1. Trang chủ
  2. » Giáo án - Bài giảng

15 de kt1t mu logarit

33 304 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 1,47 MB

Nội dung

www.MATHVN.com Toỏn hc Vit Nam www.MATHVN.com KIM TRA TIT CHNG S 13 MễN: GII TCH 12 Thi gian lm bi: 45 phỳt H v tờn thớ sinh: Lp Cõu 1: Tp xỏc nh ca hm s y = A [ 1; 4] C ( 1;4 ) x x l: B ( ; 1] [ 4; + ) D ( ; 1) ( 4; + ) B x = Cõu 3: Rỳt gn A = a a A + a C x = 11 + a2 B a ( C + a Cõu 4: o hm ca hm s y = log3 x + 3x C y ' = 2x + x + 3x ( x + 3) ln + = cú nghim l: log x + log x B ; 10 10 A {10; 100} ( Cõu 6: Cho hm s y = x ) C y ' = x (x ) 3 8) D Khi ú: C {1; 20} ma th ( 2x + ( x + 3x 2) ln D y ' = ( x + 3) ln x2 + 3x A y ' = x l: B y ' = Cõu 5: Phng trỡnh ) D + a A y ' = D x = co A x = m Cõu 2: Phng trỡnh log ( x 3) + log ( x 1) = cú nghim l: B y ' = D y ' = ( x3 ) ( 3x ) 1 Cõu 7: Nu log = a thỡ log 9000 bng: A + 2a ( ) B a + C a D 3a Cõu 8: Cho y = ln x + Khi ú y ' (1) cú giỏ tr l: A B C D 125 theo a: B ( a + 5) C (1 + a ) D + 7a Cõu 9: Cho log = a Tớnh log A 5a Cõu 10: S nghim ca phng trỡnh x 3.2 x + = l: A B C Cõu 11: Cho > Kt lun no sau õy ỳng ? Facebook.com/mathvncom 26 D www.MATHVN.com Toỏn hc Vit Nam A < B . = ( Cõu 12: Cho hm s y = x + x ) C + = Khi ú: A y ' = ( x + 1) ( B y ' = x + x Cõu 14: Giỏ tr ca a A C C 49 B Cõu 15: Tp xỏc nh ca hm s y = x A D = [ 2;1] + x B D = R l: C D = ( 2;1) ) D D = R \ {1; 2} D 5log b a Cõu 17: Hm s y = log x x cú xỏc nh l: B D = [ 0;5] A ( ;0 ) ( 5; + ) ( x + 1) D Cõu 16: Giỏ tr ca biu thc C = log a l: b A 5log b a B 5log a b C 5log a b ( + x 4) D 10 ( < a 1) l: 22+ 51+ B 10 a ) ln ( x D y ' = ( x + x ) 102+ log co A m C y ' = ( x + x ) Cõu 13: Rỳt gn A = D > C ( ;0] [5; + ) D D = ( 0;5 ) Cõu 18: Cho x1 , x2 l hai nghim ca phng trỡnh 5x + 53 x = 26 Khi ú tng x1 + x2 cú giỏ tr: A B C D ( < a 1) l: ma th Cõu 19: Giỏ tr ca log a a A B Cõu 19: Biu thc A x B x Cõu 20: Giỏ tr ca a log a2 5 ( < a 1) D Cõu 21: Hm s y = ( x 1) C x D x l: B 52 A R\ {1} x x x5 (x > 0) vit di dng lu tha vi s m hu t : A 58 C C 54 D cú xỏc nh l: B ( ;1) D (1;+ ) C R Cõu 22: o hm ca hm s y = 2016 x l: A y ' = 2016 x B y ' = x 2016 x 2016 x C y ' = 2016 ln 2016 D y ' = ln 2016 x Cõu 23: Hm s y = x.e x cú o hm bng: A y ' = x e x B y ' = e x Facebook.com/mathvncom C y ' = xe x 27 D y ' = e x + xe x www.MATHVN.com Toỏn hc Vit Nam x2 + x + = Khi ú tớch x1.x2 cú giỏ tr: D Cõu 25: Cho log = a; log = b Tớnh log 2016 theo a v b: A + 2a + 3b B + 2a + b C + 3a + 2b D + 3a + 2b Cõu 26: Tỡm mnh ỳng? Cõu 24: Cho x1 , x2 l hai nghim ca phng trỡnh A B C y= ( 3) C Hm s y = x luụn nghch bin x D Hm s y = luụn nghch bin luụn nghch bin m A Hm s x y= luụn ng bin B Hm s x Cõu 27: Cho phng trỡnh log 22 x + 5log 3.log x = Tp nghim ca phng trỡnh l: ;1 64 ; 64 B C Cõu 28: Hm s y = x cú xỏc nh l: B ( ;0 ) A C ( 0; + ) Cõu 29: Phng trỡnh log x + 3log x = cú nghim l: A {4; 16} B {2; 8} ( A B C ) ( < a 1) C ma th - HT Facebook.com/mathvncom D \ {0} D {4; 3} l: Cõu 30: Giỏ tr ca log log a a D {1;2} co A 28 D www.MATHVN.com Toỏn hc Vit Nam www.MATHVN.com KIM TRA TIT CHNG S 14 MễN: GII TCH 12 Thi gian lm bi: 45 phỳt H v tờn thớ sinh: Lp Cõu 1: Tỡm m phng trỡnh log 22 x log x + = m cú nghim x [1; 8] A m B m C m D m B a 2b14 C a 8b14 Cõu 3: Nghim ca phng trỡnh: A B D a 4b x = 0,125.42x l: C D co A a 6b12 m Cõu 2: Nu log x = log ab log a 3b (a, b > 0) thỡ x bng: 3 31 Cõu 4: Tớnh: = : 42 + ( 32 ) : 53.252 + ( 0, ) ta c 33 A B C 3 13 D Cõu 5: Tỡm m phng trỡnh log 32 x ( m + 2).log x + 3m = cú nghim x1, x2 cho x1.x2 = 27 B m = 28 Cõu 6: Nghim ca bt phng trỡnh log 22 x log A x > 1 A R\ ; 2 B (0; +)) Cõu 8: Hm s f(x) = x ln x t cc tr ti im: A x = B x = e e Cõu 9: Hm s y = ln A (-2; 2) ( x + l: D 0; [ 4; + ) cú xỏc nh l: ma th D m = 25 C < x B x Cõu 7: Hm s y = ( x 1) C m = A m = C R 1 D ; 2 