Twygti chpn & Gi6i thi^ dithi Todii hoc Nguyen Phu Khatth , hi^micn Tat Thu CtyTNHHMTV Cau 8.b: Mat cau (S) c6 tarn l(2;-2;l), ban kinh R = 1, M(0;0;m) e O z M | t phMng ( A B C ) c6 vecto phap tuyen n = IM = (-2;2;m - l ) ; m^t phing (ABC) di qua D(1;2;5) nen c6 phuang trinh: ( x - l ) - ( y - ) - ( m - l ) ( z - ) = hay x - y - ( m - l ) z + m - = X = 2-2t Duong thing IM: y = - + 2t z = l + (m-l)t Gpi H la giao diem ciia ( A B C ) voi IM thi to? dp cua H la nghi?m cua h?; X = 2-2t X = 2-2t y = - 2+ 2t y = - + 2t z = l + (m-l)t z = l + (m-l)t 4m + 2x-2y-(m-l)z +5m-3 =0 t =m^-2m +9 Do MA la tiep tuyen ciia (S) nen tam giac MAI vuong tai A va AHIIM, cho n e n t a c o I A = I H I M O I H I M = (do H n i m tren tia I M ) , IH=(-2t;2t;(m-l)t) 0;0;-^ bo ok c Cau 9,b: Phuong trinh thu nhat + Vx^ +4 ^y^ + - y = O X + Vx^ +4 = y + ^y^ +4 ologj t +t fa 7t^+4 + i f(t) = l ce Xet ham so: f (t) = t + Vt^+4 , ta c6: ww w •>0 f(t) dongbiehtren R nen f (x) = f (y) o x = y Phuong trinh thu hai tro thanh: x^ - 8x +10 = (x + 2) V2x-1 (*) Dat u = V2x-1 voi u > 0, thay vao phuong trinh (*), Igp bi?t so t2+4 A = 25(x + 2)^ => u = ^^-^ hoac u = -^^-^ (khong thoa) Voi u = ^ ^ ta du(?c x + = 3V2x-l c6 hai nghifm x = 1, x = 13, ta tim duoc (x;y) = (l;l),(l3;13) 152 I PHAN C H U N G C H O T A T CA C A C T H I S I N H 2x + iL ie uO nT hi Da iH oc 01 / Cau 1: Cho ham so y = — c6 thi la (C) a) Khao sat su bien thien va ve thi (C) cua ham so' b) Tim m de duong thang (d): y = 2x + m cat thj (C) tgi hai diem phan bi?t cho tiep tuyen ciia (C) t^ii hai diem song song voi Cau 2: Giai phuong trinh: sin^ X sin^ 3x = tan 2x (sin X + sin 3x) cosx cos3x Cau 3: Giai phuong trinh: 2^x^ + 2J = sVx^+l Ta e22 + lnx(2 + ln2x) : Tinh tich phan: 1= f -i— klx Cau X In X Cau 5: Cho hinh chop S.ABCD c6 day ABCD la hinh vuong, SA vuong goc voi day Gpi M , N Ian lugt la trung diem ciia SB va AD Tinh the tich ciia khoi chop M.NBCD biet duong thang M N tao voi mat day mpt goc 30° va MN = 2a>/3 / b c^ Cau 6: Cho a,b,c e ri;3] Chung minh rang: — + — + — c b a yb c a) II PHAN R I E N G Thi sinh chi dvtqic chpn lam mpt hai phan (phan A hole B) A Theo chUtfng trinh chuan Cau 7.a: Trong mat phSng voi h^ tpa Oxy, cho hai duong thang dj :x-y-2=0, P2 : 2x + y - = Viet phuong trinh duong thSng A di qua goc tpa dp O cat r d j , dj Ian lupt tai A, B cho OA.OB = 10 Cau 8.a: Trong mat phang tpa dp Oxy, cho hinh chu nhgt ABCD c6 M(4;6) la trung diem ciia AB Giao diem I ciia hai duong cheo nam tren duong thSng (d) CO phuang trinh 3x - 5y + = 0, diem N(6; 2) thupc canh CD Hay viet phuang trinh cgnh CD biet tung dp diem I Ion hon i W s i ' \ Cau 9.a: Tim modun ciia so phuc z biet: z = + i ( l i ) s/ ro =>M om ^m^ - 2m + 9Jt = l o m + = l o m = DETHITHUfSCf23 up = o (-2t).(-2) + 2.(2t) + (m - l).