1. Trang chủ
  2. » Khoa Học Tự Nhiên

tuyển chọn 50bài tạp hình 9

7 265 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 102 KB
File đính kèm tuyển chọn 50bài tạp hình 9.rar (23 KB)

Nội dung

Các toán hình học lớp Bài Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O) Các đờng cao AD, BE, CF cắt H cắt đờng tròn (O) lần lợt M,N,P Chứng minh rằng: Các tứ giác AEHF, nội tiếp Bốn điểm B,C,E,F nằm đờng tròn AE.AC = AH.AD; AD.BC = BE.AC H M đối xứng qua BC Xác định tâm đờng tròn nội tiếp tam giác DEF Bài Cho tam giác cân ABC (AB = AC), đờng cao AD, BE, cắt H Gọi O tâm đờng tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp Bốn điểm A, E, D, B nằm đờng tròn Chứng minh ED = BC Chứng minh DE tiếp tuyến đờng tròn (O) Tính độ dài DE biết DH = Cm, AH = Cm Bài Cho nửa đờng tròn đờng kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Qua điểm M thuộc nửa đờng tròn kẻ tiếp tuyến thứ ba cắt tiếp tuyến Ax , By lần lợt C D Các đờng thẳng AD BC cắt N Chứng minh AC + BD = CD AB Chứng minh AC BD = Chứng minh COD = 90 4 Chứng minh OC // BM Chứng minh AB tiếp tuyến đờng tròn đờng kính CD Chứng minh MN AB Xác định vị trí M để chu vi tứ giác ACDB đạt giá trị nhỏ Bài Cho tam giác cân ABC (AB = AC), I tâm đờng tròn nội tiếp, K tâm đờng tròn bàng tiếp góc A , O trung điểm IK Chứng minh B, C, I, K nằm đờng tròn Chứng minh AC tiếp tuyến đờng tròn (O) Tính bán kính đờng tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm Bài Cho đờng tròn (O; R), từ điểm A (O) kẻ tiếp tuyến d với (O) Trên đờng thẳng d lấy điểm M ( M khác A) kẻ cát tuyến MNP gọi K trung điểm NP, kẻ tiếp tuyến MB (B tiếp điểm) Kẻ AC MB, BD MA, gọi H giao điểm AC BD, I giao điểm OM AB Chứng minh tứ giác AMBO nội tiếp Chứng minh năm điểm O, K, A, M, B nằm đờng tròn Chứng minh OI.OM = R2; OI IM = IA2 Chứng minh OAHB hình thoi Chứng minh ba điểm O, H, M thẳng hàng Tìm quỹ tích điểm H M di chuyển đờng thẳng d Bài Cho tam giác ABC vuông A, đờng cao AH Vẽ đờng tròn tâm A bán kính AH Gọi HD là đờng kính đờng tròn (A; AH) Tiếp tuyến đờng tròn D cắt CA E Chứng minh tam giác BEC cân Gọi I hình chiếu A BE, Chứng minh AI = AH Chứng minh BE tiếp tuyến đờng tròn (A; AH) Chứng minh BE = BH + DE Bài Cho đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Ax lấy tiếp tuyến điểm P cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) M Chứng minh tứ giác APMO nội tiếp đợc đờng tròn Chứng minh BM // OP Đờng thẳng vuông góc với AB O cắt tia BM N Chứng minh tứ giác OBNP hình bình hành Biết AN cắt OP K, PM cắt ON I; PN OM kéo dài cắt J Chứng minh I, J, K thẳng hàng Bài Cho nửa đờng tròn tâm O đờng kính AB điểm M nửa đờng tròn ( M khác A,B) Trên nửa mặt phẳng bờ AB chứa nửa đờng tròn kể tiếp tuyến Ax Tia BM cắt Ax I; tia phân giác góc IAM cắt nửa đờng tròn