1. Trang chủ
  2. » Giáo án - Bài giảng

200 bài tập tích phân môn toán 12 ôn thi THPT

43 319 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 485,27 KB

Nội dung

200 bài tập tích phân môn toán 12 ôn thi tốt nghiệp THPT tham khảo

www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii TP1: TCH PHN HM S HU T Dng 1: Tỏch phõn thc Cõu x2 I = x x + 12 I = + 16 dx = ( x + 16 ln x ln x ) = + 25ln 16 ln x x Cõu I = Ta cú: dx x + x3 I = I = 1 x + + x x3 x2 + 3 + ln( x + 1) = ln + ln + 2 2x 1 3x + x x 5x + Cõu = x ( x + 1) I = ln x Cõu dx dx 13 14 I = ln + ln + ln 3 15 xdx ( x + 1)3 x x + 11 1 Ta cú: = = ( x + 1)2 ( x + 1)3 I = ( x + 1)2 ( x + 1)3 dx = 3 ( x + 1) ( x + 1) Dng 2: i bin s Cõu I = Cõu I = ( x 1)2 (2 x + 1)4 dx ( x 1)99 101 ( x + 1) 7x I = 2x + 99 x Ta cú: f ( x ) = 2x + I = Cõu I = (x 5x 2 + 4) x7 (1 + x )5 99 7x 1 7x = d ( x + 1)2 x + x + dx 100 Cõu x x I = +C 2x + 2x + dx 1 7x = 100 x + 100 = 900 dx t t = x + I = dx t t = + x dt = xdx I = Bieõn soaùn: Thay Tran Sú Tuứng - Trang 1 (t 1)3 1 dt = t5 25 Bi Nguyờn hm - Tớch phõn cú li gii www.mathvn.com Cõu I = x (1 x )6 dx t t = x dt = 3x 2dx dx = Cõu 10 I = 2 x7 Cõu 12 I = x (1 + x ) 11 t t8 (1 ) = t t dt = 30 168 t t t + dt = ln 32 dt I = 10 t t = x I = 2 t (t + 1)2 x ( x + 1) x.( x10 + 1)2 Cõu 13 I = dx Cõu 11 I = 3x I = t t = x I = dx x ( x + 1) dt x dx 128 t I = dx t t = x I = dt 7 t (1 + t ) x (1 + x ) dx (1 x ).x dx x (1 + x ) t : x = I = t 3 t6 dt = t2 + 1 117 41 + t t +1 dt = 135 12 t + x 2001 Cõu 14 I = (1 + x )1002 x 2004 I = dx 1002 x (1 + x ) Cỏch 2: Ta cú: I = dx = 1 1002 x + x 1000 + x2 11+ x Ta cú: 1+ x 1+ x4 x2 + dt = x3 dx 11 x 2000 xdx t t = + x dt = xdx 2000 2 (1 + x ) (1 + x ) (t 1)1000 I = 1000 dt = 21 t t t Cõu 15 I = dx t t = 1 d = t 2002.21001 dx 1+ = x t t = x dt = + dx x x x + x 3 t I= = dt = ln = ln 2 2 1t t + t + 2 + t dt 1 Bieõn soaùn: Thay Tran Sú Tuứng - Trang www.MATHVN.com x2 Cõu 16 I = 11+ x4 x Bi Nguyờn hm - Tớch phõn cú li gii dx 1 dt = x t t = x + dt = dx I = 2 x 1+ x x t + x + x2 du 5 t t = tan u dt = ; tan u = u1 = arctan 2; tan u = u2 = arctan 2 cos u Ta cú: u2 I= 2 Cõu 17 I = u1 x Cõu 18 I = x4 + Ta cú: x6 + 1 dx dx x6 + x4 + 1 x Ta cú: I = dx t t = x + I = ln x +x x 1x+x 2 (u2 u1 ) = arctan arctan 2 du = = ( x x + 1) + x x6 + = x4 x2 + ( x + 1)( x x + 1) + x2 x6 + = x2 + + x2 x6 + 1 d (x3 ) I = dx + dx = + = (x ) + 4 x +1 Cõu 19 3 I= x2 x4 I= 3 x ( x 1)( x + 1) xdx x + x +1 1+ Ta cú: 0t dx = x2 + x +1 x x +1 1 + dx = ln(2 3) + 12 x x +1 1 dt 11 = t + t + dt t + + dx 1+ = 3 t t = x I = x x2 + 1 I = 2 Cõu 20 I = Cõu 21 I = dx x2 + x2 x2 t t = x 1 dt = + dx x x2 dt +1 t t = tan u dt = du cos u I = du = Bieõn soaùn: Thay Tran Sú Tuứng - Trang = Bi Nguyờn hm - Tớch phõn cú li gii www.mathvn.com TP2: TCH PHN HM S Vễ T Dng 1: i bin s dng x Cõu 22 I = dx 3x + x x I = dx = x (3x x 1)dx = 3x 2dx x x 1dx 3x + x + I1 = 3x dx = x + C1 1 + I = x x 1dx = x d (9 x 1) = (9 x 1) + C2 18 27 I= (9 x 1) + x + C 27 x2 + x Cõu 23 I = x + x 1+ x x x2 dx = x2 + I1 = 1+ x x dx 1+ x x 1+ x x x 1+ x x Vy: I = ( dx = 1+ x x 2x + Cõu 24 I = 01+ 2x + 2x ) + + 4x + 01+ x ) + x x + C1 3 t2 + t dt =2 + ln 12 t t = x + I = ln t: t = x I = ( t t ) dt = 1+ x 1+ x x t t = x + I = dx Cõu 27 I = ( +C Cõu 26 I = x x dx dx d (1 + x x ) = + x x + C2 3 1+ x x dx Cõu 25 I = 1+ x x dx t t= + x x t = x x x = (t 1)2 x 2dx = 4 4 (t 1)dt = t t + C = + I2 = x dx + 15 dx t +t 11 t t = x dx = 2t.dt I = dt = t t + ln dt = t +1 1+ t 0 Cõu 28 I = x dx x + + x + Bieõn soaùn: Thay Tran Sú Tuứng - Trang 4 t(t 1)dt www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii t t = x + 2tdu = dx I = 2t 8t 1t x Cõu 29 I = + 3t + 2 dt = + ln t +1 dt = (2t 6)dt + x + 1dx 1 t7 t4 t t = x + t = x + dx = 3t dt I = 3(t 1)dt = = 28 0 3 x2 + 1 x 3x + Cõu 30 I = dx t2 +1 2tdt 2tdt t t = 3x + dx = I = 3 t t 4 21 t 100 = t t + ln = + ln 93 t + 27 Cõu 31 I = 2x2 + x x +1 = 24 dt ( t 1) dt + 92 t dx x + = t x = t dx = 2tdt t 2(t 1)2 + (t 1) I = 2tdt t 1 2 4t 54 = (2t 3t )dt = 2t = 5 x 2dx Cõu 32 I = ( x + 1) x +1 t t = x + t = x + 2tdt = dx I = (t 1)2 t3 Cõu 33 I = 2tdt =2 x +1 + 2x ) (1 + 2 t3 1 16 11 t dt = 2t = t t dx t 2t t t = + + x dt = dx = (t 1)dt v x = + 2x dx Ta cú: I = (t 2t + 2)(t 1) t 3t + 4t 4 dt = dt = t + dt 22 22 2 t t2 t2 t2 = Cõu 34 I = t2 3t + ln t + = ln t x x +1 dx Bieõn soaùn: Thay Tran Sú Tuứng - Trang Bi Nguyờn hm - Tớch phõn cú li gii www.mathvn.com ( ) x I= dx = x + ln x + x + x2 + x +1 = + ln ( + ) ln ( + 3) Cõu 35 I = ( x 1)3 x x dx I = ( x 1) Cõu 36 I = x x dx = ( x x + 1) x x ( x 1)dx t t = x x I = x3 3x + x x2 x + 1 2 15 dx ( x x )(2 x 1) dx t t = x x + I = (t 1)dt = x2 x + 1 I = Cõu 37 I = x 3dx + x2 t t = + x x = t xdx = 3t 2dt I = 38 (t 4t )dt = + 23 25 Cõu 38 I = dx x + + x2 1 + 1 + x + x2 11 + x2 Ta cú: I = dx = dx = + dx dx 2 2x x 2x (1 + x ) (1 + x ) 1 + I1 = + I2 = 1 + x + x2 11 1 + dx = ln x + x |1 = x 1 + x2 dx t t = + x t = + x 2tdt = xdx I2= 2x Vy: I = t 2dt 2 2(t 1) =0 Cỏch 2: t t = x + x + Cõu 39 I = Cõu 40 I = 1 3 x (x ) x4 x2 dx x2 dx x Ta cú: I = I= 1 Ta cú: I = dx t t = I = x x x t(tdt ) t2 x xdx t t = t2 x t = x tdt = xdx t2 = dt = (1 + )dt = t + ln 2 t+2 t t 3 = + ln + 3 Bieõn soaùn: Thay Tran Sú Tuứng - Trang www.MATHVN.com Cõu 41 I = x ( x + 1) x + Cõu 42 I = Bi Nguyờn hm - Tớch phõn cú li gii 27 x x+ x x2 + x + dx t t = x + x + x + I = 1+ 1+ 2dt = ln(2t + 1) 2t + x2 + x )2 (2 + + x )2 (1 + 4 = ln 3+ 3 dx 42 36 t + + x = t I = 2t 16 + dt = 12 + 42 ln t t 3 x2 Cõu 45 I = 2( x + 1) + x + + x x + 2t (t 1)2 dt t t = x + I = t(t + 1)2 Cõu 46 I = 2 x x + 2011x x4 Ta cú: I = 2 M= 2 2 2011 x3 I= x x3 N= 1 x2 x3 dx + 2 dx = 2 = (t 1)2 dt = (t 1)3 = 3 2011 x3 1 2 dx dx t t = dx x2 dx = M + N M = t 3dt = 2 2011 2011x dx = x2 3 = 213 128 14077 16 14077 21 16 128 dx Cõu 47 I = (1 + x ) + x 3 3 = 15 ln 2 2t dt = + dt = + ln 12 t t2 + t2 + t(t + 1) Cõu 44 I = t3 Cõu 43 I = 3t dt dx t t = x I = t t = x + I = dx t t = + x I = t2 t (t 1) 3 dt = dt t (t 1) Bieõn soaùn: Thay Tran Sú Tuứng - Trang Bi Nguyờn hm - Tớch phõn cú li gii = dt = Cõu 48 I = 2 t3 du = 3dt t4 = t t4 dt t t t t u = 2 t t I= u www.mathvn.com du = dt 2 u du 1 u3 = 1 = u3 = x4 dx x x x +1 t t = x + I = (t 1)2 t2 dt = t 2t + t2 2 3 2t dt = t dt + 2 dt = 19 4+ + ln Dng 2: i bin s dng x ln + x ( ) dx 1+ x Cõu 49 I = x 1 x Tớnh H = 1+ x dx t x = cos t; t 0; H = u = ln(1 + x ) Tớnh K = x ln(1 + x )dx t dv = xdx Cõu 50 I = (x K= + x ) x dx I= (x + x ) x dx = x x dx + x x dx = A + B x x dx t t = x Tớnh c: A = x x dx t x = 2sin t Tớnh c: B = 2 + Tớnh B = 2 + Tớnh A = 2 Vy: I = Bieõn soaùn: Thay Tran Sú Tuứng - Trang www.MATHVN.com (3 Cõu 51 I = Bi Nguyờn hm - Tớch phõn cú li gii ) x dx 2x4 Ta cú: I = 2x + Tớnh I1 = 2x + Tớnh I = I2 = 2x4 x2 2x4 dx x dx = 21 16 dx = dx t x = 2sin t dx = cos tdt 2 x2 dx 6 cos tdt 12 = cot t dt = cot t.d (cot t ) = sin t 8 sin t Vy: I = 1( 3) 16 x 2dx x6 Cõu 52 I = t t = x dt = x dx I = 1 dt t 16 t t = 2sin u, u 0; dt = cos udu I = dt = 30 18 Cõu 53 I = x dx x+2 x 2dx Cõu 54 I = Ta cú: I = I = Cõu 55 t + 2x x2 t x = cos t dx = 2sin tdt I = sin2 dt = x 2dx 22 ( x 1)2 t x = cos t (1 + cos t ) 2sin t (2 cos t )2 dt = ( + cos t + cos2t ) dt = + 3 2 x x dx t x = sin t I = (cos t sin t )cos tdt = Bieõn soaùn: Thay Tran Sú Tuứng - Trang 12 + 8 Bi Nguyờn hm - Tớch phõn cú li gii www.mathvn.com Dng 3: Tớch phõn tng phn Cõu 56 I = x 1dx x dx u = x du = t x dv = dx v = x I = x x2 =5 I= x x 1dx x x2 dx = dx x2 x + dx x = I ln x + x ln ( + 1) + ln 2 Chỳ ý: Khụng c dựng phộp i bin x = vỡ 2;3 [ 1;1] cos t TP3: TCH PHN HM S LNG GIC Dng 1: Bin i lng giỏc Cõu 57 I = 8cos2 x sin x dx sin x cos x (sin x cos x )2 + cos x I = dx = ( sin x cos x 4(sin x + cos x ) dx sin x cos x = 3cos x 5sin x + C cot x tan x tan x dx Cõu 58 I = sin x cot x tan x cot x cos x Ta cú: I = dx = dx = dx = +C sin x sin x 2sin x sin x cos2 x + Cõu 59 I = dx sin x + cos x + + cos x + dx Ta cú: I = 2 + sin x + cos x + dx dx + = 2 + sin x + sin x + + cos x + 8 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 10 www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii e3 e I = dx ln xdx = 3ln 4e3 + 2e2 x (1 ln x ) e2 e2 e2 Cõu 145 I = ln x ln x + x2 dx 2 t 2t + t 1 t t dx t : t = ln x dt = I = dt = dt = dt + dt = I1 + I t t t x e e e et tdt dt dt dt + I1 = = tet + = t t 0 t e e et e e + I2 = tdt dt t et e 2(e 1) Vy : I = 2 dt 1 = tet + et 2 = tet = t e e2 e dt e2 ln( x + 1) Cõu 146 I = dx x x 1+ t t = ln ( x + 1) 2dt = e3 Cõu 147 I = dx x 1+ x ln dt = ln2 ln2 ln ln x dx x + ln x t t = + ln x + ln x = t (t 1)3 I = dt = t Cõu 148 I = I =2 e ln x x + ln x t 3t + 3t 1 15 dt = (t 3t + 3t )dt = ln t t 1 dx t t = + ln x I = e (2 t )dt = xe x + 1 x(e x + ln x) dx 3 t t = + ln2 x I = 34 24 e Cõu 150 I = ln x + ln2 x Cõu 149 I = dx x e dx = 2tdt v ln3 x = (t 1)3 x t t = e x + ln x I = ln ee + e Bieõn soaùn: Thay Tran Sú Tuứng - Trang 29 Bi Nguyờn hm - Tớch phõn cú li gii www.mathvn.com Dng 2: Tớch phõn tng phn Cõu 151 I = e s inx sin xdx u = sin x du = cos xdx sin x cos xdx v = esin x dv = e I = es inx sin x cos xdx t I = 2sin xesin x 02 e sin x cos xdx = 2e 2esin x 02 =2 Cõu 152 I = x ln( x + x + 1)dx 2x + du = dx u = ln( x + x + 1) x + x +1 t dv = xdx v = x x2 1 2x3 + x2 I= ln( x + x + 1) dx 2 x + x +1 3 11 1 2x + 31 dx = ln (2 x 1)dx + dx = ln 2 20 x + x +1 x + x +1 12 Cõu 153 I = ln x x +1 dx u = ln x dx 8 x +1 du = ( ) dx I = x + 1.ln x x x dx = ln ln 2J x + v = x + t dv = + Tớnh