(m - ) t = /g IH-IM DWIi Khang Vi^t 153 Tuye'n chgn & Giai thifu dethi ToAn hgc - Nguyen Phu Khdnh , S ^ i n i c n TalThu B Theo chi/orng trinh nang cao sinx = C a u 7.b: T r o n g mat phSng v o i h ^ tpa d p Oxy, cho ba d i e m A ( - l ; - ) , B(0; 2), sinSx C(0; 1) Viet p h u o n g t r i n h d u o n g t h i n g A d i qua A cho t o n g k h o a n g each _ cos 3x t u B va C t o i A la Ion nha't sin2x = sinx = cos X = X = k7t p h u o n g t r i n h da cho t u o n g d u o n g v o i : va (x + l ) + ( x - x + l ) = ^ ( x + l ) ( x - x + l ) (*) mat ph5ng (P); 2x + y - 2z + = Gpi A la giao d i e m cua d v o i (P) Viet p h u o n g t r i n h d u o n g thSng A n a m (P) biet A d i qua A va v u o n g goc v o l d iL ie uO nT hi Da iH oc 01 / Qjch i C h i a ca ve p h u o n g t r i n h (•) cho x^ - x + , ta d u p e : 2y(4y=•2+3x2) = x4(x2+3) x +1 C a u 9.b: Giai he p h u o n g t r i n h : ,x 2012'* ( ^ y - x + - x + ) = 4024 I PHAN CHUNG CHO TAT CA CAC THI SINH a) D a n h cho ban dpc x^-x + X Ta = 2x + m s/ < » x + { m - ) x - ( m +3)-0,x;^2 x-2 x+1 = o x ^ - x + = v n g h i ^ m v o i m p i xeM TH2: t = r tuc - J i l i _ ^ i « x - x - = (*) >0 (m-6) + ( m + ) > phan bi§t va khac • ^ , g(2)^0 y f ^ f ^ : ok m ^ + m + 60 > (luon diing) X = Cdch 2:Dat c om /g A _ bo ce fa C a u 2: D i e u ki?n: cos x*0, cos x ^ ww y ' ( x i ) = y'(x2)Xj + X2 = o m = - w Tai hai giao d i e m ke hai tiep tuye'n song song k h i va chi k h i 5-V37 „ hoac X = + ^y37 5-N/37 + N/37 2 v = V x ^ - x + l > — , k h i d o p h u o n g t r i n h (•) t r o u = 2v Vx + l = 2Vx^ - x + , binh phuong v e r o i riit gpn ta dupe: THI: I u=4 ^ > , 4x^ - 5x + = , phuong trinh v nghi^m voi mpi xeR TH2: V = 2u o Vx^ - x + = 2Vx + l , binh p h u o n g ve roi riit gpn ta dupe: X^-5X-3.0 P h u o n g t r i n h cho t u o n g d u o n g v o i p h u o n g t r i n h : tan X sin X + tan 3x sin 3x = tan 2x(sin x + sin 3x) 2(u^ + v ^ ) = u v « > ( u - v ) ( u - v ) = 0c:>u = 2v hoac v = 2u Voi V m €€#M tthhii du( d u o n g thSng cat d o thj h a m so tai hai d i e m c6 hoanh d p Vm 6-m - x+1 V^y, n g h i ^ m p h u o n g t r i n h cho la: x = ro ( d ) cat ( C ) tai d i e m p h a n bi|t k h i va chi k h i p h u o n g t r i n h (*) c6 hai n g h i ^ m up b) P h u o n g t r i n h hoanh d p giao diem: t = tuc THI: C a u 1: 2x + -+1 / - ^ ( * ) D a t t = j - i i ± i - - x+ lx^-x + (x^ - x + Khi d o p h u o n g t r i n h (• •) t r o thanh: t ^ - t + = t = hole t = ^ Hl/dNG DAN GIAI Xj ^ X j Ta CO Xj + X2 = cos X sin x = QiU 3: D i e u kien: x > - x-l_y+3_z-3 C a u 8.b: Trong mat phang toa dp Oxyz, cho d u o n g thang d : ^ ^ ~ ^ ^ ~ Y " o sinx _ ^ « x =^ h o S c x |Vay, nghi^m phuong trinh la: x = = ^ x-^ ' ^ ^ (tan X - tan x ) s i n x + (tan 3x - tan x ) s i n 3x = sin(-x) smx -sin3x = -smx + cos3xcos2x cos X cos X I : l = 21i+l2 v i l , = j i ^ ^ x , ' x'^.ln'^x e • l = ' f ^ x i x^ ^ J " ' ^ V d x D a t t = x l n x = ^ d t = (lnx + l ) d x „ X In X 154 155 choii i'-f Ci&i Ihicii ile thi Toiiii - Ni;iii/f(t) = 10t-t2+ — - t^ t ,tudaytac6: V3 Xethamso f ( t ) = t - t + A _ i vai t e X X Cau 5: Gpi I la trung diem cua A B ta c6 M I // SA =>MI1(ABCD)=^MI1(NBCD) IS va £'(t) = 2^^ 1^ t^ t L i p bang bien thien suy f (t) > f ( l ) = 12 11 P H A N RIENG Thi sinh chi dvtgc chpn lam mpt hai phan (phan A ho?c B) A Theo chUcrng trinh chuan e2 Khi do: I , = — I n x ^ Cau 7.a: Do A qua O, nen c6 phuang trinh dang: x = ho^c y = kx Neu phuang trinh A: x = 0, A = A n d i : x - y - = 0=> A ( ; - ) V^NBCD =|-MI-SNBCD