Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 112 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
112
Dung lượng
1,94 MB
Nội dung
B GIO DC V O TO TRNG I HC BCH KHOA H NI - NGUYN TH THU NGHIấN CU Mễ PHNG D ON CN BNG PHA H CU T Cể TRONG QU TRèNH SN XUT NHIấN LIU SINH HC BIODIESEL S DNG Mễ HèNH NHIT NG GC-PC-SAFT Chuyờn ngnh : K thut hoỏ hc LUN VN THC S KHOA HC K THUT HO HC NGI HNG DN KHOA HC : TS Vn ỡnh Sn Th TS Nguyn Hunh ụng H NI - 2013 LI CAM OAN Bn lun thc s Ngnh k thut Hoỏ hc vi ti: Nghiờn cu mụ phng d oỏn cõn bng pha h cu t cú quỏ trỡnh sn xut nhiờn liu sinh hc biodiesel s dng mụ hỡnh nhit ng GC-PC-SAFT c hon thnh di s hng dn ca TS Vn ỡnh Sn Th - B mụn Cụng ngh Hu c - Húa du, Khoa Cụng ngh Húa hc, Trng i hc Bỏch khoa H Ni v TS Nguyn Hunh ụng - B mụn Lc Hoỏ du khoa Du khớ, Trng Cao ng ngh Du khớ Vng Tu Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi Cỏc s liu, kt qu nờu lun l trung thc v ni dung ny cha tng c cụng b bt k cụng trỡnh nghiờn cu no trc ú H Ni, thỏng 09 nm 2013 Tỏc gi Nguyn Th Thu Trang LI CM N Tụi xin by t lũng bit n sõu sc n TS Vn ỡnh Sn Th v TS Nguyn Hunh ụng ó dy d, hng dn tn tỡnh v mt khoa hc giỳp tụi cú th hon thnh lun thc s ny c hc v nghiờn cu di s hng dn ca cỏc thy giỳp tụi tin b hn rt nhiu, c v mt kin thc v tỏc phong lm vic Tụi xin cỏm n ti HP TC QUC T V KHOA HC V CễNG NGH THEO NGH NH TH S: 10/2012/H-NT Tụi xin cm n cỏc Thy, Cụ giỏo ca trng i hc Bỏch khoa H Ni ó dy d v giỳp tụi sut thi gian hc Tụi cng xin cm n gia ỡnh v Ban giỏm hiu cng nh khoa Du khớ trng cao ng ngh Du khớ ó to iu kin, giỳp tụi sut quỏ trỡnh hc v hon thnh lun ny H Ni, thỏng 09 nm 2013 Tỏc gi Nguyn Th Thu Trang DANH MC CC K HIU, CC CH VIT TT Ký hiu/ Chỳ gii ch vit tt L t trng pha lng (liquid density) Pvap ỏp sut hi bo hũa (vapor pressure) CpL nhit dung pha lng (liquid heat capacity) Hvap nhit húa hi (heat of vaporization) VLE Cõn bng lng hi (Vaporliquid equilibria) LLE Cõn bng lng lng (Liquidliquid equilibria) EoS phng trỡnh trng thỏi (Equation of state) SAFT thuyt nhit ng thng kờ (statistical associating fluid theory) PC-SAFT perturbed chain SAFT asso association hc hard chain disp dispersion id Ideal hs hard sphere ahc thnh phn nng lng chun adisp nng lng lc London (nng lng tớnh n tng tỏc cỏc moment phõn cc tm thi) gõy aasso nng lng tớnh n cỏc liờn kt hydro aid nng lng t Helmholtz ca khớ lý tng ahs nng lng t Helmholtz ca thnh phn hard-sphere xi thnh phn mole ca cu t i mi s segments ca cu t i g ijhs hm phõn b cp ca segments ca cu t i d ng kớnh segment k hng s Boltzmann Trang T nhit tuyt i i ng kớnh cỏc segment i nng lng tng tỏc gia cỏc segment m chiu di phõn t kớch thc phõn t /k nng lng tng tỏc NAV s Avogadro t trng mole ca cu t AiNj thụng s c trng cho lc liờn kt hydro XAi phn mole ca phõn t i khụng cú liờn kt hydro ti v trớ site A Mi s v trớ sites trờn phõn t i cú liờn kt hydro nng lng tng tỏc ng kớnh segment m s segment cu phõn t/ chiu di phõn t kij thụng s tng tỏc hn hp, l h s hiu chnh K hng s Boltzmann d kớch thc trung bỡnh ca segment v momen dipole ca cu