C x = e D x = e ) x + x x cú xỏc nh l: B (- ; -2) (2; +) C (- ; -2) D (1; + ) 1 y y Cõu 10: Cho = x y + Biu thc rỳt gn ca l: x x A x B 2x C x + D x x x Cõu 11: Tỡm m phng trỡnh - 2(m - 1).2 + 3m - = cú nghim x1, x2 cho x1 + x2 = A m = B m = C m = Cõu 12: Nghim ca phng trỡnh log 22 x + 3log 2x = l: A ẳ B -1 v -2 C ẳ v ẵ Facebook.com/mathvncom 29 D m = D -2 www.MATHVN.com Toỏn hc Vit Nam Cõu 13: Nghim ca phng trỡnh log ( B v A 5.2 x ) = x l: 2x + D C Cõu 14: S nghim ca phng trỡnh 6.9 x 13.6 x + 6.4 x = l: A B C D x 5+3 +3 cú giỏ tr bng: 3x x C D 2 x Cõu 15: Cho x + x = 23 Khi o biu thc = B m A Cõu 16: Nghim ca phng trỡnh log ( x 1) + log (2x 1) = l: co A Vụ nghim B C D Cõu 17: Cho a > v a 1, x v y l hai s dng Tỡm mnh ỳng cỏc mnh sau: x log a x A log a = B log a ( x + y ) = log a x + log a y y log a y 1 C log a = D log b x = log b a.log a x x log a x Cõu 18: Hm s y = x x + cú o hm f(0) l: 1 A B C 3 Cõu 19: Giỏ tr nh nht ca hm s f ( x) = x(2 ln x) trờn [2 ; 3] l: A B e C 4-2ln2 Cõu 20: Gii phng trỡnh log ( x ) log 2 A x = v x = - ( 2+ ) +( C x = v x = ma th Cõu 21: Gii phng trỡnh {- 4, 4} {2, D -2 + 2ln2 ( x ) = Ta cú nghim B x = v x = x D ) } x D x = v x = = Ta cú nghim bng : C {-2, 2} D {1, - 1} Cõu 22: Nghim ca bt phng trỡnh log (4x 3) + log (2x + 3) l: A x 3 B x> Cõu 23: S nghim ca phng trỡnh 3x.2 x = l: A B C < x D Vụ nghim C D 2 Cõu 24: Nghim ca bt phng trỡnh A x B x Cõu 25: Biu thc x 36.3 x + l: C x D x x x x5 (x > 0) vit di dng lu tha vi s m hu t l: 5 A x B x C x D x Facebook.com/mathvncom 30 www.MATHVN.com Toỏn hc Vit Nam www.MATHVN.com KIM TRA TIT CHNG S 15 MễN: GII TCH 12 Thi gian lm bi: 45 phỳt H v tờn thớ sinh: Lp log a l: A B 25 Cõu 2: S nghim ca phng trỡnh A C x2 + x2 = D B m Cõu 1: Giỏ tr ca a C D co Cõu 3: Tỡm mnh ỳng cỏc mnh sau: A Hm s y = a x vi < a < l mt hm s ng bin trờn (-: +) B Hm s y = a x vi a > l mt hm s nghch bin trờn (-: +) x C th hm s y = a v y = (0 < a 1) thỡ i xng vi qua trc tung a D th hm s y = a x (0 < a 1) luụn i qua im (a ; 1) x Cõu 4: Phng trỡnh 31+ x + 31 x = 10 Chn phỏt biu ỳng? A Cú hai nghim dng B Vụ nghim C Cú hai nghim õm D Cú mt nghim õm v mt nghim dng Cõu 5: Hm s no di õy l hm s ly tha: A y = x ( x > 0) C y = x ( x 0) B y = x D C cõu A,B,C u ỳng ma th Cõu 6: Giỏ tr ca log a a a a a l: A 13 10 B C Cõu 7: Cho log 27 = a; log = b; log = c Tớnh log12 35 bng: 3b + 3ac 3b + 2ac 3b + 2ac A B C c+2 c+2 c+3 D D 3b + 3ac c +1 H thc liờn h gia y v y khụng ph thuc vo x l: 1+ x A y ' y = B yy ' = C y '+ e y = D y ' 4e y = Cõu 8: Cho y = ln ( Cõu 9: Hm s y = log x x ) cú xỏc nh l: B (0; 4) A Cõu 10: Tng cỏc nghim ca phng trỡnh A B log C (2; 6) x C 19 x2 D (0; +) + = l: D Cõu 11: Giỏ tr ca a a l: A 198 B 1916 C 192 D 194 Cõu 12: Trong cỏc hm s sau, hm s no ng bin trờn khong (0;+ ) : Facebook.com/mathvncom 31 www.MATHVN.com Toỏn hc Vit Nam A y = log B y = log a x, a = x C y = log x D y = log x Cõu 13: Tp nghim ca phng trỡnh log (3 x ) log 2x = l: { } { } B 31 ( { } Cõu 14: Hm s y = log x x + C ) D cú o hm l : A y ' = ( x 1) ln C y ' = B y ' = ( x 1) ln x2 x + 2x D y ' = ( x x + 5) ln 2x x2 x + m A 32 13 a a + a cú giỏ tr l: Cõu 15: Cho a, b l cỏc s dng Khi ú, A = a4 a4 + a A a B 2a C 3a D 4a x +1 x +1 Cõu 16: Tp nghim ca phng trỡnh 6.2 + = l: A { 2;3} co B {0;1} C {0;3} D {1;2} x x Cõu 17: Tớch s cỏc nghim ca phng trỡnh + 35 + 35 = 12 l: A B C D Cõu 18: S nghim ca phng trỡnh log (2 x 1) = l: A B C Cõu 19: Tp nghim ca phng trỡnh log x + log x + log16 x = l: { 2} { } y = ( x x + 2) e B 2 ma th A Cõu 20: Hm s A y ' = x e x + Cõu 21: Bin i A x x C {4} D D {16} cú o hm l: B y ' = xe x C y ' = ( x ) e x D y ' = x e x x x , ( x > 0) thnh dng ly tha vi s m hu t ta c: 20 B x 23 12 C x 21 12 D x 12 Cõu 22: o hm ca hm s y = x l: A x B 33 x Cõu 23: Nu log = a thỡ log 4000 bng: A + a