A n d j :2x + y - = 0=>B(0;5)=>OA.OB = 10 (thoaman) Va goc giira M N voi mp day chinh Neu phuang trinh A: y = kx la goc M M = 30° Ta Do A = A n d j nen tpa dp cua A la nghi^m ciia h$ phuang trinh: = ^ s/ M N up Tam giac M N l c6 cos 30° =>SfjBCD = S A B C Q - S ^ j N =18a ~~^ = ~ ^ VN.MBCD = 3-MI-SNBCD = - ^ ^ ^ - " ^ = fa b c^ fa c b Cau 6: f(a) = —+ —+ - — - + —+ lb c a; [c b a) 2k 1-k'l-k y = kx x= 2+k 5k y= 2+k >B 5k ^ 2+k'2+k OOA'.OB'-lOOo +4k' 25 + 25k^ ( - k ) ' - (2 + k ) ' ww l./^63a2 2x + y - = Khi do: O A O B = 10 Mat khac: sin30° = o M I = MN.sin30° = a i = aVs ^ MN ^Ayfic Do B = A n d j nen tpa dp ciia B la nghifm cua h^ phuang trinh: om /g 9a' _ 63a^ fa 9a^ ^ ce x X = 18a' va S ^ N , = ^ A N A I • ^ ^ ^ ok c o x = 3aN^ x=i-k 2k y = 1-k w Khi do: SABCD = [ y = kx bo Vi NI^=AN^+AI^9a^= — + — 4 x-y-2=0 ro N I = MN.cos30° = 2aS.— = 3a GQI X la canh cua hinh vuong A B C D k'+lj =(k' + k-2) 63a3N/3 o k'+l = k2+k-2 k'+l =- k ' - k +2 = 100 k=3 k =-l,k = ^ ~[2~ Luang trinh cua duong thMng A la y = 3x, y = - x , y = j x •(a): a'bc ^u8.a:Gpi P(xp;yp) d o i x u n g v a i M ( ; ) qua I nen V i a , b , c e [ l ; ] nen c ^ > > b va f'(a) = O o x = Vbc 11 thupc (d) nen 156 DVVH Khattg Vift T u bang bien thien suy f (a) > f(Sc] = 10 /- - - + - - 2, v / v b b c vc du = —dx dv = — d x e2 , Nf^iiyctt e u = Inx I,/ji^x.Dat Khunh iL ie uO nT hi Da iH oc 01 / Ttiyen + Xp =2xj + yp=2yi _ f f c Z p ] + = o 3xp - 5yp - = (l) 157 Tuye'tt chpn & Gi&i thiC'u dethi Toan hqc - Nguyen fnu A / i i i m vynyen x » > ^ r » Lai CO P M I P N 'PMPN = 0(xp-4)(xp-6) + ( y p - ) ( y p - ) = , T u (l) va (2), suy ra: 34yp^ - 162yp +180 = « yp = ho|c + 3i + 3i^ + i ^ ^ = (2) vol vecto u ' = (l;0;l) => A.: y = - l z=4+t 30 Cau 9.b: Neu x = 0, t u phuong trmh thii nhat suy y = Khi khong thoa phuong trinh thu hai ' Neu X 5* 0, chia ca ve phuong trinh dau cho x^, ta dugc: = l i ± ^ Itill^llllil =-14 + 2i •2 1-i Xet ham so f (t) = t^ + 3t, t € B Theo chuorng trinh nang cao I + a + 2b) om ) = 29 ^ bo w Cau 8.b: A = d n (P), tpa dg cua A la nghi^m cua h$ z= 3+ t +4 -u (**) u +4 -1 In 2012- I va ^ 0 ce fa x= l-t =2 Xet ham so g ( u ) = 2012" f V u ^ T I - u = tren - 2012" 2=i>a = 2,b = 5=>A: 2x + 5y + = b Vu^+4-u Taco: g'(u) = 2012" l n 2 f V u ^ - u + 2012" c 5^ )(a^ + ab>0 DSng thuc xay \ ok d , - = l = ( | a | 5|b|) < - j ^ i l ' ^ «'+b^^ r— Ta V a ^ up ^/a2+b2 s/ a + 2b ro (T / D a t u = x - l , t a d u g c phuong trinh: 2012" /g , a + 2b a + 3b De thay f (t) la ham so dong bien tren Thay vao phuong trinh thu hai, ta dugc: 2012 x - l J ( x - l ) ^ - ( x - l ) = CO phuong trinh: a(x +1) + b(y +1) = d(CA) = M ^ ' Do t u (*) ta dugc — = x hay 2y = x*^ Cau 7.b: Gia su A di qua diem A va c6 vecto phap tuyen la n = (a;b) ;t 0, nen Gpi d = d(B,A) + d(C,A) = + ^ = x3+3x X = ^(-14)'+22==10V2 a + 3b d(B,A) = - ^ = = , Va^+b >3 iL ie uO nT hi Da iH oc 01 / 1-i 2y A{0;-1;4) ^• Vay, hf phuong trinh c6 nghi^m nhat (x; y) = 2x + y - z + = G Taco: V T C P c u a d l a : u ^ = ( - l ; ; l ) , V T P T cua (P) la: Hp = ( ; l ; - ) Vi 158 Aid Ac(P)' ; nen VTCP cua A la: u ^ = Ud;np =(-5;0;-5) cung phuong 159 Cty TNHH