t xp phn phõn cc cú trờn phõn t x thnh phn mole ca cu t ni s nhúm i phõn t lm nờn nhng nhúm khỏc nnhúm Si h s khụng cu ca phõn nhúm Trang MC LC LI CAM OAN LI CM N DANH MC CC K HIU, CC CH VIT TT DANH MC CC BNG DANH MC CC HèNH Chng 1: BIO-DIESEL NGUYấN LIU V CễNG NGH SN XUT 17 1.1 Gii thiu chung 17 1.2 Nguyờn liu sn xut Bio-diesel 22 1.3 Cỏc cu t hin din quỏ trỡnh sn xut bio-diesel 27 1.4 Quy trỡnh sn xut bio-diesel 31 1.4.1 Phng phỏp este húa cú s dng xỳc tỏc baz 32 1.4.2 Phng phỏp este húa cú s dng xỳc tỏc axit 32 1.4.3 Phng phỏp chuyn hoỏ du thnh acid, v sau ú este húa thnh bio-diesel 32 1.4.4 Phng phỏp khụng s dng cht xỳc tỏc 33 1.5 Cỏc c tớnh yờu cu cho quỏ trỡnh sn xut Bio-diesel 33 Chng 2: GII THIU V Mễ HèNH NHIT NG GC-PC-SAFT 37 2.1 Cỏc mụ hỡnh nhit ng ng dng cụng nghip 37 2.2 Phng trỡnh nhit ng PC-SAFT 43 2.3 Phng trỡnh nhit ng GC-PC-SAFT ỏp dng cho cu t phõn cc 48 Chng 3: PHNG PHP Mễ PHNG 50 3.1 Cỏc cu t, phõn nhúm v thụng s cn thit mụ phng quỏ trỡnh sn xut bio-diesel 50 3.2 La chn d liu thc nghim 52 3.3 Ti u cỏc thụng s phõn nhúm v cỏc cu t c bit 53 3.4 Xỏc nh thụng s cu t tinh khit v phõn nhúm 54 Chng 4: KT QU Mễ PHNG 56 4.1 Kt qu mụ phng thu c, thụng s phõn nhúm 56 4.2 Kt qu mụ phng cu t tinh khit 58 4.2.1 Cu t c bit: glycerol, methanol, ethanol 58 4.2.2 Ankanes 59 4.2.3 Alkene 61 4.2.4 Alcohols 62 4.2.5 Esters 64 Trang 4.3 D oỏn cõn bng pha ca cu t tinh khit nng v so sỏnh vi cỏc mụ hỡnh nhit ng khỏc 66 4.4 Mụ phng cõn bng pha hn hp 72 4.4.1 Cõn bng pha lng hi, h hai cu t 72 4.4.2 Cõn bng pha lng lng, h hai cu t 80 4.4.3 Cõn bng pha h ba cu t 85 4.4.4 D oỏn t trng pha lng ca hn hp bio-diesel 90 Chng : KT LUN KIN NGH 97 Trang DANH MC CC BNG Bng 1: So sỏnh nhiờn liu bio-diesel v nhiờn liu diesel 18 Bng 2: Mc gim khớ thi s dng bio-diesel so vi diesel du m 19 Bng 3: c tớnh ca mt s loi du thc vt so sỏnh vi du diesel 23 Bng 1.4: Cỏc thnh phn axit bộo ca cỏc loi du thc vt 24 Bng 1.5: Mt s ngun nguyờn liu c s dng sn xut bio-diesel 26 Bng 1.6: Axit bộo mt s Du khụng n c (Non-edible Oils) 30 Bng 1.7: Tờn v cụng thc húa hc ca cỏc axit bộo cú du v m 31 Bng 1.8: Cỏc thnh phn axit bộo ca cỏc loi du thc vt 31 Bng 1.9: Cỏc thụng s nhit ng quan trng cn cú mụ phng quỏ trỡnh sn xut Bio-diesel 35 Bng 1: D liu cõn bng pha cn thit thit k mt s trng hp c th 38 Bng 2: Nhng phng trỡnh trng thỏi Cubic (cubic EoS) v cỏch c in c tớnh cỏc thụng s ca chỳng 41 Bng 3: Mt s bin th ni ting ca mụ hỡnh SAFT 42 Bng 1: Cỏc phõn nhúm cn thit mụ phng cỏc cu t cú h bio-diesel .51 Bng 2: Cỏc thụng s cn thit cho cỏc phõn nhúm ca tng cu t 51 Bng 1: Thụng s cu t tinh khit thu c cho cỏc phõn nhúm 57 Bng 2: Thụng s phõn cc v liờn kt hydro thu c cho cỏc phõn nhúm 57 Bng 3: Kt qu ti u d liu s dng xỏc nh thụng s phõn nhúm [CH3] v [CH2] ca dóy alkanes, s dng ỏp sup hi bóo hũa ca cu t t propane (C3) n decane (C10) 60 Bng 4: Kt qu ti u d liu s dng xỏc nh thụng s phõn nhúm [CH3] v [CH2] ca dóy alkanes, s dng t trng pha lng ca cu t t propane (C3) n decane (C10) 60 Bng 5: Kt qu ti u d liu s dng xỏc nh thụng s phõn