E; cắt tia BM F tia BE cắt Ax H, cắt AM K a) Chứng minh rằng: EFMK tứ giác nội tiếp b) Chứng minh rằng: AI2 = IM IB c) Chứng minh BAF tam giác cân d) Chứng minh : Tứ giác AKFH hình thoi e) Xác định vị trí M để tứ giác AKFI nội tiếp đợc đờng tròn Bài Cho nửa đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Bx lấy hai điểm C D thuộc nửa đờng tròn Các tia AC AD cắt Bx lần lợt E, F (F B E) Chứng minh AC AE không đổi Chứng minh ABD = DFB Chứng minh CEFD tứ giác nội tiếp Bài 10 Cho đờng tròn tâm O đờng kính AB điểm M nửa đờng tròn cho AM < MB Gọi M điểm đối xứng M qua AB S giao điểm hai tia BM, MA Gọi P chân đơng vuông góc từ S đến AB Chứng minh bốn điểm A, M, S, P nằm đờng tròn Gọi S giao điểm MA SP Chứng minh tam giác PSM cân Chứng minh PM tiếp tuyến đờng tròn Bài 11 Cho tam giác ABC (AB = AC) Cạnh AB, BC, CA tiếp xúc với đờng tròn (O) điểm D, E, F BF cắt (O) I , DI cắt BC M Chứng minh : Tam giác DEF có ba góc nhọn DF // BC Tứ giác BDFC nội tiếp BD BM = CB CF Bài 12 Cho đờng tròn (O) bán kính R có hai đờng kính AB CD vuông góc với Trên đoạn thẳng AB lấy điểm M (M khác O) CM cắt (O) N Đờng thẳng vuông góc với AB M cắt tiếp tuyến N đờng tròn P Chứng minh : Tứ giác OMNP nội tiếp Tứ giác CMPO hình bình hành CM CN không phụ thuộc vào vị trí điểm M Khi M di chuyển đoạn thẳng AB P chạy đoạn thẳng cố định Bài 13 Cho tam giác ABC vuông A (AB > AC), đờng cao AH Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đờng tròn đờng kính BH cắt AB E, Nửa đờng tròn đờng kính HC cắt AC F Chứng minh AFHE hình chữ nhật BEFC tứ giác nội tiếp AE AB = AF AC Chứng minh EF tiếp tuyến chung hai nửa đờng tròn Bài 14 Cho điểm C thuộc đoạn thẳng AB cho AC = 10 Cm, CB = 40 Cm Vẽ phía AB nửa đờng tròn có đờng kính theo thứ tự AB, AC, CB có tâm theo thứ tự O, I, K Đờng vuông góc với AB C cắt nửa đờng tròn (O) E Gọi M N theo thứ tự giao điểm EA, EB với nửa đờng tròn (I), (K) Chứng minh EC = MN Chứng minh MN tiếp tuyến chung nửa đờng tròn (I), (K) Tính MN Tính diện tích hình đợc giới hạn ba nửa đờng tròn Bài 15 Cho tam giác ABC vuông A Trên cạnh AC lấy điểm M, dựng đờng tròn (O) có đờng kính MC đờng thẳng BM cắt đờng tròn (O) D đờng thẳng AD cắt đờng tròn (O) S Chứng minh ABCD tứ giác nội tiếp Chứng minh CA tia phân giác góc SCB Gọi E giao điểm BC với đờng tròn (O) Chứng minh đờng thẳng BA, EM, CD đồng quy Chứng minh DM tia phân giác góc ADE Chứng minh điểm M tâm đờng tròn nội tiếp tam giác ADE Bài 16 Cho tam giác ABC vuông A.và điểm D nằm A B Đờng tròn đờng kính BD cắt BC E Các đờng tròn CD, AE lần lợt cắt đờng tròn F, G Chứng minh : Tam giác ABC đồng dạng với tam giác EBD Tứ giác ADEC AFBC nội tiếp AC // FG Các đờng thẳng AC, DE, FG đồng quy Bài 17 Cho tam giác ABC có đờng cao AH Trên cạnh BC lấy điểm M ( M không trùng B