MTV DWH di qua A(-3; 0; 2) va cit (A) t^i B cho m | t cau tam B tie'p xiic voi hai m a phSng (Oxz) va (P) DCTHITHUfSd24 Cau 9.a: Goi bon nghi^m ciia phuang trinh z'*-2:'-2zi^+6z-4s0 1 1 tren tap so phuc tinh tong: S = — + — + — + — I PH/VN C H U N G C H O T A T CA C A C T H I S I N H Cau 1: Cho ham so y = -x^ + 2x^ -1 c6 thi la (C) z,,Z2,Z3,Z4 la Zj a) Khao sat sv bien thien va ve thi (C) cua ham so ^2 Zg Z4 B Theo chi/Ong trinh nang cao iL ie uO nT hi Da iH oc 01 / b) Tim diem M nSm tren tryc hoanh cho tu c6 the ke dug^c ba tie'p Cau 7.b: Trong mat phSng voi h? tpa d p Oxy, cho hinh thang can ABCD c6 dien tich bang 18, day Ion CD nam tren duong thang c6 phuong trinh: x - y + = Biet hai duong cheo AC, BD vuong goc voi va cat tai diem l(3;l) Hay V i e t phuong trinh duong thJing BC biet diem C c6 hoanh d p am Cau 8.b: Trong khong gian voi h? tpa d p Oxyz, cho mat phJing (P): x + 2y-z + = tuyen den thi (C) ^ 2cos2x + Cau 2: Giai phuang trmh: tan^ x + 9cot^ x + = 14 sin2x Cau 3: Giai h^ phuang trinh: Khattg Viet x3(4y2+l) + 2(x2+l)>/^ =6 x^+ll + 2^4y^ + l l = x + Vx^+l va duong thSng d : ^ = Z l l = £Z^ Goi d ' la hinh chieu vuong goc ciia d len mat phang (P) v a E la giao diem cua d va (P) Tim tpa d p F thupc (P) s a o 2.(x + 2sinx-3)cosx Cau 4: Tinh tich phan: 1^^ ^— dx , sin"^ X Cau 9.b: Viet s o phuc sau duoi dang luong giac: z = —^- '( n Snf sm — i.sm — I ) 2>/aVb^T?7l (a + l)(b + l)(c-Hl) II P H A N R I E N G ok bo Thi sinh chi dugc chpn lam mpt hai phan (phan A ce P= c om /g ro up Cau 5: Cho khoi chop S.ABCD c6 day la hinh thang can, day Ion AB b^ng bon Ian day nho CD, chieu cao cua day bang a Bon duong cao cua bon mat ben ung voi dinh S c6 dp dai bSng va bang b Tinh the tich cua khoi chop theo a, b Cau 6: Cho a,b,c la cac so thvrc duong Tim gia tri Ion nhat cua bieu thu-c: s/ Ta cho EF vuong goc voi d ' va EF = 5N/3 w fa hole B) ww A Theo chUorng trinh chuan Cau 7.a: Trong mat phSng voi h? tpa dp Oxy, cho duong tron (C) x2 + yz - 2x + 4y - 20 = va duong thang (d): 3x + 4y - 20 = Chung minh d tie'p xiic voi (C) Tam giac ABC c6 dinh A thupc (C), cac dinh B va C thupc d trung diem canh AB thupc (C) Tim tpa dp cac dinh A, B, C biet tryc tam cu.^ tam giac ABC trung voi tam cua duong tron (C) va diem B c6 hoanh dp duong Cau 8.a: Trong mat phSng tpa dp Oxyz, cho mat phing (P): 2x - y + 2x + = va duong thSng (A) : 160 = = Viet phuang trinh duong t h k g (d) Hl/dNG DAN GIAI I P H A N C H U N G C H O T A T CA C A C T H I S I N H Cau 1: a) Danh cho b^n dpc b) M(m;0)6Oxvadu6ngth5ngdquaM: y = k(x-a) Gia su d tie'p xiic voi (C) tai diem c6 hoanh dp XQ h?: -x^+2x^-1 = k ( x „ - m ) , k =-4x3+4X0 (1) (2) CO nghiem x^ ° Thay ( ) vao ( l ) , tu ta c6: x^ - hoac 3x^ - 4mxo + = c6 nghi?m Xg Qua M ke dupe tie'p tuyen den d o thj (C) thi phai ton tai gia tri k phan bift De y: x = 0, x = ± thi k = nen c6 tie'p tuyen ^ , 2cos2x Cau 2: tan'^ x + 9cot x + + —-— = 14 sin2x sin2x tan^ x + 9cot'^ x + cotx - tan x + 2(tan x + cot x) = 14 (tanx + 3cotx)^ + tanx + 3cotx-20 = 161 Tuye'n chqn b Giai thifu dethi Todn HQC - Nguyen PM Khdnh , Nguyen Cau 3: Dieu ki#n: x > Nh^n thay, (O; y) khong la nghi?m