J = 3 3 x +1 t t2 1 dx t t = x + J = dt = + 2tdt = dt 2 x t t + 1 t t 1 2 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 30 www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii t = 2t + ln t +1 = + ln ln T ú I = 20 ln ln x + x ln x + x e dx x e Cõu 154 I = e e e x e dx x I = xe x dx + ln xe x dx + 1 e e e x e e 1 e x e e dx = ee dx x x 1 +Tớnh I = e x ln xdx = e x ln x e + Tớnh I1 = xe x dx = xe x e x dx = ee (e 1) e x e dx = ee +1 x Vy: I = I1 + I + e ln x + ln2 x dx x + ln x Cõu 155 I = e ln x 1x e + ln x Tớnh I1 = dx t t = + ln x I1 = 2 3 + Tớnh I = ln2 xdx Ly tớch phõn tng phn ln c I = e 2 3 ln( x + 1) Cõu 156 I = dx x Vy I = e 2x u = ln( x + 1) du = ln( x + 1) 2 dx x + t Do ú I = + dx 2 dv = x v = x ( x + 1) x 2x2 = ln ln x ln ln dx d ( x + 1) + dx = + x x2 + x x + = ln ln + ln | x | ln | x + 1| = ln ln Cõu 157 I = ln( x + 1) x2 dx dx u = ln( x + 1) du = x + 1 dx dx t I = ln( x + 1) + = 3ln ln dv = 1 ( x + 1) x x v = x2 x 1+ x dx x Cõu 158 I = x ln Bieõn soaùn: Thay Tran Sú Tuứng - Trang 31 Bi Nguyờn hm - Tớch phõn cú li gii www.mathvn.com du = dx 1+ x 1+ x 2 (1 x )2 t u = ln x I = x ln x dx 2 x x x dv = xdx v = 0 = 2 ln x ln ln 1 + dx = + + dx = + + ln x ( x 1)( x + 1) 2 10 u = ln x + t x I = ln ln + dv = x 2dx Cõu 159 I = x ln x + dx x 2 t u = ln(12 + x ) I = ln + + Cõu 160 I = x ln(1 + x )dx ln x Cõu 161 I = ( x + 1) u = ln x dx t dv = ( x + 1) dx I = ln + ln ln x + e x (e x + ln x) dx + ex e Cõu 162 I = dv = x dx e e Ta cú: I = ln x.dx + e2 x 1e x +1 dx = H + K e e + H = ln2 x.dx t: u = ln x H = e ln x.dx = e dv = dx 1 e2 x e + K= 1e x dx t t = e + I = x +1 Vy: I = ee + ln x e +1 Ta cú: I = e x+ x t e +1 dt = ee e + ln t ee + e +1 ee + Cõu 163 I = ( x + )e ee +1 x+ x dx 1 x+ dx + x e x dx = H + K x + Tớnh H theo phng phỏp tng phn I1 = H = xe x+ x I= 1 x+ x 52 x e dx = e K x 2 e Cõu 164 I = ln( x + x)dx Bieõn soaùn: Thay Tran Sú Tuứng - Trang 32 www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii ( ) t u = ln x + x I = x ln dv = dx ( x + x) 4 + x x2 + dx = TP5: TCH PHN T HP NHIU HM S Cõu 165 I = x 2e x + x dx 1+ x I = x 2e x dx + x 1+ x dx 11 t 1 1 + Tớnh I1 = x e dx t t = x I1 = e dt = et = e 30 3 x3 + Tớnh I = 1+ dx t t = x I = x Vy: I = e + 3 x2 Cõu 166 I = x e x x3 2 x I = xe dx + x2 dx 2 + Tớnh I1 = xe x dx = e2 + Tớnh I = I2 = cos2 t dt = ( cot t t ) = sin t Cõu 167 I = 4x + Tớnh I1 = x e + Tớnh I = I= 2x ) 4x x2 dx t x = 2sin t , t 0; x x dx x3 I = x e2 x dx x2 ( e2 x x Vy: I = e2 + dx x2 t4 dt = + 1+ t x dx = I1 + I e2 + dx = x3 x2 dx t t = x I = 3 + 16 e2 61 +3 12 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 33 Bi Nguyờn hm - Tớch phõn cú li gii x2 + Cõu 168 I = ( x + 1) e x dx 2 t t = x + dx = dt I = t 2t + t2 Cõu 169 I = x +1 x e www.mathvn.com e2 2 et 1dt = + et 1dt = e + + e = e t2 t dx + x2 2 t t = + x dx = tdt I = (t 1)e dt = t 2et dt et t 1 = J ( e e) 2 + J = t e dt = t e 2te dt = 4e e tet et dt = 4e2 e 2(tet et ) 1 1 1 2 t t 2 t Vy: I = e2 x ln( x + 1) + x Cõu 170 I = x2 + Ta cú: f ( x ) = dx x ln( x + 1) + x ( x + 1) x = x ln( x + 1) +x x x +1 x +1 x +1 x +1 1 F ( x ) = f ( x )dx = ln( x + 1)d ( x + 1) + xdx