C, H ) ; từ M kẻ MP, MQ vuông góc với cạnh AB AC Chứng minh APMQ tứ giác nội tiếp xác định tâm O đờng tròn ngoại tiếp tứ giác Chứng minh MP + MQ = AH Chứng minh OH PQ Bài 18 Cho đờng tròn (O) đờng kính AB Trên đoạn thẳng OB lấy điểm H ( H không trùng O, B); đờng thẳng vuông góc với OB H, lấy điểm M đờng tròn ; MA MB thứ tự cắt đờng tròn (O) C D Gọi I giao điểm AD BC Chứng minh MCID tứ giác nội tiếp Chứng minh đờng tròn AD, BC, MH đồng quy I Gọi K tâm đờng tròn ngoại tiếp tứ giác MCID, Chứng minh KCOH tứ giác nội tiếp Bài 19 Cho đờng tròn (O) đờng kính AC Trên bán kính OC lấy điểm B tuỳ ý (B khác O, C ) Gọi M trung điểm đoạn AB Qua M kẻ dây cung DE vuông góc với AB CD cắt đờng tròn đờng kính BC I Chứng minh tứ giác BMDI nội tiếp Chứng minh tứ giác ADBE hình thoi Chứng minh BI // AD Chứng minh I, B, E thẳng hàng Chứng minh MI tiếp tuyến đờng tròn đờng kính BC Bài 20 Cho đờng tròn (O; R) (O; R) có R > R tiếp xúc C Gọi AC BC hai đờng kính qua điểm C (O) (O) DE dây cung (O) vuông góc với AB trung điểm M AB Gọi giao điểm thứ hai DC với (O) F, BD cắt (O) G Chứng minh rằng: Tứ giác MDGC nội tiếp B, E, F thẳng hàng Bốn điểm M, D, B, F nằm DF, AG, AB đồng quy đờng tròn MF = 1/2 DE Tứ giác ADBE hình thoi MF tiếp tuyến (O) Bài 21 Cho đờng tròn (O) đờng kính AB Gọi I trung điểm OA Vẽ đờng tron tâm I qua A, (I) lấy P bất kì, AP cắt (O) Q Chứng minh đờng tròn (I) (O) tiếp xúc A Chứng minh IP // OQ Chứng minh AP = PQ Xác định vị trí P để tam giác AQB có diện tích lớn Bài 22 Cho hình vuông ABCD, điểm E thuộc cạnh BC Qua B kẻ đờng thẳng vuông góc với DE, đờng thẳng cắt đờng thẳng DE DC theo thứ tự H K Chứng minh BHCD tứ giác nội tiếp Tính góc CHK Chứng minh KC KD = KH.KB Khi E di chuyển cạnh BC H di chuyển đờng nào? Bài 23 Cho tam giác ABC vuông A Dựng miền tam giác ABC hình vuông ABHK, ACDE Chứng minh ba điểm H, A, D thẳng hàng Đờng thẳng HD cắt đờng tròn ngoại tiếp tam giác ABC F, Chứng minh FBC tam giác vuông cân Cho biết ABC > 450 ; gọi M giao điểm BF ED, Chứng minh điểm b, k, e, m, c nằm đờng tròn Chứng minh MC tiếp tuyến đờng tròn ngoại tiếp tam giác ABC Bài 24 Cho tam giác nhọn ABC có B = 450 Vẽ đờng tròn đờng kính AC có tâm O, đờng tròn cắt BA BC D E Chứng minh AE = EB Gọi H giao điểm CD AE, Chứng minh đờng trung trực đoạn HE qua trung điểm I BH Chứng minh OD tiếp tuyến đờng tròn ngoại tiếp tam giác BDE Bài 25 Cho đờng tròn (O), BC dây (BC< 2R) Kẻ tiếp tuyến với đờng tròn (O) B C chúng cắt A Trên cung nhỏ BC lấy điểm M kẻ đờng vuông góc MI, MH, MK xuống cạnh tơng ứng BC, AC, AB Gọi giao điểm BM, IK P; giao điểm CM, IH Q Chứng minh tam giác ABC cân Chứng minh MI2 = MH.MK Các tứ giác BIMH, CIMH nội tiếp Chứng minh PQ MI Bài 26 Cho đờng tròn (O), đờng kính AB = 2R Vẽ dây cung CD AB H Gọi M điểm cung CB, I