ciia Tat Thu thi H M = H N = HE = - la ban kinh duong tron va SE = SM = SN = b phuong trinh Xet X > 0, phuong trinh thu tro thanh: SH = | V b - a b>^ 2) I 2y + y V y + l = ^ + ^ J - ^ + l (*) D a t C N = x thi BM = 4x,CE = x, BE = 4x •>0 V e vr do ham so dong bien nen f (2y) = f ^1^ Tam giac HBC vuong H iL ie uO nT hi Da iH oc 01 / Xet ham so f(t) = t + tN/t^Tl Ta c6: ('{t) = l + ^J^Tl+~ +1 nen H E = E B E C C ^ — = x < » x = - , 4 o2y = X ^ Thay vao phuong trinh (*): x^ + x + 2(x^ + l)>/x = Ve trai cua phuong trinh la ham dong bien tren (0;+oo) nen c6 nghi^m nhat X = va he phuong trinh c6 nghi?m V^y, '4^ U Ta -dx ^•' cSin' m' X sin^ X t Ll , —cotx 2; 2 (dvtt) '—^ + (a + b + c + l f >A L " 1 w ww Vay I = I i + l = N / - doan M N vai M , N Ian lugt la trung diem cac canh AB, CD va M N = a 27 27 Xet ham so': f (t) = • ( 2f Ta c6: f ' ( t ) = — - + 81 = ^ hay J d^t vol t > va f'(t) = 0, t > t = T u day, ta c6 f ( t ) < f | j C a u 5: Goi H la chan duong cao cua chop thi H phai each deu cac c^nh cua day Suy hinh thang can ABCD c6 duong tron npi tiep tam H la trung diem (a + b + c + 3)^ Dat t = a + b + c +1 nen c6 t > Liic nay, P < (2sinx-3)cosx 2f2sinx-3 / \ / r ^ dx= I d(smx) = V - sin^x ^ sm x va truong hg-p ta chung minh dug-c H nSm day 27 Luc do, bieu thuc da cho tro thanh: P < • a + b+c+ fa It n Duong tron tiep xiic voi BC tai E + up /g c l^r ok om f ' vsin^ X u2 a'' + b'^ + c^ + > bo 71 X N C 27 ce „ sin-' X D ys.ABCD=l-^-l^l^^ ro n ^rXCOSX • s/ ^ AB = 2a, suy S^BCD = ^ C a u 6: A p dyng bat d5ng thuc trung binh cpng - trung binh nhan 2.(x + s i n x - ) c o s x , ^ xcosx_, (2sinx-3)cosx C a u 4: 1= dx= f ^dx+ ^ dx sm X „ sm X 7t \^ CD = i " o P ^ Do gia trj Ion nhat cua P = 8 dugc a = b = c = 11 PHAN RIENG T h i siifh chi dugic chpn l a m mpt h a i phan (phan A hoac B) A Theo chi/orng trinh chuan C a u 7.a: Duong tron ( C ) c6 tam l ( l ; - ) va ban kinh R = 163 Tuye'n chgn &• Gi&i thi$u dethi Todn hgc - Nguyen Phu Khdnh , Nguyen Tat Thu 3-8-20| IH = d(l,CD) = 2V2 =^ CI = = V2t2-4t + 10 hoac t = - l = > C ( - l ; l ) = = = R Suy d tiep xiic voi (C) Gpi H la tiep diem ciia (C) va d Toa dp H la nghi?m ciia h? phuang trinh H ( a ; a + ) G ( d ) , IH = (a - 3;a +1), IH CD « a - + a +1 = ^ a = H(l;3) ^ D(3;5) =^ CD = 4^2 (IC): y = 1, A(x;l) IC (x > 3) SAU^T^=- A(5;l) AB//d:x-y-4 =0 - ^ B(3;-1) = AB n DI BC: x + 2y - = DI: x = CauB.b: E e ( d ) = * E ( - + 2t;-l + t;3 + t) E e ( P ) : x + y - z + = 0=>t = l=>E(-l;0;4) L a y d i e m M ( - ; - l ; ) € ( d ) , ta c6: EF = ME.nj^ = (-1;1;1) /g ro up s/ Ta = o ( b - f + r2o-3b -2 y = 100 om 4 - c , BI=(-11;2) AC = c + 2; ok AC.BI = o - l l ( c + 2) + ^ i j ^ = o c = C ( ; ) bo A C l BI AIAB vuong can (AB + CD).