1. Trang chủ
  2. » Khoa Học Tự Nhiên

luyện thi đại học môn toán

30 319 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 13,2 MB

Nội dung

Cau 9b: Dat t = |z|, t > thi ta c6 \zf (a.z + b) = -c.z Nen ta c6 |c|.t < t^ (|a|.t + |b|) t^ + t - l>0t> Va | c | t > t ^ ( | a | t - | b | ) o t - t - l < o t < V^y < |z| < Cau 8a: Trong khong gian voi h# tpa dp Oxyz cho hai duong thang: - + 75 dj:2^ =X =^ ; Cau 9a: Cho Z j , Z2 la cae nghi#m phuc ciia phuong trinh 2z^ - 4z + l l = Z, +|Z2 iL ie uO nT hi Da iH oc 01 / DETHITHUfSdlO (zi+z2r B Theo chUorng trinh nang cao Cau 7b: Trong mat p h i n g voi h? tpa dp Oxy cho ba diem vuong, AB d i qua E va CD d i qua F - 3mx^ + 4m^ c6 thj (Cm) Cau 8b: Trong khong gian Oxyz, t i m tren Ox diem A each deu duong , x—1 V z+ ' thang d : — ^ = = va mat phang (a): 2x - y - 2z = a) Khao sat sy bien thien va ve thi ham so' m = , b) Xac djnh m de hai diem eye trj cua thi ham so' doi xiing qua duong t h i n g y = x s/ up /g ro ( y - ) + ^ = x3y[(2y + 3)2-6' c om dx ok - i l + x + V l + x^ Cau 9b: (1 diem) Giai h ^ phuong trinh sau: Ta n Cau 2: Giai phuong trinh: (sin^ x +1 j +1 = 73 sin 2x + sin x + — 6J -xy = bo Cau 5: Cho hinh chop S.ABCD c6 day ABCD la hinh chu nhat eo tam O va 2logi_x(-xy - 2x + y + 2) + log2+y (x^ - 2x +1) = , (x,y6R) logi-x (y + 5) - log2+y (x + 4) =1 HirdNGDANGlAl I PHAN CHUNG CHO TAT CA CAC THI SINH Caul: a) B?n dpc t y lam b) Ta c6: y' = 3x^ - m x , y' = 0x = v x = 2m Ham so' c6 hai diem eye trj o m ?t p h i n g (SAC) tao voi day mpt goc 60° Tinh the tich khoi chop S.ABCD Cac diem eye tri ciia (C^,) la M ( ; 4m^)va N ( m ; ) w ww (a+b fa ce AB = a, A D = a73 ; SO = SD Mat phSng (SBD) vuong goc voi mat day, mat Cau6: Chung minh rang ne'u a,b,c>0 t h i : a+b b+c ic + a ^ Vb+c Trung diem cua doan M N la l ( m ; 2m^ j v a M N = (2m;-4m3) ya+c I I PHAN RIENG T h i sinh chi dugc chpn lam mpt hai phan (phan A ho^c B) Duong t h i n g d : y = x c6 vecto chi phuong la u = ( l ; l ) M , N doi xung qua duong t h i n g (d) M N (d) va I G (d) A Theo chUorng trinh chuan MN.u = 2m + (-4m^) = m =0 Cau 7a: Trong mp voi h? tpa dp Oxy cho duong tron (C) c6 phuong trinh 2m'' = m m(2m2-l) = m =± x^ + y^ - 2x + 6y - = Viet PT duong thing A vuong goc voi duong thing d : 4x - 3y + = va cat duong tron (C) t^i A, B cho AB = 62 I(l;l),E(-2;2), F(2;-2) Tim tpa dp cac dinh cua hinh vuong ABCD, bie't I la tam cua hinh I PHAN CHUNG CHO TAT CA CAC THI SINH Cau 4: Tinh tich phan: I = [ - va hai diem A ( l ; - ; ) , B(3;-4;-2) cho l A + IB dgt gia trj nho nhat Cau 3: Giai hf phuong trinh =^ Xet vi tri tuong doi ciia d] va d Tim tpa