d ln( x + 1) 2 2 = ln ( x + 1) + x ln( x + 1) + C 2 ( 4 I = ) ln x + x + x Cõu 171 I = x2 + ( ) ln x + x + x x +9 + Tớnh I1 = I1 = ln ( x +9 udu = ln + Tớnh I = Vy I = ( ln x + x + x +9 )dx t ln ( x + )dx 34 x3 x +9 ) x + = u du = dx = I1 3I 2 x +9 u2 ln ln2 ln2 = ln x3 x +9 x + = v dv = dx t I = (u2 9)du = ( dx = ln x + x + dx x x +9 dx , x = v u 44 9u) = 3 ( ) ln x + x + x x2 + ln ln dx = I1 3I = 44 ( x + 1) ln x + x + dx + x ln x e Cõu 172 I = Bieõn soaùn: Thay Tran Sú Tuứng - Trang 34 dx www.MATHVN.com e Bi Nguyờn hm - Tớch phõn cú li gii e x3 e3 + x dx = = 3 e e + ln x I = x 2dx + dx + x ln x 1 e + e + ln x d (2 + x ln x ) dx = + x ln x + x ln x = ln + x ln x 1 Cõu 173 I = e3 x ln3 x + ln x e = ln e+2 Vy: I = e3 e+2 + ln dx t t = + ln x + ln x = t (t 1)3 dt = t I = dx = 2tdt v ln3 x = (t 1)3 x t 3t + 3t 1 15 dt = (t 3t + 3t )dt = ln t t 1 Cõu 174 I = x sin x dx x cos u= x t sin x = dv dx cos2 x dx cos xdx t t = sin x I1 = cos x = sin2 x 0 + I1 = du = dx x I= cos x v = cos x 2 dx dx = cos x cos x dt t = 2+ ln 2 2+ ln 2 Vy: = ln(5 x) + x3 x Cõu 175 I = dx x2 ln(5 x) Ta cú: I = dx + x x dx = K + H x2 1 4 u = ln(5 x ) ln(5 x ) dx dx t K = ln = dv x x2 + K= + H= x x dx t t = x H = 164 15 164 Vy: I = ln + 15 Cõu 176 I = x (2 x ) + ln(4 + x ) dx 2 Ta cú: I = x(2 x )dx + ln(4 + x )dx = I1 + I 2 + I1 = x (2 x )dx = ( x 1)2 dx = 0 (s dng i bin: x = + sin t ) Bieõn soaùn: Thay Tran Sú Tuứng - Trang 35 Bi Nguyờn hm - Tớch phõn cú li gii 2 2 + I = ln(4 + x )dx = x ln(4 + x ) www.mathvn.com x2 dx (s dng tớch phõn tng phn) + x2 = ln + (i bin x = tan t ) 0 Vy: I = I1 + I = + ln 2 ln x dx x +1 Cõu 177 I = u = ln x dx 8 x +1 du = dx t I = x + ln x dx x dv = x x + v = x + 3 x +1 2t dt + Tớnh J = dx t t = x + J = = + dt = + ln ln 2 x t t I = ln ln 2(2 + ln ln 2) = 20 ln ln + x2 x3 ln xdx Cõu 178 I = u = ln x 1 1 Ta cú: I = + ln xdx t dv = ( + )dx x x x3 x 2 1 63 I = + ln x ln x + ln x dx = ln + + ln2 x 64 4x 4x x + x ln x + x e dx x e Cõu 179 I = e e 1 e x e dx = H + K + J x Ta cú: I = xe x dx + e x ln xdx + e e e + H = xe x dx = xe x 1e e x dx = ee (e 1) e x e e e + K = e ln xdx = e ln x dx = e dx = ee J x x 1 x x e e x Vy: I = H + K + J = ee +1 ee + ee J + J = ee +1 Cõu 180 I = x cos x sin3 x dx cos x Ta cú = t sin x sin x 1 I = x 2 sin x u = x du = dx dv = cos x dx v = sin3 x 2sin x 2 dx 1 + = ( ) cot x = 2 sin x 2 2 4 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 36 www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii Cõu 181 I = cos3 x dx x sin x u = x du = dx x sin x t: I = dv = dx v= cos2 x cos3 x 2.cos2 x dx cos2 x = tan x 0 = ( x + sin x) + sin x dx Cõu 182 I = x sin2 x dx + + sin x + sin x dx = H + K 0 Ta cú: I = u = x du = dx dx x x = dv + H= dx = dx t: v = tan x + sin x 0 cos2 x cos x 2 H= x 2 tan x + ln cos x = + K= 2 sin x cos2 x dx t t = x K = + sin x + sin x dx 0 dx = tan x = K = cos2 x Vy, I = H + K = + 2K = Cõu 183 I = x (cos3 x + cos x + sin x ) + cos2 x dx cos x (1 + cos2 x ) + sin x x.sin x Ta cú: I = x dx = J + K dx = x.cos x.dx + 2 + cos x 0 + cos x u = x + Tớnh J = x.cos x.dx t J = ( x.sin x ) sin x.dx = + cos x = 0 dv = cos xdx 0 + Tớnh K = x.sin x + cos x K= dx t x = t dx = dt ( t ).sin( t ) 2K = + cos ( t ) ( x + x ).sin x + cos2 x dt = ( t ).sin t + cos t dx = dt = sin x.dx + cos x ( x ).sin x + cos2 x K= dx sin x.dx + cos2 x Bieõn soaùn: Thay Tran Sú Tuứng - Trang 37 Bi Nguyờn hm - Tớch phõn cú li gii t t = cos x dt = sin x.dx K = K= Vy I = (1 + tan u)du Cõu 184 I = x + ( x + sin x )sin x (1 + sin x )sin x Ta cú: I = 3 + K = Vy I = x sin x u = 4 dx dx = x sin x dx + dx =H+K + sin x u = x du = dx H= dv = dx v = cot x sin x dx t t t = tan u dt = (1 + tan2 u)du (1 + sin x )sin x dx = + sin x Cõu 185 I = du = x (1 + sin x ) + sin x + H = dt + t2 , = + tan u www.mathvn.com dx dx = = x + cos x cos + 32 x + sin2 x dx + cos2 x x + sin x x sin x Ta cú: I = 03 dx = dx + dx = H + K 0 + cos2 x cos2 x cos2 x u = x x x du = dx dx + H= dx = dx t 2 dv = cos x v = tan x cos x cos2 x H = x tan x tan xdx = + ln cos x = ln 0 2 sin x 1 + K = dx = tan2 xdx = [ tan x x ] = 0 2 cos2 x Vy: I = H + K = 1 ( 1) ln + = + ( ln 2) 2 Cõu 186 I = x + 1sin x + 1.dx 2 1 t t = x + I = t.sin t.2tdt = 2t sin tdt = x sin xdx Bieõn soaùn: Thay Tran Sú Tuứng - Trang 38 www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii 2 u = x du = xdx t I = x cos x + x cos xdx dv = sin xdx v = cos x u = x du = 4dx t T ú suy kt qu dv = cos xdx v = sin x + sin x + cos x e Cõu 187 I = x dx I= 2 e dx sin x x + e dx + cos x x cos x x x 2sin cos sin x x 2 e x dx = tan x e x dx + Tớnh I1 = e dx = x + cos x 0 cos2 u = ex du = e x dx x 2 e dx tan x e x dx + Tớnh I = t dv = dx I = e 2 x x 20 v = tan x cos2 cos 2 2 Do ú: I = I1 + I = e Cõu 188 I = I = 02 I = cos x e x (1 + sin x ) dx cos x (sin x + cos x )dx u= du = x cos x e ex dx t x dx sin x e (sin x + cos x ) dv = v = (sin x + cos x ) sin x + cos x cos x e x sin x sin x + cos x + sin xdx e x = sin xdx ex u1 = sin x du1 = cos xdx t I = sin x x + dx e dv1 = x v1 = x e e u2 = cos x du2 = sin xdx t dx dv1 = x v1 = x e e I = e2 + cos x ex sin xdx ex = + I 2I = cos xdx e e x = e2 +1 I = e2 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 39 + cos xdx ex e 2 + Bi Nguyờn hm - Tớch phõn cú li gii Cõu 189 I = sin x + cos6 x 6x + dx t t = x dt = dx I = I = (6 x + 1) 6x + 6 sin t + cos t 6t + dt = 6x dx = sin x + cos6 x 6x + (sin x + cos6 x )dx = + cos x dx = 16 8 32 Cõu 190 I = sin xdx x + Ta cú: I = sin xdx 2x + + Tớnh I1 = x x sin xdx 2x + x sin xdx 2x + + x sin xdx 2x + sin xdx 2x + = I1 + I 2t sin (t ) t + t x = t I1 = 6 = dt = + sin xdx 2x + x = sin xdx = 0 sin t 6 16 (1 cos2 x )2 dx 40 e cos(ln x )dx t t = ln x x = et dx = et dt I = et cos tdt = (e + 1) (dựng pp tớch phõn tng phn) 2 Cõu 192 I = esin x sin x.cos3 xdx t t = sin x I = 11 t e (1 t )dt = e (dựng tớch phõn tng phn) 20 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 40 sin x 2t + 1dt = x + 1dx 16 (3 cos x + cos x )dx = 80 64 Cõu 191 I = = dx sin x + cos x I = 6t 2I = www.mathvn.com www.MATHVN.com Bi Nguyờn hm - Tớch phõn cú li gii Cõu 193 I = ln(1 + tan x )dx t t = x I = ln + tan t dt = = ln 2dt ln(1 + tan t )dt 2I = tan t ln + + tan t dt = ln + tan t dt 4 ln I = = t.ln 04 I ln Cõu 194 I = sin x ln(1 + sin x )dx u = ln(1 + sin x ) t