(IH + IK) c c e d = > C c;-2 - c • AB = X - V2 IK x - x^ = - A(-2;-6) yA=2yi-yH YA =-6 Goi M la trung diem canh AB Do HA la duong kinh nen HM AM Tam giac HAB c6 HM vua la trung tuye'n vua la duong cao nen AHAB can 20-3b'l tai H =^ HB = HA = 2R = 10, B e d B b;- doi xung ciia H qua I b = -4 (b-4)^ + 12-3b^ = 0 o b ^ - b - = o b = 12 Do X B > ^ B(l2;-4) lA = |x - 3| iL ie uO nT hi Da iH oc 01 / 3x + y - = x = H(4;2) + y ^ - x + y - = [y = Do I la true tam AABC va IH BC =i> A e IH Ket hop A e (C) => la diem r20-3b -2 HB = o ( b - ) ^ t = (khong thoa) w fa ce Cau 8.a: B e (A) B(t -1;6 - t;2t - 5), mat cau tam B tiep xuc voi hai mat phSng (Oxz) va (P) - t h i A eat ( C ) tai hai d i e m p h a n bi?t A , B c6 hoanh d p khacl Taco: A ( X , ; X , - m ) , B ( X ; X - m ) = > d ( A ; O x ) = X, - m , d ( B ; O y ) = Theo bai toan, ta c6: X j - m = X j , theo V i - et: A B C D ( A B // C D ) Bie't hai d i n h B ( ; ) va C ( ; - ) Giao d i e m I ciia h a i d u o n g 166 167 2m+1 ' " ^ 2m + l m = m - T u ta dugc Xj.Xj • Cau 2: cos^ x - I ^ 2 sin^ 6x = o x = Cau 6: v^b + ^ Chia hai vecho x^ + x +1, ta dugc : x-1 x - l < x ^ + x + lx^>-2 (luon dung) om Voi t < tuc c V a i t > tuc | - A - l - > c : > x - l > ( x ^ + x + l)4x2+3x + 5 I C = I B o l t + t - = c ^ t = - - (khong thoa t > ) hoac t = => I ( l ; l ) Phuong trinh duong thang I C : x + y - = ce Dat t = cosx=>dt = - s i n x d x 2t-3 1 ^.t = — I n 2t + / 12 2t + A Theo chi/orng t r m h chuan fa = AH^ => d [ A , ( S M P ) ] = A H 11 PHAN RIENG T h i sinh chi dupe chpn lam mpt hai phan (phan A hoac B) sinx = -(2cosx-3)(2cosx.3) w -sinx ^ sinx ww Cau 4: Tmh t.ch phan: sinx minP^Vs bo Vay, bat phuong trinh da cho c6 nghi?m x > (SMP) < ^ ( b + c) = ^ ( - a ) Xet g(b) = Vb + V ^ t < t ^ + < = > t < l hoac t > x-l => A H = SP bien voi mpi a e [ ; ] va g(a)>g(o) = \/b+ %/c = N/b + V - b voi t > 0, ta dug-c bat phuong trinh: 1 SP (SMP) Xet g(a) = a + V b + v/c voi a [ ; ] Ta c6: g'(a) = l > , suy g(a) dong -+2 Ta + X + • (SAP) ± MP => (SAP) maxP = — k h i a = —, b = c = — 2 s/ Vx^ x-l (SM,NP) = SMK = arccos K h i d o P a - c > - b Tim gia tri ww II PHAN RIENG Thi sinh chi dugc chpn lam mpt hai phan (phan A hoac B) Cau 7.a: Trong mat phing Oxy, cho hinh binh hanh ABCD c6 B(1;5) va duong cao A H CO phuong trinh x + 2y - = 0, voi H thuQC BC, duong phan giac cua goc ACB c6 phuong trinh la x - y - = Tim toa dinh A , C, D Cau 8.a: Trong mat p h i n g Oxyz, cho ba duong thang J 172 x+1 -1 = y-3 = z + -, J d, : x-1 I y z , = - = - v a d o : I 7^ 14 o m = - — 3 Cau 2: Bien doi phuong trinh ve dang cosl0x + l + cos8x=cosx+2|4cos''x-3cos3xjcosx A Theo chi/ofng trinh chuan d, : Hl/dfNG DAN GIAI s/ up BN Cau 9.b: Goi z, va Z2 la hai nghiem phuc ciia phuong trinh: ^x + 2y + 74x + y = '^r In^x + lnx , Cau 4: Tinh tich phan: I = J i(lnx + x + l ) , dai 4^/3 X y z+2 -==-r = —:;— - ^ 2cos9x.cosx + l=cosx + 2cos9x.cosx cosx = l x = k7t ( k e Z ) Vay, phuong trinh c6 hp nghiem Jiu 3: Dieu Ki?n: 11 cho viet lai: x + 2y^0 4x + y >0 x(3x-7y + l)=:-2y(y-l) (1) 7x + y + x + y =5 (2) 17.-^ Tuye'u chyn & Giin thiju tic thi Toan h(fc-Nguyen PMi Khanh , Nguyen Tat 77in (1) » X (3x - y + ) = - y (y - ) » Cty TNHH MTV DWH Khang Vift 4 V i —b > a - c > —b hay a < —b + c < b + c nen < 4x < z x 5 Bx^ _ ( y - ) x + ly'^ - y = c > ( x - y + l ) ( x - y ) = « y = 3x + l (S) hoac x = 2y (4) AXXQC: V7X + + N/TX + T = d i e u k i ? n : x > V49x^+21x + = 11 - 7x 11 ^ - y n-7x>0 o 24z = x+y 17 175x = 119 , ^ / \x va xet Q ( y ) = y+z z+x 24(z-x)(y2-zx) Ta c6: Q ' ( y ) = 76 50x + 24x T h a y (4) vao (2)tadu(?c: ^ In^x + l n x Cau 4: (Inx + x + l f +J9y = o y = l = > x = (i^i„^)3^ Inx - + l=>dt = + lnx dx ( l + Inx) s/ Ta t = + a^ Sa^ A ' K ^ Vx-Vz z+ x c ok bo ce « t + fa ww Vay, the tich k h o i t u d i ? n B A ' C K la : a^^/l5 12(b + c - a ) 12(c + a - b ) 25(a + b - c ) Cau 6: Ta c6: 6: 0Q = - P = —5^ -+ — - + c a b 2x=b+c-a a= y+ z Da,t 2y = c + a - b = > b = z + x 2z = a + b - c c= x+ y ^ 5Qz _ 48t V^ + V ^ z+ x 50 t+ t^+i voi af(t) = i « i ^ t+ t^+i o48t'*-100t^-104t2-loot+ 48 = 0 Y"Y«t = i.Tathay, f / Su Suy Q > Q ( V ^ ) > £ w 2a 48N/X (t + l ) ^ ( t ^ + l f Dvrng d u o n g cao B I ciia tarn giac A B C t h i B I ( C A ' K ) n e n B I la d u o n g cao cua k h o i chop B A ' C K va B I = , va Q ( V ^ ) = T a c o : f ( t ) t ^ - l O O t ^ - t ^ - l O O t + 48 om A ' K = Ir/lS A A - = a N / l , A C ' = A ' C = a V O A - = a V , O K = 50z 3'2 up A ' H ^ ro AA'2 48Vx /g C a u 5: A ' K H = 30° => A ' K = A ' H , >0 247 —->24+ ::^Q>64 y + z 50x 50 •>40 z+ x De thay k h i y -> -oo t h i l n x ( l + lnx) + lnxDat x+ y 24z 50x = + —— x+y y+z z+x va Q ' ( y ) = o y = ±Vzx f (x + y ) ( y + z) iL ie uO nT hi Da iH oc 01 / T h a y (S) vao (2) ta 24x Q = ^ ^1^ v2y = 56, f t v3y -25 t + l l - = Gi = 57 \ - = hay - P > o P < - I D a n g t h u c xay k h i a = 2c, 3b = 5c ^ A Vay, m a x ? = - k h i a = 2c,3b = 5c P H A N R I E N G T h i s i n h chi dugrc chpn lam mpt hai phan (phan A Hoac B) Theo chUtfng trinh chuan Cau 7.a: B C d i qua B ( ; ) va v u o n g goc A H nen B C : - 2x + y - = Toa d p C la n g h i ^ m cua h | : -2x + y - = x-y-l=0 >C(-4;-5) ^ 175 Tuyen chgn b Giai thifu dethi Todn hgc - Nguyen Phu Khdnh , Nguyen ~CfyTNlni Tat Thu x+y-6=0 [x-y-l =0 >K Phuang trinh AC: x - 2y - = 0, A = CA' n A H => A(4; -1) =2»b = l Trung diem l(0;-3) cua AC, dong thoi I la trung diem BD nen D(-1;-11) =:> A ( l + a;a;a), B(b;2b;b - 2) Aedj/Bedj AB = (b - - a;2b - a;b - - a ) AB.u[ = l + a - b + 2b-a + b - - a = A B = N/6 ^ [(b-l-af+(2b-af+(b-2-a)^=6 b= ] hoac Voi a = 3=^c = - | =>(P): f+ ( - | a = -5 ri.|iz-3| = | z - - i | ^{y => iz - = - y - + xi va z - - i = (x - 2) + (y -1) + 3f + +(y-if ={x-2f x = - y - (l) Cau 9,b: Co A' = 4(2 - i f + ( l + i)(5 + 3i) = 16 up , 1 + Z2 =9 /g ok bo Vol y = - l = > x = l = > z = l - i fa ce V26 C a u 7.b: Toa dp tarn duong tron la l(4;l);ban kinh R = I PHAN C H U N G C H O TAT CA CAC T H I S I N K C a u 1: Cho ham so y = x"* - 2mx^ + m c6 thj (C^) •s a) Khao sat su bien thien va ve thj (Cj) cua ham so' w ww B.Theo chuorng trinh nang cao DETHITHUfSd27 c , 15y^ + lOy - = o y = - hoac y = ^ Goi A la duong th5ng qua A va cat duong tron tai M, N phuang trinh cua A CO dang la: y = k(x - 9) + b) Tim tat ca cac gia trj thuc cua m de thj ham so (C^ ) y = x'* - 2mx^ + m C O ba diem eye trj t^o mpt tam giac c6 ban kinh vong tron npi tiep Ian Hon C a u 2: Giai phuong trinh: sin^ x=cos^ x+cos^ 3x GQI H la trung diem M N , ta c6: I H = +1 Vay phuang trinh c6 hai nghifm phuc: om Tir ( l ) va (2) suy 3(-2y -1)^ + 3y2 - y - = = .