B + a Cõu 24: Hm s y = A ln x x2 ln x cú o hm l: + x x ln x B x Facebook.com/mathvncom C 23 x D x2 C + 2a D + 2a C Kt qu khỏc D 32 ln x x www.MATHVN.com Toỏn hc Vit Nam ma th co m b b 12 Cõu 25: Cho a, b l cỏc s dng Khi ú, B = + : a b cú giỏ tr l: a a 3a A a B C 2a D a Facebook.com/mathvncom 33 www.MATHVN.com - Toỏn hc Vit Nam 1: Cõu Tp xỏc nh ca hm s y x l: A ;1 D R \ C R \ B R Cõu 2: Hm s y ( x2 x 3) cú xỏc nh l: A 3;1 B (; 3) (1; ) C R \ 3;1 D ( 3;1) a2 a2 a4 a 0, a l: 15 a 12 B C 5 A om Cõu 3: Giỏ tr ca biu thc log a D thv n.c 3 2 Cõu 4: Tớnh M : : 25 0, ta c 33 A B C D 3 13 Cõu 5: Tp xỏc nh ca hm s y log3 (2 x 1) l: 1 1 A D (; ) B D (; ) C D ( ; ) D D ( ; ) 2 2 x Cõu 6: Tp xỏc nh ca hm s y log l: x2 B ;1 A ;1 2; D 2; C 1; Cõu 7: o hm ca hm s y ( x x 3) l: A x 2x B x x 2x Cõu 8: o hm ca hm s y (1 x ) x B x x 2x C (1 x ) 2 Cõu 9: Cho f ( x) ln( x 1) o hm f '(1) bng: A B C Cõu 10: Cho f ( x) ln sin x o hm f '( ) bng: A Cõu 11: Biu thc D x x 2x l: x ma A x C D 2x (1 x ) D B C D x x x5 (x > 0) vit di dng lu tha vi s m hu t l: A x B x C x D x Cõu 12: Bit a log12 27 Tớnh theo a biu thc log 16 cú giỏ tr l: A 4(3 a ) a B 4(3 a ) a Facebook.com/mathvncom C a a D a a www.MATHVN.com - Toỏn hc Vit Nam Cõu 13: Cho > Kt lun no sau õy l ỳng? A < B > C + = Cõu 14: Hm s no di õy ng bin trờn xỏc nh ca nú? x x B y = C y = Cõu 15: Cho x x 23 Khi ú biu thc M A B Cõu 16 Tp nghim ca phng trỡnh 22 x A S 1;5 ; B S 1; ; 2 x B S 3; x D y = 3x x cú giỏ tr bng: 3x x C D 2 l C S ;1 ; Cõu 17: Tp nghim ca phng trỡnh ( 10 3) A S 3; e x om A y = 0,5 D . = x x ( 10 3) x x C S 7; D S l: D S thv n.c Cõu 18 Tp nghim ca phng trỡnh log x log3 x log x.log3 x l A S 1;6 ; B S 1;3 ; C S 2;log3 ; D S 2;log2 Cõu 19 Bit a log 28 98 Tớnh theo a biu thc log 49 14 cú giỏ tr l: A a 2a B a 2(2a 1) C a 2(2a 1) a 2a D Cõu 20 Tp nghim ca bt phng trỡnh 22 x 22 x 22 x 27 x 25 x 23 x l 10 10 ; D x 3 Cõu 21 Tp nghim ca bt phng trỡnh log ( x 7) log ( x 1) l A x ; A 1;2 B x ; C x B (2; ) C 3; D ( 7; 1) 21 log l: 10 100 A x ; B x ; C x ; D x 9 3x l: Cõu 23 Tp nghim ca bt phng trỡnh log x ma Cõu 22 Tỡm x bit log x log A (; 2) ; B ; ; C ; D ; Cõu 24: Tỡm m phng trỡnh log x log x m cú nghim x [1;8] A m B m C m D m x x Cõu 25: Gớa tr no ca m thỡ phng trỡnh 10.3 m cú nghim phõn bit A m 25 B 25 m C m D ỏp ỏn khỏc 2 2: Facebook.com/mathvncom www.MATHVN.com - Toỏn hc Vit Nam A C log B 125 D log x x Cõu 24: Gớa tr no ca m thỡ phng trỡnh 15 m 15 cú hai nghim phõn bit? B m 16 C m 1 Cõu 25: Gớa tr no ca m thỡ phng trỡnh B m A m x D m 4m cú mt nghim nht? D m C m 6: Cõu Tp xỏc nh ca hm s y (4 3x x )e l: A (2;2) B R C (; 2) (2; ) Cõu Tp xỏc nh ca hm s y ln( x 9) l: a Rỳt gn biu thc I D C 3;3 B (; e] [e; ) A (; 3) (3; ) om A m D (2; ) thv n.c (vi x ) ta c: a 1.a A I a ; B I a2 ; C I a3 ; D I a4 Cõu 4: Cho hm s y 2e x sin x Biu thc y y ' y '' c rỳt gn li l : A y B y C 3y D y Cõu Cõu 5: Cho f ( x) tan x v ( x) ln( x 1) Giỏ tr biu thc A B f '(0) l: '(0) C 10 x l : x 3x B ;10 C (;1) (2;10) Cõu 6: Tp xỏc nh ca hm s y log D 2 A (1; ) D (2;10) Cõu 7: Bit x log 6; y log Tớnh theo x; y biu thc log 217818720 cú giỏ tr l: A x y B x y C x y D x y ma Cõu 8: Tớnh giỏ tr ca biu thc P a log a log 2017 ta c: 1 ; C P ; D P 2 x x x x Cõu 9: Cho 23 Khi ú biu thc M cú giỏ tr bng: A B C 2 D B P A P ; Cõu 10: Biu thc A x y 4 4 M ( x y )( x y )( x y ) c rỳt gn li l: Cõu 11: Cho f ( x) 1 B x 32 y 32 2x o hm cp hai f ''(0) bng: ex Facebook.com/mathvncom C x16 y 16 11 D x y www.MATHVN.com - Toỏn hc Vit Nam A (2ln 1)2 B ln e2 C ln e2 D Cõu 12: Cho a Tỡm mnh sai cỏc mnh sau: om A log a x x B log a x x C Nu x1 x2 thỡ log a x1 log a x2 D th hm s y log a x cú tim cn ngang l truc honh Cõu 13: Trong cỏc khng nh sau õy, khng nh no l khng nh ỳng: A log B log log C log D log ( 1) Cõu 14: Tng cỏc nghim ca