nhúm [CH=] ca dóy alkenes, s dng t trng pha lng ca cu t t 1- butene (C4) n 1decene (C10) 62 Bng 6: Kt qu ti u thu c trờn ỏp sut hi ca cỏc alcohols 62 Trang Bng 7: Kt qu ti u thu c trờn t trng pha lng ca cỏc alcohols 63 Bng 8: Kt qu ti u thu c trờn ỏp sut hi ca cỏc esters 64 Bng 9: Kt qu ti u thu c trờn t trng pha lng ca cỏc esters 65 Bng 10: Kt qu d oỏn ỏp sut hi ca cỏc cỏc alkanes nng khụng s dng quỏ trỡnh ti u, xỏc nh thụng s phõn nhúm 66 Bng 11: Kt qu d oỏn t trng pha lng ca cỏc cỏc alkanes nng khụng s dng quỏ trỡnh ti u, xỏc nh thụng s phõn nhúm 67 Bng 12: So sỏnh kt qu d oỏn ỏp sut hi bóo hũa cu t nng gia GC-sPCSAFT v mGC-PC-SAFT 68 Bng 13: So sỏnh kt qu d oỏn ỏp sut hi bóo hũa ca alkane nng gia SAFT- [160] v mGC-PC-SAFT 68 Bng 14: Kt qu d oỏn ỏp sut hi ca cỏc cỏc alcohols nng 69 Bng 15: Kt qu d oỏn t trng pha lng ca cỏc cỏc alcohols nng 69 Bng 16 So sỏnh kt qu d oỏn ỏp sut hi bóo hũa ca alkane nng gia GCSAFT-VR [162] v mGC-PC-SAFT 70 Bng 17: Sai s tng i ỏp sut sụi ca hn hp thu c t tớnh toỏn v thc nghim ca hn hp Methanol ester 72 Bng 18: Sai s tng i ỏp sut sụi ca hn hp thu c t tớnh toỏn v thc nghim ca hn hp Ethanol ester 73 Bng 19: Sai s tng i ỏp sut sụi ca hn hp thu c t tớnh toỏn v thc nghim ca hn hp Glycerol Methanol v Glycerol Ethanol 74 Bng 20: Thnh phn ca cỏc bio-diesel c nghiờn cu bi lun vn, theo phn trm lng 90 Bng 21: Khi lng phõn t ca cỏc bio-diesel 91 Bng 22: Kt qu d oỏn d oỏn t trng pha lng ca hn hp bio-diesel ti ỏp sut hi bóo ho 92 Bng 23: Kt qu d oỏn t trng pha lng ca hn hp bio-diesel ti ỏp sut 0.145 MPa 93 Trang DANH MC CC HèNH Hỡnh Nhúm cỏc thụng s tng tỏc hin cú ca UNIFAC chnh sa (Modified UNIFAC) cung cp bi DDBST (Dortmund Data Bank Software & Separation Technology), nm 2011 40 Hỡnh 2: Phõn t c xut bao gm cỏc chui v cú liờn kt hydro 43 Hỡnh 3: Quỏ trỡnh hỡnh thnh mt phõn t mụ hỡnh SAFT 44 Hỡnh 4: Chiu di phõn t m, kớch thc phõn t v nng lng tng tỏc /k ca cu t tinh khit khụng phõn cc 46 Hỡnh 5: Mụ t phõn t phõn cc, hin cú nhiu thuyt phõn cc khỏc nhng thuyt ca Jog v Chapman (phi) vi gi thuyt mụ men phõn cc ca phõn t ch phõn b trờn phõn nhúm phõn cc, c nhiu tỏc gi chp nhn v cho kt qu mụ phng tt nht 48 Hỡnh 1: Chiu di phõn t m, kớch thc phõn t v nng lng tng tỏc /k ca Butane 52 Hỡnh 2: Chiu di phõn t m, kớch thc phõn t nng lng tng tỏc /k v th tớch vựng cú kh nng to liờn kt hydro AB ca 2-Pentanol 52 Hỡnh 1: S liờn kt hydro ca alcohols mụ phng theo mụ hỡnh 3B 56 Hỡnh 2: S liờn kt hydro ca methanol v ethanol mụ phng theo mụ hỡnh 2B 56 Hỡnh 3: S liờn kt hydro ca Glycerols mụ phng theo mụ hỡnh 4C 56 Hỡnh 4: p sut hi bóo hũa v t trng pha lng ca glycerol So sỏnh gia s liu thc nghim v kt qu thu c bi lun ny 58 Hỡnh 5: p sut hi bóo hũa v t trng pha lng ca methanol So sỏnh gia s liu thc nghim v kt qu thu c bi lun ny 59 Hỡnh 6: p sut hi bóo hũa v t trng pha lng ca ethanol So sỏnh gia s liu thc nghim v kt qu thu c bi lun ny 59 Hỡnh 7: Kt qu ti u ỏp sut hi (trỏi) v t trng pha lng (phi) ca alkanes s dng lm c s d liu xỏc nh thụng s phõn nhúm [CH3] v [CH2] im l Trang Chng : KT LUN KIN NGH Sau mt thi gian nghiờn cu ti liu, tng hp lý thuyt v cỏc mụ hỡnh nhit ng, c bit l mụ hỡnh nhit ng thng kờ PC-SAFT Lun ó hon thnh c mc tiờu nghiờn cu c bn, c th nh sau: Túm tt thc trng nghiờn cu v tim nng s dng bio-diesel tng lai vi nhng thụng tin v nguyờn liu, sn phm, cụng ngh sn xut Xỏc nh yờu cu cp thit v tớnh thc t v mụ phng nhit ng ca cỏc h cú quỏ trỡnh sn xut bio-diesel; ó tỡm hiu cỏc mụ hỡnh nhit ng ng dng cụng nghip húa cht núi chung, mụ phng tớnh cht nhit ng h phc núi riờng v c bit l mụ hỡnh nhit ng thng kờ Trờn c s phõn tớch tng hp nhng kt qu nghiờn cu ca nhiu nhúm tỏc gi khỏc nhau, lun ó minh chng c s la chn mụ hỡnh nhit ng mGC-PC-SAFT l ỳng n; ó ngh phng phỏp ci tin kh nng d oỏn tớnh cht nhit ng ca cỏc cu t nng thụng qua vic s dng h s hiu chnh s khụng cu tuyt i ca phõn nhúm cụng thc tớnh toỏn chiu di phõn t Vi ci tin ny, mGC-PC-SAFT ó ci thin c sai s kt qu d oỏn so vi s liu thc nghim t khong 20% [132] xung cũn 4-8% Kt qu d oỏn ỏp sut hi bo hũa, t trng pha lng ca cỏc cu t tinh khit nng thu c vi mGC-PC-SAFT u cho sai s tng i hn so vi tt c cỏc cụng b ca cỏc nhúm nghiờn cu khỏc ó xỏc nh v ti u c thụng s cỏc cu t tinh khit c bit i vi methanol, ethanol v glycerol H thng thụng s cỏc phõn nhúm cn thit mụ t tớnh cht nhit ng ca alkanes, alkenes, alcohols, alkyl-esters v h s tng tỏc hn hp; Cõn bng pha lng hi v lng lng ca h cu t phc (gm methanol, ethanol, glycerol, alkyl-ester), vi nhng liờn kt hydro chộo, h to hn hp ng phớ v h cú nng pha phõn tỏn rt thp (glycerol + alkyl-ester) ó c mụ phng vi kt qu tt hn v mt nh lng ln nh tớnh so vi cỏc mụ hỡnh nhit ng khỏc Lun ó trin khai m rng mụ phng cõn bng pha h cu t v d oỏn t trng ca hn hp bio-diesel (a cu t) Kt qu d oỏn t trng Trang 97 bio-diesel thu c vi mGC-PC-SAFT cho kt qu tt hn so vi mụ hỡnh nhit ng CPA, c bit l t trng thay i theo ỏp sut T nhng kt qu thu c nh nờu trờn, mGC-PC-SAFT cú th s dng mụ phng d oỏn tớnh cht nhit ng ca cu t tinh khit v hn hp nu sai s Moringa oleifera oil: A possible source of biodiesel Bioresource technology, 2008 99(17): p 8175-8179 [28.] Ikwuagwu, O., Ononogbu, I and Njoku, O., Production of biodiesel using rubber [ Hevea brasiliensis (Kunth Muell.)] seed oil Industrial crops and products, 2000 12(1): p 57-62 [29.] Ramadhas, A.S., Jayaraj, S and Muraleedharan, C., Biodiesel production from high FFA rubber seed oil Fuel, 2005 84(4): p 335-340 Trang 100 [30.] Sheehan, J., Dunahay, T., Benemann, J and Roessler, P., A look back at the US department of energy's aquatic species program: biodiesel from algae Vol 328 1998: National Renewable Energy Laboratory Golden, CO [31.] Freedman, B., Butterfield, R.O and Pryde, E.H., Transesterification kinetics of soybean oil Journal of the American Oil Chemists' Society, 1986 63(10): p 1375-1380 [32.] Noureddini, H and Zhu, D., Kinetics of transesterification of soybean oil Journal of the American Oil Chemists' Society, 1997 74(11): p 1457-1463 [33.] Haas, M.J., Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock Fuel processing technology, 2005 