dp diem I tren duong t h i n g d j + 75 Tinh Cau 1: Cho ham so y = d : ^ =^ Ke't hpp dieu kif n ta dupe m = ± 72 72 63 " ^ Cau 2: P h u o n g t r i n h t u o n g d u o n g v o i : Vay nghi^m cua h§ da cho la: sin"* X + 2sin^ x + - 2\/3 sin xcosx - V s i n x - c o s x = sin x = -^ ^ cosx = X = k n [ V s i n x + c o s x - l =0 u^-l => iL ie uO nT hi Da iH oc 01 / Ta s/ up c i bo ok + fa ce s = -5-M w < 4P ww ^ v n g h i ^ m P = 13 — v l P = /g P =1 om "S = ro + y , P = xy ta c6: S= 2 I u2 du •+ — u^u+lj du J du = !n(u + l ) - ^ l n u =1 SH OD SH (ABCD) Gpi K la hinh chieu cua H len canh A C , suy goc H K S chinh la goc giira hai mat phang ( S A C ) va mat day nen H K S - 60° Ta c6: A C = B D = 2a O C - a => A O C D deu G Q I E la trung diem cua O C , suy ^ H K = 1DE = - ^ Trong tarn giac vuong S H K ta c6: ^ S H = HKtan60" ^ : ^ 4 Vay the tich cua khol chop la: Vs.ABCD = |SH.SABCD B =1^'^'^^^^^ Cau : Ap dyng bat dang thuc y/x + ^Jy < ^2(x + y ) , ta c6 : " g h i ? m ciia p h u o n g t r i n h : a+b c 4t2 + ( + l ) t +13 + 713 = o t = 64 V2+1 nen S H la duong cao cua hinh chop [x + y + 2xy = - + VT3 x = l=:>u^72 + l M|t khac (SBD) ( A B C D ) T ^e tn uhgip voi•u'^^ , ( u - x)^ = + x^ ( d a cho t u o n g d u o n g v o i : x^ + =0 < » s i n ' ' X H-^N/Ssinx + c o s x - l ) Cau : -5-713+76713-14 (x;y) = ( l ; i ) I^^-^^l^^^Eli 7^r + 72U b+c /c + a 7^_^7bl + -/ > 72 t7? 7?J r^^^7b^ 7b_^7?1 721,7^ 1 7b n 7? 1 ^ b j 72l7^ ? j 72l7^ b J 7^j 72 7a 7a ^ ' -_1 1 Ap dune bat dang thuc — + — > x y x N/ZIVC VbJ"^ V2l>/a +y 3N/2 , ta c6 : ^ycJ x/b 2^y2a 2>/2b = Vb + N/c 272^ 2V2b ^ 272^ Vb + Vc Va + Vc ^ 2N/2C x/a+Vc ^ya^-^/b Do ^ 2V2b Va + N/b ~ ^/2(b + c) = (a + b pia ^ ^2{a + c) Va + c 2>^ "Vb + c + b) + 11 Z2 Duong thang CD c6 phuong trinh dang: (dpcm) a ( x - ) + b(y + 2) = ax + by - 2a + 2b = V i d ( I , A B ) = d(IXD)=;> A Theo chUtfng trinh chuan |3a-b| _ |a-3b| a = - b , Va^ + b^ Va^ + b^ Suy phuong trinh A B : x - y + = 0, C D : x - y - = Ta Cau 7a: Duong tron (C) c6 tam 1(1;-3), ban kinh R = Gpi H la trung diem Phuong trinh BC va D A c6 dang x + y + c = d(I,BC) = d ( I , AB) = 2V2 =i s/ AB thi A H = va I H A B => I H = up Matkhac I H - d ( l , A ) /g ro Vi A l d : 4x - 3y + = => A: 3x + 4y + c = om = 4C = 29,C = -11 fa il^ = - u ^ Gpi A j la diem do'i xung cua A qua d j Suy A ( l ; ) , B ( - ; l ) , C ( l ; - ) , D ( ; l ) BC:x + y - - , D A : x + y + = • Suy A ( - ; l ) , B ( l ; ) , C ( ; l ) , D ( l ; - ) Cau 8b: Gpi A ( a ; ; ) £ O x (a) qua ww Taco AB = ( ; - ; - ) = > A B / / d i w Ma M ( ; ; - l ) d i nhung M g d j =>d,//d2 c = 2,c = - |2at Khoang