phng trỡnh 2(log9 x) log3 x.log3 ( x 1) l: A B C D Cõu 15: Tp nghim ca phng trỡnh lg ( x 1) 2lg ( x 1) 40 l: A 10 ;10 D 10 2; thv n.c Cõu 16 Phng trỡnh: 342 x 953 x x C 10 1;10 B 10 1;10 1 10 B.Cú mt nghim thuc khong (1; 2) A.Cú hai nghiờm trỏi du C.Cú ớt nht mt nghim thuc khong (1; 4) Cõu 17: Phng trỡnh: x x 2 x 2 D.Cú hai nghiờm õm 32 x1 B Cú mt nghim x log A Cú hai nghiờm dng C Cú ớt nht mt nghim thuc khong (1;0) D Vụ nghiờm Cõu 18 Phng trỡnh sau log (3.2 x 8) x cú nghim l x1 ; x2 thỡ tng x1 x2 l: A B 12 C D log2 Cõu 19 Phng trỡnh sau log x log 25 x log 0,2 cú nghim l: C S D S 3; 3 x x x Cõu 20 Phng trỡnh sau 3.16 2.81 5.36 cú nghim l: A S 1, B S 0;1 C S 0; D S ; 2 Cõu 21 Phng trỡnh sau log x 3log x log x cú nghim l: B S 3; ma A S 3 ; 16 A S B S ; Cõu 22.Tp nghim ca bt phng trỡnh Facebook.com/mathvncom C S ; 12 x x 12 l D S ; www.MATHVN.com - Toỏn hc Vit Nam x ; x B ( 4; 3) A x C (3; 4) D x Cõu 23: Gớa tr no ca m thỡ phng trỡnh x 8.2 x m cú nghim A m B m 16 C m 16 D m Cõu 24 Tp nghim ca phng trỡnh 533 x 5x x 51 x x l: 13 ; 2 13 C S ; ; 2 A S B S 13 ; ;0 om 13 13 ; D S ; ; 2 Cõu 25: Gớa tr no ca m thỡ phng trỡnh x 2m cú mt nghim nht? 5 A m B m C m D m 2 thv n.c 7: Cõu Tp xỏc nh ca hm s y (4 3x x )5 l: A (1; 4) B R C (; 4) (1; ) Cõu Tp xỏc nh ca hm s y ln( x x 10) l: Cõu Biu thc M A C 2;5 B (; 2) (5; ) A (;5) 57 72 B 53 54 4 4 D D (2; ) vit i dng ly tha vi s m hu t l: 19 36 C 48 D 37 72 Cõu 4: o hm ca hm s y x l: A (1 x ) B x x C x D x (1 x )3 ma Cõu 5: o hm ca hm s y x x x x l : A 2x C B x 15 1616 x Cõu 6: o hm ca hm s f x ecos2x ti x D 15 16 16 x15 l: A 3e B 3e C 3e D 3e Cõu 7: Bit a log 2; b log Tớnh theo a, b biu thc log1399680 cú giỏ tr l: A 6a 7b B 6a 6b Cõu 8: Tớnh giỏ tr ca biu thc K 81 1 log9 4 Facebook.com/mathvncom C 7a 6b D 7a 7b 25log125 49log7 ta c: 13 www.MATHVN.com - Toỏn hc Vit Nam B P A P 20 ; ; Cõu 9: Kt qu rỳt gn biu thc a a 2 A a (a > 0), l B 2a Cõu 10: Biu thc 9a 16a 1 2 C 3a a 12a D P C P 19 ; D 4a c rỳt gn li l: A 2e B 10 e2 C e om 3a 4a a 3a A a B a C 4a D 3a x Cõu 11: Giỏ tr ln nht ca hm s y f ( x) ( x x 2)e trờn on 1;2 l: D e thv n.c Cõu 12: Tỡm mnh ỳng cỏc mnh sau: A Hm s y 2x ng bin khong (0; ) B Hm s y 2x nghch bin khong (0; ) C Hm s y 2x nghch bin khong (; ) D Hm s y 2x ng bin khong (; ) Cõu 13: Trong cỏc khng nh sau õy, khng nh no l khng nh sai: A log B log log 11 C log D log ( 1) Cõu 14: Tng cỏc nghim ca phng trỡnh log x 2log7 x log x.log x l: A 10 B 11 C 12 D ỏp s khỏc Cõu 15: Nghim x0 ca phng trỡnh log2 (1 x ) log7 x nm khong no sau õy? A x0 B 20 x0 50 C 100 x0 200 D 300 x0 400 Cõu 16 Cho a log Khi ú log 9000 tớnh theo a l: ma A 2a B a C 3a D 9a Cõu 17: Tp nghim ca phng trỡnh 31 x 31 x 10 l: A Hai nghim trỏi du B Hai nghim dng C Hai nghim õm D Vụ nghim x x1 Cõu 18 Tng cỏc nghim ca phng trỡnh 25 6.5 l: A B C D x x Cõu 19 Phng trỡnh sau 7.2 12 cú nghim l: A S 3;4 B S 3; C S log2 3; log2 D S log2 3;log2 x Cõu 20 Tp nghim ca bt phng trỡnh l A x ; B x ; C x ; D x Cõu 21 Phng trỡnh sau log 2 x 3log x log x cú nghim l: 2 A S ; B S ; C S ; D S ; Cõu 22 T s gia nghim ln v nghim nh hn ca phng trỡnh log x log x l: Facebook.com/mathvncom 14 A 10 www.MATHVN.com - Toỏn hc Vit Nam B 103 C 10 D 105 Cõu 23 Tỡm tt c cỏc giỏ tr thc ca tham s m phng trỡnh 2log52 x log5 x m cú B m nghim : A m 1 C m D m Cõu 24: Tp nghim ca phng trỡnh log22 x log32 x 2log3 x l : log 2 B 3log ;3 A log 2;log 2 D log 2;log C log 6;log 2 om Cõu 25: Tp nghim ca phng trỡnh 2log3 (cot x) log cos x l : A m2 ; m Z B m2 ; m Z C m2 ; m Z D m2 ; m Z 8: Cõu Tp xỏc nh ca hm s y (5 x x2 )2017 l: A (1; 4) B R C (; 4) (1; ) Cõu Tp xỏc nh ca hm s y log( x 16 x 60) l: D thv n.c A (;10) B (;6) (10; ) C 6;10 D (6; ) Cõu Giỏ tr ca biu thc log4 l 3 B C D 2 Cõu 4: Cho hm s y ln x Biu thc x y '' x y ' c rỳt gn li l : A A B.1 