giao điểm CB OM K giao điểm AM CB Chứng minh : KC AC = AM tia phân giác góc CMD KB AB Tứ giác OHCI nội tiếp Chứng minh đờng vuông góc kẻ từ M đến AC tiếp tuyến đờng tròn M Bài 27 Cho đờng tròn (O) điểm A đờng tròn tiếp tuyến với đờng tròn (O) kẻ từ A tiếp xúc với đờng tròn (O) B C Gọi M điểm tuỳ ý đờng tròn ( M khác B, C), từ M kẻ MH BC, MK CA, MI AB tứ giác ABOC nội tiếp Chứng minh tam giác MIH đồng dạng với tam giác MHK Chứng minh MI.MK = MH2 Chứng minh BAO = BCO Bài 28 Cho tam giác ABC nội tiếp (O) Gọi H trực tâm tam giác ABC; E điểm đối xứng H qua BC; F điểm đối xứng H qua trung điểm I BC Chứng minh tứ giác BHCF hình bình hành E, F nằm đờng tròn (O) Chứng minh tứ giác BCFE hình thang cân Gọi G giao điểm AI OH Chứng minh G trọng tâm tam giác ABC Bài 29 BC dây cung đờng tròn (O; R) (BC 2R) Điểm A di động cung lớn BC cho O nằm tam giác ABC Các đờng cao AD, BE, CF tam giác ABC đồng quy H Chứng minh tam giác AEF đồng dạng với tam giác ABC Gọi A trung điểm BC, Chứng minh AH = 2OA Gọi A1 trung điểm EF, Chứng minh R.AA1 = AA OA Chứng minh R(EF + FD + DE) = 2SABC suy vị trí A để tổng EF + FD + DE đạt giá trị lớn nhát Bài 30 Cho tam giác ABC nội tiếp (O; R), tia phân giác góc BAC cắt (O) M Vẽ đờng cao AH bán kính OA Chứng minh AM phân giác góc OAH Giả sử B > C Chứng minh OAH = B - C Cho BAC = 600 OAH = 200 Tính: a) B C tam giác ABC b) Diện tích hình viên phân giới hạn dây BC cung nhỏ BC theo R Bài 31 Cho tam giác ABC có ba góc nhọn nội tiếp (O; R), biết BAC = 600 Tính số đo góc BOC độ dài BC theo R Vẽ đờng kính CD (O; R); gọi H giao điểm ba đờng cao tam giác ABC Chứng minh BD // AH AD // BH Tính AH theo R Bài 32 Cho đờng tròn (O), đờng kính AB = 2R Một cát tuyến MN quay quanh trung điểm H OB Chứng minh MN di động , trung điểm I MN nằm đờng tròn cố định Từ A kẻ Ax MN, tia Bi cắt Ax C Chứng minh tứ giác CMBN hình bình hành Chứng minh C trực tâm tam giác AMN Khi MN quay quanh H C di động đờng Cho AM AN = 3R2 , AN = R Tính diện tích phần hình tròn (O) nằm tam giác AMN Bài 33 Cho tam giác ABC nội tiếp (O; R), tia phân giác góc BAC cắt BC I, cắt đờng tròn M Chứng minh OM BC Chứng minh MC2 = MI.MA Kẻ đờng kính MN, tia phân giác góc B C cắt đờng thẳng AN P Q Chứng minh bốn điểm P, C , B, Q thuộc đờng tròn Bài 34 Cho tam giác ABC cân ( AB = AC), BC = Cm, chiều cao AH = Cm, nội tiếp đờng tròn (O) đờng kính AA Tính bán kính đờng tròn (O) Kẻ đờng kính CC, tứ giác CACA hình gì? Tại sao? Kẻ AK CC tứ giác AKHC hình gì? Tại sao? Tính diện tích phần hình tròn (O) nằm tam giác ABC Bài 35 Cho đờng tròn (O), đờng kính AB cố định, điểm I nằm A O cho AI = 2/3 AO Kẻ dây MN vuông góc với AB I, gọi C điểm tuỳ ý thuộc cung lớn MN cho C không trùng với M, N B Nối Ac cắt MN E Chứng minh tứ giác IECB nội tiếp Chứng minh tam