each t u A deh m|it phang (a) : d ( A ; a ) = - j = = = = = ce Cau 8a: Vec to chi phuong cua hai duong thang Ian lugt la: bo ok 3x + 4y + 29 = va 3x + y - l l = = 272 BC:x + y + = 0, D A : x + y - = • c Vay CO duang thang thoa man bai toan: u7 = ( ; - ; - ) , u^ - (-2;3;4) = 3v'2 ax + by + 2a - 2b = vai a^ + b^ > hoac B) lc-9| ; z, + Z =1+ B Theo chUtfng trinh nang cao Cau 7b: Duong thang AB c6 phuong trinh dang: a(x + 2) + b(y - 2) = I I PHAN RIENG T h i sinh chi dirgic chpn lam mpt hai phan (phan A d(I,A)-IH x/22 Z2 2 ?=• + • + —!= < ^2(x + y ) , ta c6 : 2N/2^ •3^/2' Suy >^= A p dung bat d i n g thuc Vx + ^ i, Cau 9a: Phuong trinh da c6 cac nghiem: zi - ^ - iL ie uO nT hi Da iH oc 01 / ^ M o ( l ; ; - ) va c6 vecto chi phuong u = ( l ; 2; ) D3t M Q M I = u Do do: d ( A ; ( a ) ) la ihionj'; cao ve tu A tam giac A M Q M I j / A ^ 2.S,^MoMi ['•'^^o;"] V8a2-24a + 36 =>d(A;A) = 1- = -^;— i = Taco: l A + IB = l A j + I B > A i B Suyra l A + IB dat gia trj nho nha't bang A j B , dat dup-c A i , I , B thang hang I la giao diem ciia AjB va d J 65 -21 Do A B / / d i => I la trung diem ciia AjB suy I 129 58 66 Theo gia thiet: d ( A ; ( a ) ) - C I ( A ; A ) -43 29 J o |2a| !—= Vsa^ - 24a + 36 4a , = oSa"^2 - -.^ A 24a + 36 4a - r 24a + -.^ 36 = n0 CtyTNHHMTV 4(a-3)^ =0a = day, A D = ay/3 G p i E, F Ian l u p t t r u n g d i e m ciia cac d o a n BC, D E T i n h the - x y - 2x + y + > 0, - 2x + > 0, y + > 0, X + > jfch h i n h chop F.ABC C h u n g m i n h A F v u o n g goc v o l C D < l - X t l , < + y;itl Cau 6: C h o so t h u c d u o n g a, b thoa m a n : 6|a^ + b^ j + 20ab = 5(a + b ) ( a b + ) l o g i _ x [ ( - x ) ( y + ) ] + 2log2+y (1 - x ) = T i m gia t r j n h o nhat ciia bieu thuc l o g i - x ( y + ) - l o g + y ( x + 4) = l j l o g i - x ( y + 2) + log2+y (1 - x ) - = (1) l l o g i - x ( y + ) - I o g ^ y ( x + 4) (2)' =1 P = II y = -X-1 s/ up ro /g ok c om DETHITHllfSdll bo I P H A N C H U N G C H O T A T CA C A C T H I S I N H fa ce Cau : C h o h a m so y = x^ - Sx^ + , c6 d o t h j la ( C ) w a) K h a o sat s u bien t h i e n va ve d o thj ( C ) ciia h a m so ww b) T i m cac d i e m A , B thupc d o t h i ( C ) cho tiep t u y e n ciia ( C ) tai A , B dx Cau 4: T i n h t i c h p h a n : I = fix^+2x b^^ PHAN R I E N G T h i s i n h c h i d u p e ehpn l a m m p t t r o n g h a i p h a n ( p h a n A Cau 8.a: T r o n g m a t phSng tpa d p O x y z , cho hai mat p h a n g ( P ) : x + ^ - z + = V a y h? C O n g h i p m d a y nhat x = - , y = Cau 3: Giai p h u o n g t r i n h : 2(x^ + 2) = 5Vx^ + l ' l ^ i ciia h i n h chu nhat bie't D n a m tren d u o n