C D Cõu 5: Hm s f ( x) x ln( x 1) cú o hm f '(1) l: A ln B ln C ln D ln x Cõu 6: Cho f ( x) e o hm cp hai f ''(1) bng: A 6e B 9e C 15e D 9e3 Cõu 7: Bit a log 2; b log Tớnh theo a, b biu thc log 38880 cú giỏ tr l: A 4a 4b B 5a 4b C 5a 5b D 4a 5b ma Cõu 8: Biu thc log a (log a N )3 c rỳt gn li l: log a (log a N ) B C D 1 Cõu 9: Cho N 2017! Giỏ tr ca biu thc P l: log 2017 N log N log N A A P 2017!; B P 2016! ; C P 2017 ; D P Cõu 10: Biu thc (log a b logb a 2)(log a b log ab b) logb a log a b c rỳt gn li l: B C D Cõu 11: Bit a log 20 3; b log 20 5; c log 20 Theo a; b; c biu thc log 20 44100 cú giỏ tr l: A A 2a b 2c B a 2b 2c Cõu 12: Khng nh no sau l sai ? C 2a 2b c Facebook.com/mathvncom 15 D a b c www.MATHVN.com - Toỏn hc Vit Nam A log3 B log x 2016 log x2 2017 C log log D log 0,3 2016 2017 C th hm s y x luụn i qua im 2; x om Cõu 13: Cho ba s a log15 14; b log7 8; c log6 37 Bt ng thc no sau õy ỳng ? A a b c B a c b C c b a D b a c Cõu 14: Mnh no sau õy sai ? A Hm s y x l hm s ng bin trờn ; B x lim x D th hm s y x v y i xng qua truc tung Cõu 15: Tng cỏc nghim ca phng trỡnh x x x l: A B C D x x x x2 Cõu 16 Phng trỡnh: A Cú hai nghiờm dng B Cú mt nghim thuc khong ( 2; 2) C Cú ớt nht mt nghim thuc khong (1; 4) D Cú mt nghim õm x x Cõu 17: Tp nghim ca phng trỡnh 17 l: A Hai nghim trỏi du B Hai nghim dng C Hai nghim õm D Vụ nghim 2 Cõu 18 S nghim ca phng trỡnh ln( x x 3) x ln( x x 3) l: A B C D thv n.c x Cõu 19 Tp nghim ca phng trỡnh ( 2) ( 2) ( 4) x A S 3; x2 B S 3;1;0 C S 3; ;1 x 2x l: D S 2; ;3 Cõu 20 Tp nghim ca phng trỡnh log a x log x log a x.log x (a 0; a 1) l: A 2;a B 2a;1 C a;1 D a; Cõu 21 Biu thc B log6 30 C log30 ma A log15 49 log 7.log log 7.log log 7.log c rỳt gn li l: log 7.log 7.log Cõu 22 Biu thc M D log7 30 1 vi 10 thỡ M cú giỏ tr : log log B M C M D M A M Cõu 23 Tp nghim ca bt phng trỡnh 64.9 x 84.12 x 27.16 x l A (1; 2) B (;1) (2; ) 4 C ( ; ) D vụ nghim Cõu 24: Gớa tr no ca m thỡ phng trỡnh log2 ( x2 x 5) m log x x5 cú hai nghim phõn bit: A 25 m0 B 25 m C m Cõu 25: Tng cỏc nghim ca phng trỡnh x Facebook.com/mathvncom x x1 16 25 36 l : D m www.MATHVN.com - Toỏn hc Vit Nam A log B log 2 C log 9: Cõu Cho hàm số y x x Đạo hàm là: A [0; 2] D log 5 f '( x ) ca hm s ó cho có tập xác định C (;0) (2; ) B (0; 2) D (;0]) [(2; ) Cõu Tp xỏc nh ca hm s y log( x 15 x 50) l: B (;5) (10; ) A [5;10] Cõu Nu log ab A C 5;10 a5 a thỡ log a 3b bng: b B C C y ' 2x x 3x 2 D (;5] [10; ) D thv n.c Cõu 4: o hm ca hm s y log3 x 3x l: A y ' om B y ' x ln 2x x 3x ln D y ' x ln x 3x Cõu 5: o hm hm s y x x l: A x B x x ln x x 3 ma 4 1 C x x D x x x 4 Cõu 6: Cho log a Khi ú log3 18 tớnh theo a l: a 3a A B C 3a D 3a a a Cõu 7: o hm ca hm s y (2 x 3).2 x ti x l: A 5ln B 3ln C 3e ln D 2ln Cõu 8: Bit a log 5; b log Tớnh theo a, b biu thc log1458000000 cú giỏ tr l: A 5a 5b B 5a 6b C 6a 6b D 6a 5b a a3 a Cõu 9: Tớnh giỏ tr ca biu thc P log ta c: a a a a 23 31 A P ; B P ; C P ; D P 15 60 Facebook.com/mathvncom 17 www.MATHVN.com - Toỏn hc Vit Nam 4 a a Cõu 10: Biu thc a a A a b A b b b 2 c rỳt gn li l: B a b C a b D ỏp ỏn khỏc 216 v a thỡ x bng: B a b C a a D a2 om Cõu 11: Nu x thv n.c Cõu 12: Giỏ tr ca biu thc M log a vi (a 0; a 1; b 0) l: b 7 A B 7log a b C log a b D log b a log a b log a c log a b c rỳt gn li l: Cõu 13: Biu thc log ab c A B log a b C log a b D Cõu 14: Mnh no sau õy sai ? A Hm s y x l hm s ng bin trờn ; B x lim x C th hm s y x luụn i qua im 2; x D th hm s y x v y i xng qua truc tung Cõu 15: Tng cỏc nghim ca phng trỡnh x 5.2 x l: D log3 C log A Cú hai nghiờm dng B Cú mt nghim thuc khong ( 2; 2) C Cú ớt nht mt nghim thuc khong (1; 4) D Cú mt nghim õm ma A B 2,58 Cõu 16 Phng trỡnh: x 3x 3x x Cõu 17: Tp nghim ca phng trỡnh 51 x 51 x 26 l: A Hai nghim trỏi du 2 B Hai nghim dng C Hai nghim õm D Vụ nghim Cõu 18 Hm