dv = sin xdx + cos x du = + sin x dx v = cos x I = cos x.ln(1 + sin x ) + cos x 0 2 cos x sin x dx = + dx = (1 sin x )dx = 1 + sin x + sin x 0 Cõu 195 I = tan x.ln(cos x ) dx cos x t t = cos x dt = sin xdx I = ln t t dt = ln t t2 dt u = ln t du = t dt t I = ln dv = dt 2 v= t t TP6: TCH PHN HM S C BIT Cõu 196 Cho hm s f(x) liờn tc trờn R v f ( x ) + f ( x ) = cos4 x vi mi x R Tớnh: I= f ( x )dx t x = t f ( x )dx = f (t )( dt ) = f (t )dt = f ( x )dx Bieõn soaùn: Thay Tran Sú Tuứng - Trang 41 Bi Nguyờn hm - Tớch phõn cú li gii 2 www.mathvn.com f ( x )dx = f ( x ) + f ( x ) dx = 2 cos4 xdx I = 16 1 + cos2 x + cos x 8 Chỳ ý: cos4 x = Cõu 197 Cho hm s f(x) liờn tc trờn R v f ( x ) + f ( x ) = + cos2 x , vi mi x R I= Tớnh: f ( x )dx 3 Ta cú : I = f ( x )dx = 3 f ( x )dx (1) f (t )dt = f ( x )dx Thay vo (1) ta c: I = = cos xdx f ( x )dx t x = t dx = dt I1 = f ( x )dx + + Tớnh : I1 = 3 f ( x ) + f ( x ) dx = cos xdx = sin x 02 sin x (1 + cos x ) = cos x dx =6 Cõu 198 I = sin x + x2 + x dx I= + x sin xdx x sin xdx = I1 I + Tớnh I1 = + x sin xdx S dng cỏch tớnh tớch phõn ca hm s l, ta tớnh c I1 = + Tớnh I = x sin xdx Dựng pp tớch phõn tng phn, ta tớnh c: I = Suy ra: I = Bieõn soaùn: Thay Tran Sú Tuứng - Trang 42 + www.MATHVN.com Cõu 199 I = I = Bi Nguyờn hm - Tớch phõn cú li gii e x (3x 2) + x e x ( x 1) + x e x ( 3x ) + x dx e x ( x 1) + x + e x ( x 1) e x ( x 1) 5 x x e ( x 1) + x u= x x cos x cos x dx t x cos x cos x ( x sin x + cos x ) dx dv = ( x sin x + cos x )2 cos x + x sin x dx du = cos x v = x sin x + cos x e x ( x 1) + x dx = e x ( x 1) + x dx = dx + e ( x 1) e ( x 1) =x + dx = + dx x 2 x 1(e x + 1) x 1(e x x + 1) e x ( x 1) t t = e x x + dt = dx x x I = 3+ e5 +1 e2 +1 Cõu 200 I = x 2e + 2e + dt I = + ln t = + ln t e +1 e +1 x2 ( x sin x + cos x )2 dx I= I = x + cos x ( x sin x + cos x ) dx cos2 x dx = 4+ Bieõn soaùn: Thay Tran Sú Tuứng - Trang 43 dx [...]... 1005ln(ln( x 2 + 1) + 1) + C 2 t 2 2 2 Cõu 124 I = e Cõu 125 J = 1 xe x + 1 x (e x + ln x ) dx e d (e x + ln x ) 1 e x + ln x J= = ln e x + ln x Bieõn soaùn: Thay Tran Sú Tuứng - Trang 25 e 1 = ln ee + 1 e Bi tp Nguyờn hm - Tớch phõn cú li gii ln 2 Cõu 126 I = e3 x + e 2 x e x + 1 0 I= ln 2 2 e3 x + e 2 x 1 = ln(e3 x + e2 x 2 x 3 e dx 3ln 2 ( x 0 3 x 3 e e Cõu 128 I = ln 2 dx = dx ( 3 ex + 2) ln... Cõu 120 I = 4 Bi tp Nguyờn hm - Tớch phõn cú li gii x cos 2 x (1 + sin 2 x ) 0 2 dx u = x du = dx cos2 x t 1 dv = dx = v 2 1 + sin 2 x (1 + sin 2 x ) 4 4 1 1 1 1 1 dx = + 4+ 16 2 2 1 + sin 2 x 0 2 0 1 + sin 2 x I = x 1 1 2 cos2 x 4 0 dx 1 1 1 2 2 = + tan x 4 = + 0 + 1) = ( 16 2 2 4 16 2 2 4 16 0 TP4: TCH PHN HM S M - LOGARIT Dng 1: i bin s Cõu 121 I... Cõu 121 I = e2 x 1 + ex dx t t = e x e x = t 2 e x dx = 2tdt t3 2 2 I = 2 dt = t 3 t 2 + 2t 2 ln t + 1 + C = e x e x e x + 2 e x 2 ln e x + 1 + C 1+ t 3 3 Cõu 122 I = I = ( x 2 + x )e x x + e x ( x 2 + x )e x x x+e dx Cõu 123 I = dx dx = xe x ( x + 1)e x xe + 1 x dx t t = x.e x + 1 I = xe x + 1 ln xe x + 1 + C e2 x + 9 t t = e2 x + 9 I = dt t2 9 = 1 t 3 1 ln + C = ln 6 t+3 6 e2... x I = 64 16 64 128 Cõu 63 I = 2 cos2 x(sin 4 x + cos4 x )dx 0 2 0 1 1 2 0 1 I = cos2 x 