g thang c6 p h u o n g t r i n h : x - y - = K i e m tra d i e u k i ^ n ta thay chi c6 x = - , y = thoa m a n d i e u k i | n tren rilTt ' f 4^ dinh A ( l ; l ) G p i G ; la trpng tarn tam giac A B D T i m tpa d p cac d i n h = Cau 2: Giai p h u o n g t r i n h : cos 2x + - - sin V 6; U2 + 25 Cau 7.a: T r o n g mat phJing tpa d p Oxy, cho h i n h c h i i nhat A B C D , v o i toa dp cac x+ -x + ^ « rx = 0=>y = - l = l - x < = > x ^ + x = ^ x+ [_x = - = > y = l song song v o i n h a u va A B = 4V2 a ^ b Ta o b -16 A Theo chi/orng trinh chuan (3).The vao (2) ta c6: l o g i - x ( - X + 4) - l o g i _ , (x + 4) = l o g i _ , hoac B) D a t l o g + y ( l - x ) = t t h i (1) t r o thanh: t + ^ - = < » ( t - l ) ^ = O o t = l V o l t = ta c6: - X = y + o a iL ie uO nT hi Da iH oc 01 / H $ da cho Khang Vjft Cau 5: C h o t u d i ^ n A B C D c6 A B C la tarn giac deu canh b i n g 2a, A D v u o n g g6c V a y A (3; 0; ) C a u 9b: D i e u k i ^ n : DWH > x + j va ( Q ) : X + 2y - 2z - = Viet p h u o n g t r i n h mat cau (S) d i qua goc tpa dp O, qua d i e m A (5; 2; ) d o n g t h o i tiep xiic v o i ca hai mat phSng ( P ) va ( Q ) Cau 9.a: T i n h m o d u n ciia so p h u c z , bie't z^ + 12i = z va z c6 phan thuc d u o n g B Theo chUorng trinh nang cao X^ y2 Cau 7.b T r o n g m a t phang tpa d p Oxyz, cho elip ( E ) : — + ^ = va d u o n g thSng d : X + y + 2013 = Lap p h u o n g t r i n h d u o n g thang A v u o n g goc v o i d va c^t ( E ) tai hai d i e m M , N cho M N = — Cau 8.b T r o n g mat phSng tpa d p O x y z , cho mat phang ( P ) : x - 2y + 2z + = va d u o n g th5ng ( d ) : = = M a t cau (S) c6 tarn I n a m tren d u o n g thang ( d ) va giao v o i m a t phang ( P ) theo m p t d u o n g t r o n , d u o n g t r o n Voi t a m I tao t h a n h m p t h i n h non c6 the tich Ion nhat Viet p h u o n g t r i n h mat cau (S), bie't ban k i n h m g t cau bSng 3N/3 Cau 9.b: Giai h$ p h u o n g t r i n h sau: 2x'^ + x y - x - y + l = 2=0 63 iHiiii' 69 Tuyen ch(>n fy Gim thieti dethi Todn H Q C - Nguyen Phu Khdnh , Nguyen Tat Cty Thu WSQm DANGlAl Cau 3: Voi ^ I P H A N C H U N G CHO TAT CA CAC T H I SINH Cau 1: b) Goi A^a;a'' -3a^ + l j va B|b;b^ -3b^ +1 va a ?t b la cac diem thoa man Do tiep tuyen tren song song voi nen ta phai c6 y'(a) = y'(b) Cau 4: I = j - L a i c : A B = 4V2 o ^(a - b f + (a^ - b ^ + Sa^ + 3b2) Ta s/ =32 (2) up l + (2 + ab)^ ro /g c - 2X - = => X = - hoac X = 4[Jl-2 !t 12 + sin ww X +- = o X = — + k27t sm x + 12 12 Cau 5: Ta c6 E la trung diem B C A E = -!-(AB + A C J F la trung diem D E => A F = ^ ( A D + A E X + • 12 = - A D + - A B + - A C -7 = (*) 4 C D = A D - A C => A F C D 1 -AD+-AB+-AC 4 A D - AC = i A D - i A D A C + -!