s no di õy ng bin trờn xỏc nh ca nú? A y = 0,5 x B y = x C y = x e D y = x Cõu 19 Tp nghim ca phng trỡnh log a x log3 x log a x.log3 x (a 0; a 1) l: Facebook.com/mathvncom 18 www.MATHVN.com - Toỏn hc Vit Nam A 3; a Cõu 20 Biu thc a a D 2a;1 C 2a;1 B 3a;1 a c rỳt gn li l: ; C.1 ; a Cõu 21 Hm s no cú th nh hỡnh ve di õy? B D A y x thv n.c om A a ; B y D y C y x x Cõu 22 Cho log a x 2; logb x 3; logc x ú giỏ tr ca biu thc log abc x bng : A 36 B C D x x x Cõu 23 Tp nghim ca bt phng trỡnh 6.9 13.6 6.4 l A ( 1;1) 3 B (; 1) (1; ) D vụ nghim C ( ; ) Cõu 24: Hm s y log ( x 2mx 9) cú xỏc nh l R ; nu: A m (; 3) (3; ) B m (3;3) C m [3;3] D m Cõu 25: Tp nghim ca phng trỡnh 3x.2x l: ma 1 B 0; log3 A ; C 0; 1,58 D 0; log2 10: 12 Cõu Rỳt gn A a a a ta c kt qu l: A a C a B a D a2 Cõu o hm ca hm s y x ny l: A x ln B x Facebook.com/mathvncom C x x 19 D x www.MATHVN.com - Toỏn hc Vit Nam Cõu Bit a log x 27 Tớnh theo a biu thc log B A a 3a C x cú giỏ tr l: a D 3a Cõu 4: o hm ca hm s y ln x l: A B C D 15 ln 5x x ln x Cõu 5: o hm ca hm s y log (2 x 1) l: 2 ln A B C (2 x 1) ln (2 x 1) ln (2 x 1) D 72 x o hm cp hai f ''(0) bng: 2x ln ln A (2ln ln 2) B C 2ln ln e2 Cõu 7: Cho f ( x) x lg x o hm f '(10) bng: 2 A 10 B C ln10 ln10 Cõu 8: Tp xỏc nh ca hm s y log 2016 (4 x 12 x 9) 2017 l : 2 (2 x 1) ln x D ỏp ỏn khỏc D ln10 thv n.c Cõu 6: Cho f ( x) A ( ; ) x ln x om x ln x B 0; C (; ) \ 125 c tớnh theo a l: 5a 3a 3a A B C 2a 2a 2a e Cõu 10: o hm ca hm s y (4 x ) l: D (; ) Cõu 9: Cho log2 a Biu thc l og A e(4 x )e1 ln e e(4 x )e1 (4 x) B xe(4 x )e1 ln e D C x(4 x )e1 Cõu 11: Bit logb a b 0, b 1, a Tớnh biu thc P log 3 ma A Cõu 12: Bit log3 a A B a B 3a 2a a b C D a cú giỏ tr l: b Tớnh biu thc log a log3 a log a 2log3 a cú giỏ tr l: C D log a c log a b c rỳt gn li l: log ab c A B log a b C log a b x Cõu 14: Tng cỏc nghim ca phng trỡnh 8.2 x 15 l: A B 3,9 C log 15 Cõu 13: Biu thc Cõu 15 Bit x y 5xy; x, y Giỏ tr biu thc M Facebook.com/mathvncom D 20 D D log log x log y l: log ( x y ) www.MATHVN.com - Toỏn hc Vit Nam A B C D Cõu 16: Tp nghim ca bt phng trỡnh x x log3 x l: A 3; D 3; C 4; B ; Cõu 17: Mnh no sau õy sai ? A Hm s y ( ) x l hm s nghch bin trờn ; x om lim( ) x B x C th hm s y luụn i qua im 2; x x D th hm s y v y i xng qua truc honh Cõu 18 Tng cỏc nghim ca phng trỡnh 25x 7.5x 10 l: A log5 B C D log5 10 thv n.c Cõu 19 Hm s no di õy nghch bin trờn xỏc nh ca nú? A y x B y x C y D y e x x Cõu 20 Tp nghim ca phng trỡnh log a x log5 x log a x.log5 x (a 0; a 1) l: A 5; a B 5a;1 C a;1 D a;5 Cõu 21 Phng trỡnh sau log 2 x 3log x log x cú nghim l: A S ; ; 16 C S B S ; D S ; Cõu 22 Cho log a x 2; logb x 4; log c x ú giỏ tr ca biu thc log abc x bng : A B C D Cõu 23 Tp nghim ca bt phng trỡnh 6.9 x 13.6 x 6.4 x l B (; 1) (1; ) ma A ( 1;1) 3 C ( ; ) D vụ nghim Cõu 24: Hm s y log2 ( x2 2mx 4) cú xỏc nh l R ; nu: A m (; 2) (2; ) B m (2; 2) C m [2;2] Cõu 25: Tng cỏc nghim ca phng trỡnh x A log B log D m x 3x 1,5 l : C log D log3 11: Cõu Tp xỏc nh ca hm s y (2 x )3 l: A ( 2; 2) C (; 2) ( 2; ) B R Cõu Hm s y ( x2 x 3) cú xỏc nh l: Facebook.com/mathvncom 21 D R \ 2; www.MATHVN.com - Toỏn hc Vit Nam A 3;1 C R \ 3;1 B (; 3) (1; ) Cõu 3: Tp xỏc nh ca hm s y lg x2 x l: x B (3; ) A (0;1) (3; ) D ( 3;1) C (1;2) \ D (0;1) Cõu Tp xỏc nh ca hm s y log x x l: 3 A ; 1; ; B ; ; ; 2 Cõu 5: o hm ca hm s y log3 (2 x 1) l: (2 x 1) ln (2 x 1) ln B C om A D ;1 C 1; ; ln (2 x 1) D 22 x Cõu 6: Cho f ( x) x o hm cp hai f ''(0) bng: ln ln A (2ln ln 3)2 B C 2ln ln3 e2 Cõu 7: Cho f ( x) x log x o hm f '(10) bng: 10 10 A B 20 C 10ln10 ln10 ln10 (2 x 1) ln x thv n.c D ỏp ỏn khỏc D 20 10ln10 Cõu 8: Cho 16 x 16 x 62 Khi ú biu thc M 4x x cú giỏ tr bng: A B C Cõu 9: Biu thc A 2( a b) Cõu 10: Biu thc a3 a3 a3 a a3 a3 a C log b a (log a b log b a 1) log a b B log a b a D C a b D ỏp ỏn khỏc c rỳt gn li l: log a b D logb a log a b log b a Tớnh biu thc log a log3 a log a 2log3 a cú giỏ tr l: B C D Cõu 12: Giỏ tr ca biu thc P log3 2.log 3.log5 log31 30.log32 31 l: ; D.