giác AME đồng dạng với tam giác ACM Chứng minh AM2 = AE.AC Chứng minh AE AC AI.IB = AI2 Hãy xác định vị trí C cho khoảng cách từ N đến tâm đờng tròn ngoại tiếp tam giác CME nhỏ Bài 36 Cho tam giác nhọn ABC , Kẻ đờng cao AD, BE, CF Gọi H trực tâm tam giác Gọi M, N, P, Q lần lợt hình chiếu vuông góc D lên AB, BE, CF, AC Chứng minh : Các tứ giác DMFP, DNEQ hình chữ nhật Các tứ giác BMND; DNHP; DPQC nội tiếp Hai tam giác HNP HCB đồng dạng Bốn điểm M, N, P, Q thẳng hàng Bài 37 Cho hai đờng tròn (O) (O) tiếp xúc A Kẻ tiếp tuyến chung BC, B (O), C (O) tiếp tuyến chung A cắt tiếp tuyến chung BC I Chứng minh tứ giác OBIA, AICO Tính số đo góc OIO nội tiếp Tính độ dài BC biết OA = 9cm, OA = 4cm Chứng minh BAC = 90 Bài 38 Cho hai đờng tròn (O) ; (O) tiếp xúc A, BC tiếp tuyến chung ngoài, B(O), C (O) Tiếp tuyến chung A cắ tiếp tuyến chung BC M Gọi E giao điểm OM AB, F giao điểm OM AC Chứng minh : Chứng minh tứ giác OBMA, AMCO nội tiếp Tứ giác AEMF hình chữ nhật ME.MO = MF.MO OO tiếp tuyến đờng tròn đờng kính BC BC tiếp tuyến đờng tròn đờng kính OO Bài 39 Cho đờng tròn (O) đờng kính BC, dấy AD vuông góc với BC H Gọi E, F theo thứ tự chân đờng vuông góc kẻ từ H đến AB, AC Gọi ( I ), (K) theo thứ tự đờng tròn ngoại tiếp tam giác HBE, HCF Hãy xác định vị trí tơng đối đờng tròn (I) (O); (K) (O); (I) (K) Tứ giác AEHF hình gì? Vì sao? Chứng minh AE AB = AF AC Chứng minh EF tiếp tuyến chung hai đờng tròn (I) (K) Xác định vị trí H để EF có độ dài lớn Bài 40 Cho nửa đờng tròn đờng kính AB = 2R Từ A B kẻ hai tiếp tuyến Ax, By Trên Ax lấy điểm M kẻ tiếp tuyến MP cắt By N Chứng minh tam giác MON đồng dạng với tam giác APB Chứng minh AM BN = R2 S MON R Tính tỉ số AM = S APB Tính thể tích hình nửa hình tròn APB quay quanh cạnh AB sinh Bài 41 Cho tam giác ABC , O trung điển BC Trên cạnh AB, AC lần lợt lấy điểm D, E cho DOE = 600 Chứng minh tích BD CE không đổi Chứng minh hai tam giác BOD; OED đồng dạng Từ suy tia DO tia phân giác góc BDE Vẽ đờng tròn tâm O tiếp xúc với AB Chứng minh đờng tròn tiếp xúc với DE Bài 42 Cho tam giác ABC cân A có cạnh đáy nhỏ cạnh bên, nội tiếp đờng tròn (O) Tiếp tuyến B C lần lợt cắt AB, AC D E Chứng minh : BD2 = AD.CD Tứ giác BCDE nội tiếp BC song song với DE Bài 43 Cho đờng tròn (O) đờng kính AB, điểm M thuộc đờng tròn Vẽ điểm N đối xứng với A qua M, BN cắt (O) C Gọi E giao điểm AC BM Chứng minh tứ giác MNCE nội tiếp Chứng minh NE AB Gọi F điểm đối xứng với E qua M Chứng minh FA tiếp tuyến (O) Chứng minh FN tiếp tuyến đờng tròn (B; BA) Bài 44 Cho hai đờng tròn (O) (O) cắt A B Dây AC đờng tròn (O) tiếp xúc với đờng tròn (O) A Dây AD đờng tròn (O) tiếp xúc với đờng tròn (O) A Gọi K điểm đối xứng với A qua trung điểm I OO, E điểm đối xứng với A qua B Chứng minh rằng: AB KB Bốn điểm A, C, E, D nằm