-AB.AD AB.AC + - A C A D - - A C 2 4 4 AD^ =(aV3) =33^ , AC^ =4a2 A D AC , A D AB => AD.AC = AD.AB = 0, - X t-2 ce w fa f X + —O I 12j Khi phuong trinh (*) tro thanh: 5t^ + 2t - = => t = tuc phai c6: ll7t t(l-2) In AD + i ( A B + Ac) voi -1 < t < Chu y\O the dat t = 12 i> dt hoac A ( ; ) , B ( - ; - ) thoa man yeu cau bai toan 12j , dt Jt(t-2) bo Do ton tai hai d i e m A ( - ; - ) , B ( ; ) X +• xdx ok Vay a, b la nghiem phuong trinh: Dat t = sin + - X = =>x = om (4 - 4t)(5 + 4t +1^) - 32 = ; o t^ + 3t^ +1 + = o (t^ + l ) ( t + 3) = ^ t = -3 Phuong trinh cho viet lai: 5sin^ 3VlO-3x +3 Khi do: D l t t = ab va thay a + b = (do (l)) vao (2) ta duoc : [n + X - ) ( u - x + 2) = 0=> X = Dat t = x^ + => dt = 2xdx hay xdx = - d t =\4i o ( b - a ) ^ l + (2 + a b f = 32 o ^(b - a)^ + (b - af (2 + a b f = A^l 27 dx ]X''+2x 3(a-b)(a + b ) - ( a - b ) = « ( a - b ) ( a + b - ) = =>a + b = ( l ) = sin Khang , dat u = V l - x , dua phuong trinh ve h^: iL ie uO nT hi Da iH oc 01 / Huang 2: (x-3) Phuong trinh tiep tuyen tai B c6 h? so goc y'(b) = 3b^ - b - X DWH Huang 1: 9(l0-3x) = x"* +16x2 -8x^ c ^ ( x - ) ( x + 2)(x2 - x + 15) = Phuong trinh tiep tuyen tai A c6 he so goc y'(a) = 3a^ - 6a Cau 2: Ta c6: sin MTV Cdch khdc: Binh phuong ve, ta duoc: l - x - = -x^ + 4x - bai toan Ta c6: y ' = x ^ - x (a + b f - a b 10 X 4x + 3u ^ fj.^ yg'fj^gQ yg'ja ^u,g,c u^ + X - = a) Danh cho ban dpc Hay J ^ i i ^ ( ) iL ie uO nT hi Da iH oc 01 / a ' ' G - X A = ( X I - X C ) AG = 2GI 10^/3(tT2)t>H b^a a b' fa h^' b"^a -2, -3 b3 a^ = fa b] (a b^ ^b a) [b aj yG-yA=2(yi-yG) Tir d o : phuong trinh: (x - a)^ + (y - b)^ + (z - c)^ = R^ Mat cau (S) di qua diem O, A nen c6: ro /g +b^ c 14156 27 +{b-2f fa a + 2b-2c + |a + b - c - V+2^+2' -1 o a + 2b-2c = (3) A Theo chUcrng trinh chuan T a g i a i h a ( l ) , (2) v a (3) w (2) M3t cau Hep xuc vol (P) va ( Q ) O d(l;(P)) = d ( l ; ( Q ) ) I I P H A N R I E N G T h i sinh chi dugfc chpn lam mpt hai phan (phan A hoac B) ww o a + 2b + c = 15 ( l ) +{c-lf d[{P),(Q)] y ok 27 C(4;2) Cau S.a: Gia su mat cau ta dang d i tim c6 tam I(a; b; c) va ban kinh la R, nen c6 bo V y X C = X M - X A = A D DC f'(t) = t - t - 2 t + 48 va f ' ( t ) > vai V t > — , suy f ( t ) luon dong 10 bien tren nua khoang -;+oo 14156 yi=- D e d : x - y - = 0=> D(x; x - 2) -2i Xethamso f ( t ) = t ' ' - t - l l t ^ + t - v o i ^10^ ,'^c=2yM-yA=2 P = 9t''-16t3-llt2+48t-32 P>f ' Do ABCD la hinh chii nhat nen ta c61 la trung diem ciia AC n2 ^a b^^ , —+ — -2 ^b a ^ a + 2b-2c + = a + b - c - a + 2b-2c + = -(a + b - c - ) Cau 7.a: Cdch i:Go\ la giao diem duong cheo hinh chCr nhat ABCD V i G la trpng tam tam giac ABD nen A, G, I thang hang Theo tinh chat trpng tam tam giac ta (5 3^ de dang tim toa dp diem I - ; - Vi I l a trung diem AC nen biet tpa dp A, I ta se tim tpa dp C(4;2) Vi D thuoc duang thSng x - y - = m a C thoa man phuong trinh Cau9.a: Gia su z = x + y i , ( x , y e O X' +12i = z (x + y i ) ^ + 12i = x - y i - x y + ( x y - y ^ + i = x-yi Do X > r:i> ( l ) x3-3xy2=x (1) 3x2y-y%12 = -y (2) x^ = 3y^ + The vao (2) ta dupe 3(3y^ + l j y - y ^ + = - y = Do x > nen x = Voi, t = — =^ I Vay z = - i => |zj = N/S Cau 7.b: (A) C6 phuong trinhy = x + b,he M Phuong trinh giao diem cua (A) 10 Cau 9.b: 3x^ + bx + 2b^ -10 = (l) ^ ( ' ' M - X N ) ' = y hay (x,, +x^)^ -4x^.x^ = ^ (2) 4b A^^-i^ _ -2=0 - 2b2-10 = 16 — b = -3 hoac b = x =0 y=l hoac c om Cau 8.b The tich khoi non la V = - S h , h = d(l;(P)), day la duong • ok bo ce = 27-h^ ^ V = - f - h ) h fa A p dyng bat dang thuc trung binh CQng, trung binh nhan: ww w (27-h^j + (27-h^j + 2h2 >3^(27-h^)^2h2 hay ( - h ) h < DSng thuc xay 2h2 = 27 - h^ h = Vay, max V = 1871 h = Hon niia: I € d =:> l(2 +1 ;-2t ; - l + 3t) d(l;{P)) = h = o | l l t + 2| = » t = - l hoac \= ^ Voi, t = -1 => 1(1 ;2 ;-4) phuong trinh mat cau (S): (x-l)^(y-2f.(z.4f 74 =27 ' ^ = x + y -1 = x=— 41 y=± 2N/X^V =2 y=0 OETHITHijfs6l2 up ro /g Vay, CO hai duong thang thoa man yeu cau de bai la y = x + 3, y = x - tron giao tuyen ciia mat phang voi mat cau 2x-l = x =l Ta 2b2-10 hoac (3) s/ Ap dung dinh ly Vi-et cho phuong trinh ( l ) : • = r^ - h^ =^ 2x2 + x y - x - y + l=0 (2x-l)(x-l) + y(2x-l) = MN = l ^ c M N ^ = f o ( y , - y , f ( x , - x , f = f Taco: 10 \ = 27 11 2x^ + x y - x - y + l=0 y =x+ b Tu (2) va (3) suy ra: Z iL ie uO nT hi Da iH oc 01 / vaa (E) la : 14 y+ — 29 X-11 B Theo chiforng trinh nang cao y=X+b 29 _14 10 phuong trinh mat cau ( S ) : 11' 11 '11 I PHAN CHUNG CHO TAT CA CAC THI SINH Cau 1: Cho ham so y = x"* - x^ +1, c6 thj la ( C ) a) Khao sat su bien thien va ve thj (C) cua ham so b) Tim tren thj (C) nhCrng diem A cho tiep tuyen tai A cat (C) tai hai diem B, C khac A va B, C nSm ve phia doi voi A 3(cOtX + l) r( 771^ , Cau 2: Giai phuong trinh: 3cot x + -^^ ^-4V2cos x + — =1 (1) j smx Cau 3: Giai phuong trinh: (13 - 4x) ^ + (4x - 3) VS - 2x = + 8N/-4X2 + 16X - ich phan: I = Cau 4: Tinh tich V (2), dx p 7=== O ^ + N/X + N/X + I Cau 5: Cho hinh chop S.ABC, day ABC la tarn giac vuong tai B c6 AB = a, BC = a73, SA vuong goc voi mat ph5ng {ABC) va SA = 2a Gpi M, N iSn lu

Ngày đăng: 12/03/2017, 19:29

TỪ KHÓA LIÊN QUAN

w