ỏp ỏn khỏc 32 Cõu 13: Tng cỏc nghim ca phng trỡnh 16 x 2.4 x1 12 l: A B 2, 29 C log 12 D log log x log y Cõu 14 Bit x y 5xy; x, y Giỏ tr biu thc M l: log ( x y ) A B C D 4 A P ; B P ; Facebook.com/mathvncom c rỳt gn li l: a Cõu 11: Bit log3 a A B a b ma A log a b a3 C P 22 www.MATHVN.com - Toỏn hc Vit Nam Cõu 15: S nghim ca phng trỡnh 8.3 x x 91 x x l: A B C D Cõu 16 Giỏ tr nh nht ca hm s y f x x ln 2x trờn on 1;0 l: A ln 4 B ln3 D ln5 C Cõu 17: Bit logb a b 0, b 1, a Tớnh biu thc P log 3 a b C B a cú giỏ tr l: b om A D Cõu 18: Mnh no sau õy sai ? A Hm s y 3x l hm s ng bin trờn ; B x lim 3x C th hm s y 3x luụn i qua im 3; thv n.c x D th hm s y 3x v y i xng qua truc tung Cõu 19 Hm s no di õy ng bin trờn xỏc nh ca nú? A y x B y x C y 52 x e D y x Cõu 20 Tp nghim ca phng trỡnh log3 x log5 x log3 x.log5 x l: A 5;15 B 15;1 C 5;1 D 3;5 Cõu 21 Phng trỡnh sau log x 4log3 x log x cú nghim l: 3 C S ;3 B S ; A S ;1 D S ;3 Cõu 22 Cho log a x 2; logb x 4; log c x ú giỏ tr ca biu thc log abc x bng : B ma A C Cõu 23 Tp nghim ca bt phng trỡnh A (1;3) B (; 1) (3; ) D x2 x l C (1 3;1 3) D (;1 3) (1 3; ) Cõu 24: Hm s y log( x x m ) cú xỏc nh l R ; nu: A m (; 3) (3; ) Cõu 25: Bt phng trỡnh: A x 12: B m (3;3) C m [3;3] 21 x x cú nghim l: x2 x B x C x Facebook.com/mathvncom 23 D m (; 3] [3; ) D x www.MATHVN.com - Toỏn hc Vit Nam Cõu Tp xỏc nh ca hm s y log1 x l: B ( ; ) C (0;9) Cõu Tp xỏc nh ca hm s y (4 3x x ) l: D (9; ) A (0; ) B R \ 4;1 A (4;1) D 4;1 C (; 4) (1; ) Cõu Tp xỏc nh ca hm s y (9 x )3 l: B R \ Cõu 4: Tp xỏc nh ca hm s y lg C (;3) (3; ) x2 x l: x A (0;1) (3; ) B (3; ) Cõu 5: o hm ca hm s y log (3x 1) l: A (3x 1) ln B (3x 1) ln D ỏp ỏn khỏc om A R \ C (1;2) \ C 3ln (3x 1) D Cõu 6: Cho f ( x) 2x o hm cp hai f ''(0) bng: A ln B ln C ln 2(1 ln 2) Cõu 7: Cho f ( x) x log x o hm f '(10) bng: A 10 ln10 (3 x 1) ln x thv n.c D (0;1) B ln10 C D ỏp ỏn khỏc 10 ln10 D 10.ln10 Cõu 8: Cho 25 x 25 x 98 Khi ú biu thc M 5x x cú giỏ tr bng: A B C 10 10 Cõu 9: Giỏ tr nh nht ca hm s y x trờn on (1: ) l: ln x e2 A e B C ln Cõu 10: Giỏ tr ln nht ca hm s f x log22 x log2 x l: ma A B D D e D Khụng tn ti C Cõu 11: Giỏ tr ca biu thc P log3 2.log 3.log5 log31 30.log32 31 l: ; D.ỏp ỏn khỏc 32 Cõu 12: Bit a log 24 54 Tớnh theo a biu thc log cú giỏ tr l: a 3a a 3a A B C D 3a a 3a a A P ; B P ; C P Cõu 13: Xỏc nh bt ng thc sai 2016 2017 10 2 A C D Cõu 14: Tng cỏc nghim ca phng trỡnh 16 x 2.4 x1 12 l: B Facebook.com/mathvncom 24 300 301 www.MATHVN.com - Toỏn hc Vit Nam A B 2, 29 C log 12 x x D log x Cõu 15 Bt phng trỡnh: 6.9 13.6 6.4 cú nghim l: A (; 1] [1; ) B [1;1] C (0;1] D [1; ) Cõu 16: Cho s dng a, biu thc a a a5 vit di dng hu t l: C th hm s y 3x luụn i qua im 3; x D a om A a B a C a Cõu 17: Mnh no sau õy sai ? A Hm s y 3x l hm s ng bin trờn ; B x lim 3x thv n.c D th hm s y 3x v y i xng qua truc tung 3 4 3 Cõu 18 Nu a a v log b log b thỡ A a 1;0 b B a 1;0 b C a 1; b D a 1; b Cõu 19 Cho log3 x; log y Tớnh theo x; y thỡ log 829440 bng : A x y B x y C x y D x y Cõu 20 Tng cỏc nghim ca phng trỡnh 810.3x x 59049 l: A B C 84 D 10 x x Cõu 21 Phng trỡnh sau 36 7.6 12 cú nghim l: A 3; B 0,61;0,773 C log6 3;log6 D 1;log6 12 Cõu 22 Cho hm s y ln x x Biu thc 2( x 1) y ' x c rỳt gn li l : A e y C 3e y B 2e2 y D 4e2 y x x ma Cõu 23 Tp nghim ca bt phng trỡnh l A (1;3) B (; 1) (3; ) C (; ) D ỏp ỏn khỏc Cõu 24: Hm s y log[ x 2(m 3) x (m 5)] cú xỏc nh l R ; nu: A m (; 4) (1; ) B m (4; 1) C m (1;4) D m (;1) (4; ) Cõu 25: Bt phng trỡnh: x x log x cú nghim l: A 3; B ; Facebook.com/mathvncom C 4; 25 D 3; [...]