đờng tròn Bài 45 Cho tam giác cân ABC ( AB = AC) nội tiếp đờng tròn (O) Gọi D trung điểm AC; tiếp tuyến đờng tròn (O) A cắt tia BD E Tia CE cắt (O) F Chứng minh BC // AE Chứng minh ABCE hình bình hành Gọi I trung điểm CF G giao điểm BC OI So sánh BAC BGO Bài 46 Cho đờng tròn (O) đờng kính AB , đờng tròn ta lấy hai điểm C D cho cung AC = cung AD Tiếp tuyến với đờng tròn (O) vẽ từ B cắt AC F Chứng minh hệ thức : AB2 = AC AF Chứng minh BD tiếp xúc với đờng tròn đờng kính AF Khi C chạy nửa đờng tròn đờng kính AB (không chứa điểm D ) Chứng minh trung điểm I đoạn chạy tia cố định , xác định tia cố định Bai 47 Cho điểm A; B; C cố định thẳng hàng theo thứ tự Vẽ đờng tròn (O) qua B C ( BC không đờng kính (O) Kẻ từ tiếp tuyến AE AF đến (O) (E; F tiếp điểm) Gọi I trung điểm BC; K trung điểm EF, giao điểm FI với (O) D Chứng minh: AE2 = AB.AC Tứ giác AEOF Năm điểm A; E; O; I; F nằm đờng tròn ED song song với Ac Khi (O) thay đổi tâm đờng tròn ngoại tiếp tam giác OIK thuộc đờng thẳng cố định Bài 48 : Cho tam giác ABC có ba góc nhọn Đờng tròn (O) đờng kính BC cắt AB; AC E D BD cắt CE H; AH cắt BC I Vẽ tiếp tuyến AM AN (O) Chứng minh: Các tứ giác ADHE; ADIB nội tiếp đợc CD.CA + BE BA = BC2 M; H; N thẳng hàng Tính chu vi đờng tròn ngoại tiếp tứ giác ADHE tam giác ABCD tam giác có cạnh 2a Bài 49: Cho đờng tròn (O; R) điểm M nằm (O) Kẻ hai tiếp tuyến MB; BC (O) tia Mx nằm hai tia MO MC Qua B kẻ đờng thẳng song song với Mx, đờng thẳng cắt (O) điểm thứ hai A; AC cắt Mx I Vẽ đờng kính BB Qua O kẻ đờng thẳng vuông góc với BB đờng cắt ; BC lần lợt K E Chứng minh: Tứ giác MOIC nội tiếp OI vuông góc với Mx ME có độ dài không phụ thuộc vị trí điểm M Khi M di động mà OM = 2R K chuyển động đờng nào? Tại sao? Bài 50: Cho (O; R) điểm A (O) Một góc vuông xAy quay quanh A thoả mãn Ax; Ay cắt (O) giọ giao điểm thứ hai Ax; Ay với (O) lần lợt B; C Đờng tròn đờng kính AO cắt AB; AC điểm thứ hai tơng ứng M; N Tia OM cắt (O) P Gọi H trực tâm tam giác AOP Chứng minh: Tứ giác AMON hình chữ nhật MN // BC Tứ giác PHOP nội tiếp Xác định vị trí góc xAy cho tam giác AMN có diện tích lớn ******************* ... BC Chứng minh tứ giác BHCF hình bình hành E, F nằm đờng tròn (O) Chứng minh tứ giác BCFE hình thang cân Gọi G giao điểm AI OH Chứng minh G trọng tâm tam giác ABC Bài 29 BC dây cung đờng tròn (O;... Tính bán kính đờng tròn (O) Kẻ đờng kính CC, tứ giác CACA hình gì? Tại sao? Kẻ AK CC tứ giác AKHC hình gì? Tại sao? Tính diện tích phần hình tròn (O) nằm tam giác ABC Bài 35 Cho đờng tròn (O),... cắt Ax C Chứng minh tứ giác CMBN hình bình hành Chứng minh C trực tâm tam giác AMN Khi MN quay quanh H C di động đờng Cho AM AN = 3R2 , AN = R Tính diện tích phần hình tròn (O) nằm tam giác AMN

Ngày đăng: 18/12/2016, 07:31

TỪ KHÓA LIÊN QUAN

w