-i=:> R2- MN N2 = Vl7-12=>/5=d(l;A) •au 3: Giai h? phuong trinh: •k = : ^ y = x - 1 = ro < » x + ( y + f = x + ( y + l f c ^ x + y - y - = (2) |4k-l-9k + x + 3y - 4z - = V^y, matphSng c a n t i m ( P ) : j^ + y - z - z + 3i| = |2z + i| o |x + (y + 3)i| = l2x + (2y + l ) i Voiy = - ^ x = - - ^ z a= -l Voi a = - :r> - = (khong thoa) c b = -2 C a u 9.a: z = x + y i (x, y e =l « a=3 Ta fa = l Matkhac A M = v / s B N » A M ^ = 3BN^ « ( a - l ) ^ + + = s/ Ta c6: b iL ie uO nT hi Da iH oc 01 / C a u 8.a: dj c6 vecto chi phuong la u i = ( - l ; l ; l ) Voi K/.,),/x Vift -+-+-=1 x y z • (P): - + ^ + - = 1, vi (P) di qua M, N nen ta c6: a b c 1 a c >A'{6;0) 2'2 nvvil Caul8.b: Gia sir (P) cat Ox, Oy, Oz Ian lupt tai A(a;0;0), B{0;b;0), C(0;0;c) Cau Ggi A' la diem doi xung B qua duong phan giac (d): x - y - = 0, BA n (d) = K Duong thSng KB di qua B va vuong goc (d) nen KB c6 phuong trinh x + y - = Toa dp diem K la nghi^m cua h?: MIV 21 J9x+y V x W ] 2x \ y > y -9 = 18 1x2 ) Tuyen cht?n & GiaithJQU aethi , Toan HQC - Nguyen Phu RhAnh , Ni;,nf,'„ Tnf r IHU VxV''+3xe''+e''+K Cau 4: Tinh tich phan: I = I dx n y I J V H H MIV UVVH Khang VI HlTtifNGDANGlAl I PHAN CHUNG CHO TAT CA CAC THI SINH Cau 1: a) Danh cho ban dpc b) m > thi thj ham so da cho eo cue trj xe^+l Cau 5: Cho tu di^n deu SABC Gpi (P) la mat phSng di qua duong cao SO ciia tu di^n; mat ph3ng (P) cat cac mat phSng (SBC), (SCA) va (SAB) Ian lupt theo A ( ; m ) , B(-Vii^;m-m2),c(>A^;m-m2) =^S.^^^ = (ABC) cac goc a, p, y Chung minh: tan^ a + tan^ (3 + tan^ y = 12 p = vm^ +m + V m iL ie uO nT hi Da iH oc 01 / cac giao tuyen SM, SN, SP Cac giao tuyen Ian lupt tao voi mat phing Cau 6: Cho cac so thuc duong a, b, c doi mot khac thoa man 2a < c va Si L^i'^o r = ^ > l « V m - % m >m^+ m c \ ab + be = 2c^ Tim gia tri Ion nhat cua bieu thuc: P = + •; + • a-b b-c c-a II PHAN RIENG Thi sinh chi dug^c chpn lam mpt hai phan (phan A o (cos 3x + cOS5x) cos 3x=0 o cos2x.cos x.cos 3x=0 Cau 7.a: Trong mat phang tpa Oxy, cho parabol (P): y = x^ + 2x - Xet eos2x = hinh binh hanh ABCD A { - ; - ) , B(2;5) thuoc (P) va tam I cua hinh binh cos X up ro Cau 8.a: Trong mat phing tpa Oxyz, cho diem A(l; 2; -1), B(2; 1; I ) ; C(0; I ; 2) i = ^^-^ = ^-i^ Hay lap Cau 3: Nhan thay om phuong trinh duong thMng ( A ) di qua true tam cua tam giac ABC, nam 2x=r-+k7t cos2x = x=-+k4 2 cos3x = 2x 9x + ^ Cau 4: I = Ij w Cau 7.b: Trong mat phSng tpa dp Oxy, tam giac ABC can tai A, c6 dinh B va C Q = 9xy + x=-+k6 18x2 y2 + Z_ + , v ^ I^, do: I, = /(xe" + l)dx va Tinhli= ww thupc duong thing di: x + y + = Duong cao di qua dinh B la d2: x - 2y - = 0, = f^^^il^x '^e" +1 I= X ffxe' voi V t e ; - ok NO 180 ro NM Xet f ( t ) = l ^' /g , , om >/3cosm-3sinm NO s/ a>/3cosm-3asinm 23 N NM O sinm.- c , +- ^-^ c c Ta A p dung djnh h' Menelauyt cho AOHM c6 CM H N NM O H AO m Vay, ( ) dung Do c6 dieu phai chiing minh sinm a ^2sm^ a^ (3) aVScosm (3cosm - V S s i n m f IS^sin^m + cos^mj Mr CM = H M - H C = Op2; (3cosm + >/3sinm)^ ta chung minh (2) Khg^w H K h a t , tuc I la tiep diem cua tiep tuye'n (d)//AB cua (P) Phuong trinh duong thang A B : y = 3x - 11=> ( d ) : y = 3x+ c iV3 r/3cosm + sinm 6sinm 3cosm+ ^/3sinm (d) tiep xuc (P) tai diem I I 2'~4 •C - ; - ) , D 181

Ngày đăng: 12/03/2017, 19:29

TỪ KHÓA LIÊN QUAN

w