... nhau qua truc tung 4 3 Cõu 22 Cho M A M 0 log 5 3.log15 4 Xỏc nh mnh ỳng: 2 log 6 3.log 0,3 7 7 B M 0 C M 0 Cõu 23 Tng cỏc nghim ca phng trỡnh log 2 Facebook.com/mathvncom D M 0 2x 1 2 x 2 6 x 2 l: 2 ( x 1) 10 www.MATHVN.com - Toỏn hc Vit Nam A 2 C log 2 B 0 5 6 125 6 D log 2 x x Cõu 24: Gớa tr no ca m thỡ phng trỡnh 4 15 m 4 15 2 cú hai nghim phõn bit? B 0 m 16 C 0 m 1 1 Cõu... 36 C 1 48 D 37 72 Cõu 4: o hm ca hm s y 4 1 x 2 l: 1 A 4 (1 x ) B 2 3 x 4 1 x C 2 1 4 1 x 4 2 D x 2 4 (1 x 2 )3 ma Cõu 5: o hm ca hm s y x x x x l : A 2x C 1 B 2 x 15 1616 x Cõu 6: o hm ca hm s f x ecos2x ti x 6 D 15 16 16 x15 l: A 3e B 3e C 3e D 3e Cõu 7: Bit a log 2; b log 3 Tớnh theo a, b biu thc log1399680 cú giỏ tr l: A 1 6a 7b B 6a 6b Cõu 8: Tớnh giỏ tr ca biu thc K 81 1... log 3 a log3 a 2 log 1 a 2log3 a cú giỏ tr l: 3 C 5 D 7 log a c log a b c rỳt gn li l: log ab c A 1 B log a b C 1 log a b x Cõu 14: Tng cỏc nghim ca phng trỡnh 4 8.2 x 15 0 l: A 8 B 3,9 C log 2 15 Cõu 13: Biu thc Cõu 15 Bit x 2 4 y 2 5xy; x, y 0 Giỏ tr biu thc M Facebook.com/mathvncom D 20 D 1 D log 2 5 3 log 2 x log 2 y l: log 2 ( x 2 y ) www.MATHVN.com - Toỏn hc Vit Nam A 1 B 2 C... Toỏn hc Vit Nam 1 2 Cõu 13 Tp nghim ca bt phng trỡnh ( ) x 7 x 12 1 l 4 A (;3) (4; ) ; B (3; 4) C (;0) (3; ) Cõu 14: Biu thc D (0;3) x x x x (x > 0) vit di dng lu tha vi s m hu t l: 15 16 3 8 1 16 A x B x C x Cõu 15: Cho log 214 a Khi ú log 49 32 tớnh theo a l: 5 2(a 1) B 5 2 a C 5 1 2a D 5 2 3a om A D x 5 4 5 3x 3 x cú giỏ tr bng: 1 3x 3 x 5 3 1 A B 2 C D 2 2 4 2 x 1 x Cõu 17: Phng... a Cõu 7: Biu thc A 1 a 3 1 a 2 1 3 1 a x D 4e x D 3; C ; 3 (4; ) 3 3 1 a 2 3 C a 2 B a x3 l: 4 x C 3e c rỳt gn li l: D ỏp ỏn khỏc Cõu 8: Giỏ tr ca biu thc P log3 2.log 4 3.log5 4 log15 14.log16 15 l: 1 4 B P ; ma A P 1 ; C P 2 ; D P 17 201 1 Cõu 9: Giỏ tr ln nht ca hm s y f x 2x2 ln x trờn on ; e l: e 2 1 A 2 1 B 2 C ln 2 D 2e 2 1 e 2 Cõu 10: Bit a log 20 3; b log 20 5;... 2a b 2c B 1 a 2b 2c Cõu 12: Khng nh no sau l sai ? C 1 2a 2b c Facebook.com/mathvncom 15 D 2 a b c www.MATHVN.com - Toỏn hc Vit Nam A log3 5 0 B log x 2 3 1 2016 log x2 3 2017 C log 3 4 log 3 3 D log 0,3 2016 0 2017 1 C th hm s y 2 x luụn i qua im 2; 4 1 x om Cõu 13: Cho ba s a log15 14; b log7 8; c log6 37 Bt ng thc no sau õy ỳng ? A a b c B a c b C c b a D b a... Cõu 15: Chn mnh ỳng trong cỏc mnh sau: 1,4 3 A 4 2 B 3 3 4 3 1,7 1 C 3 1 3 2 2 2 D 3 3 Cõu 16 S no di õy ln hn 0 nhng nh hn 1? A (0,7)2017 C (0,7)2017 B (1, 7)2017 e thv n.c D ỏp ỏn khỏc Cõu 17: : S nghim ca phng trỡnh 5 9.5 27(5 5 ) 64 l: A 1 B 2 C 3 D 4 x x1 Cõu 18 Tng cỏc nghim ca phng trỡnh log 5 (5 1) log 25 (5 5) 1 l: 3x A log5 6 3 x x B log5 126 C log 5 x 156 ... xng nhau qua truc tung 3 Cõu 19 Hm s no di õy ng bin trờn tp xỏc nh ca nú? 1 A y 3 1 x 3 B y 4 x C y 52 x e D y x Cõu 20 Tp nghim ca phng trỡnh log3 x log5 x log3 x.log5 x l: A 5 ;15 B 15; 1 C 5;1 D 3;5 Cõu 21 Phng trỡnh sau log 2 3 x 4log3 x log 1 x 1 cú tp nghim l: 3 1 3 1 4 1 3 C S 4 ;3 B S ; 4 3 A S ;1 1 4 D S ;3 Cõu 22 Cho log a x 2; logb x 4; log c... www.MATHVN.com - Toỏn hc Vit Nam Cõu 13: Cõu 16: S nghim ca phng trỡnh 9x 1 36.3x 3 3 0 l: A 1 B 2 C 3 D 4 e e Cõu 14: Cho Kt lun no sau õy l ỳng? 3 3 A < B > C + = 0 D . = 1 2 2 Cõu 15: o hm ca hm s y ln x x 2 1 l: 1 B x x2 1 2x 2x C ( x 2 1)3 1 x x2 1 1 3 D 1 x2 1 om A thv n.c Cõu 16 Tp nghim ca bt phng trỡnh 3 x 3 x 84 l A 1 x 0 ; B (;0) (1; ) ; C 0 x 1 ; D 1 x... no l khng nh sai: A log 2 5 1 B log 2 3 5 log 3 11 4 7 C log 1 7 0 D log 2 ( 2 1) 0 2 Cõu 14: Tng cỏc nghim ca phng trỡnh log 2 x 2log7 x 2 log 2 x.log 7 x l: A 10 B 11 C 12 D ỏp s khỏc 3 Cõu 15: Nghim x0 ca phng trỡnh log2 (1 x ) log7 x nm trong khong no sau õy? A 1 x0 5 B 20 x0 50 C 100 x0 200 D 300 x0 400 Cõu 16 Cho a log 3 Khi ú log 9000 tớnh theo a l: ma A 2a 3 B a 2 3 C

Ngày đăng: 18/01/2017, 10:29

TỪ KHÓA LIÊN QUAN

w