1 sin2 2 x dx = 1 sin2 2 x d (sin 2 x ) = 0 2 2 2 Cõu 64 I = 2 3 (cos x 1) cos2 x.dx 0 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 11 = Bi tp Nguyờn hm - Tớch phõn cú li gii 5 cos xdx = 2 (1 sin x ) 2 A = 0 2 d (sin x ) = 0 8 15 2 2 cos x.dx = B= 2 www.mathvn.com 0 12 (1 + cos 2 x ).dx... 0 I= dx 3e3 x + 2e2 x e x (e3 x + e2 x e x + 1) 0 Cõu 127 I = www.mathvn.com +2 ) 2 t t x = e3 x 1 3 3 1 dt = e 3 dx I = ln 3 4 2 6 3 x e 1 dx 0 t 3 x e 1 = t dx = 1 3t 2 dt t3 + 1 1 I = 3 1 0 1 1 dt dt = 3 3 3 t3 + 1 t + 1 0 1 1 2t + = + ln 2 dt = 3 2 t + 1 3 t + 1 t t + 1 0 0 Tớnh I1 = 3 dt Vy: I = 3 ln 2 Cõu 129 I = 3 ln15 ( e2 x 24e x ) dx 3ln 2 e x e x + 1 + 5e... 0 3 sin x 3 cos x dx + 2 sin x 3 cos x dx = 3 3 0 3 Cõu 86 I = 2 sin xdx (sin x + cos x )3 0 t x = 2 t dx = dt I = 2 cos tdt = cos xdx (sin t + cos t )3 (sin x + cos x )3 0 2 0 2 12 dx 1 4 1 2I = = = cot( x + ) = 1 I = 2 20 2 2 4 0 2 0 (sin x + cos x ) sin ( x + ) 4 dx Cõu 87 I = 2 7sin x 5cos x (sin x + cos x )3 dx 0 Xột: I1 = t x = 2 2 0 sin xdx ( sin x + cos x... 4 sin t cos t cos3 t + sin3 t dt = 2 sin 4 x cos x cos3 x + sin3 x dx 0 2 2 2I = 4 4 cos x sin x + sin x cos x sin3 x + cos3 x 0 dx = 2 0 3 3 sin x cos x (sin x + cos x ) sin3 x + cos3 x dx = 12 1 sin 2 xdx = 20 2 1 4 I= 2 0 1 cos2 (sin x ) tan Cõu 91 I = t x = 2 2 (cos x ) dx t dx = dt 2 2 1 tan 2 (sin t ) dt = tan 2 (sin x ) dx 2 2 cos (cos t ) cos (cos x ) 0 0... Bieõn soaùn: Thay Tran Sú Tuứng - Trang 17 1 2 Bi tp Nguyờn hm - Tớch phõn cú li gii t u = sin x + cos x I = 2 1 www.mathvn.com du 4u 2 t u = 2sin t I = 4 2 cos tdt 2 4 4sin t 6 4 = dt = 12 6 Cõu 93 I = 3 sin x 2 cos x 3 + sin x 0 4 cos2 x Ta cú: cos2 x = 4 t 2 v dt = t t = 3 + sin2 x = I= 3 3 0 = dx sin x dx = cos x 3 + sin2 x 15 2 1 t+2 ln 4 t2 3 2 3 2 sin x 2 3 + Tớnh I1 =... + cos x I = 2 4 21 I = 1 t 2 2 dt = ln t 1 = 1 ln 2 2 6 Cõu 103 I = 2 1 cos3 x sin x.cos5 xdx 1 t t = 6 1 cos3 x t 6 = 1 cos3 x 6t 5dt = 3cos2 x sin xdx dx = 2t 5dt cos2 x sin x 1 1 t 7 t13 12 I = 2 t 6 (1 t 6 )dt = 2 = 7 13 0 91 0 Cõu 104 I = 4 tan xdx 0 cos x 1 + cos2 x Ta cú: I = 3 4 tan xdx 0 cos2 x tan2 x + 2 tdt I= = t 2 t t = 2 + tan 2 x t 2 = 2 + tan 2 x tdt = 3... 4 4 3 sin x 3 cos x t t = tan x I = dx = cos8 x 3 3 t 4 dt 3 4 4 1 1 2 tan x cos x 3 dx = 4 ( 8 3 1) 1 Bieõn soaùn: Thay Tran Sú Tuứng - Trang 21 6 2 Bi tp Nguyờn hm - Tớch phõn cú li gii Cõu 112 I = x( 0 www.mathvn.com cos3 x + cos x + sin x )dx 1 + cos 2 x cos x (1 + cos2 x ) + sin x x.sin x dx = x.cos x.dx + dx = J + K 2 2 1 + cos x 1 + cos x 0 0 Ta cú: I = x 0 u = x du ... x + 1) dt x dx 128 t I = dx t t = x I = dt 7 t (1 + t ) x (1 + x ) dx (1 x ).x dx x (1 + x ) t : x = I = t 3 t6 dt = t2 + 1 117 41 + t t +1 dt = 135 12 t + x 2001 Cõu 14 I =... (1 + x )1002 x 2004 I = dx 1002 x (1 + x ) Cỏch 2: Ta cú: I = dx = 1 1002 x + x 1000 + x2 11+ x Ta cú: 1+ x 1+ x4 x2 + dt = x3 dx 11 x 2000 xdx t t = + x dt = xdx 2000 2 (1 + x )... 3dt = 2 2011 2011x dx = x2 3 = 213 128 14077 16 14077 21 16 128 dx Cõu 47 I = (1 + x ) + x 3 3 = 15 ln 2 2t dt = + dt = + ln 12 t t2 + t2 + t(t + 1) Cõu 44 I = t3

Ngày đăng: 26/12/2016, 05:29

TỪ KHÓA LIÊN QUAN

w