86(10): p 1087-1096 [34.] Demirba, A., Biodiesel fuels from vegetable oils via catalytic and noncatalytic supercritical alcohol transesterifications and other methods: a survey Energy Conversion and Management, 2003 44(13): p 2093-2109 [35.] Ma, F and Hanna, M.A., Biodiesel production: a review Bioresource technology, 1999 70(1): p 1-15 [36.] Shay, E.G., Diesel fuel from vegetable oils: status and opportunities Biomass and Bioenergy, 1993 4(4): p 227-242 [37.] De La Torre Ugarte, D.G and Ray, D.E., Biomass and bioenergy applications of the POLYSYS modeling framework Biomass and Bioenergy, 2000 18(4): p 291-308 [38.] Mahmud, K., Naseer, R., Farooq, H.M., Qadir, M.A and Ather, M.A., Biochemical analysis of oil from seeds of Abutilon muticum Pakistan Journal of Biological Sciences, 2003 [39.] Goodrum, J.W., Geller, D.P and Adams, T.T., Rheological characterization of animal fats and their mixtures with# fuel oil Biomass and Bioenergy, 2003 24(3): p 249-256 [40.] Scragg, A., Morrison, J and Shales, S., The use of a fuel containing Chlorella vulgaris in a diesel engine Enzyme and Microbial Technology, 2003 33(7): p 884-889 [41.] Barnwal, B and Sharma, M., Prospects of biodiesel production from vegetable oils in India Renewable and Sustainable Energy Reviews, 2005 9(4): p 363-378 [42.] Srivastava, A and Prasad, R., Triglycerides-based diesel fuels Renewable and Sustainable Energy Reviews, 2000 4(2): p 111-133 [43.] Fukuda, H., Kondo, A and Noda, H., Biodiesel fuel production by transesterification of oils Journal of bioscience and bioengineering, 2001 92(5): p 405-416 [44.] Abreu, F.R., Lima, D.G., Hamỳ, E.H., Wolf, C and Suarez, P.A., Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols Journal of molecular catalysis A: Chemical, 2004 209(1): p 29-33 Trang 101 [45.] Antoln, G., Tinaut, F., Briceno, Y., Castano, V., Perez, C and Ramrez, A., Optimisation of biodiesel production by sunflower oil transesterification Bioresource technology, 2002 83(2): p 111-114 [46.] Soumanou, M.M and Bornscheuer, U.T., Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil Enzyme and Microbial Technology, 2003 33(1): p 97-103 [47.] Kamini, N., Fujii, T., Kurosu, T and Iefuji, H., Production, purification and characterization of an extracellular lipase from the yeast,< i> Cryptococcus sp S-2 Process Biochemistry, 2000 36(4): p 317-324 [48.] Calvin, M., Fuller, K and Gallon, J., Fuel oils from higher plants1985: Oxford University Press [49.] Cardone, M., Mazzoncini, M., Menini, S., Rocco, V., Senatore, A., Seggiani, M and Vitolo, S., Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization Biomass and Bioenergy, 2003 25(6): p 623-636 [50.] Reyes, J and Sepulveda, M., PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil Fuel, 2006 85(12): p 1714-1719 [51.] Nagel, N and Lemke, P., Production of methyl fuel from miceoalgea Appl Biochem Biotechnol, 1990 24(25): p 355-361 [52.] Tan, R.R., Culaba, A.B and Purvis, M.R., Carbon balance implications of coconut biodiesel utilization in the Philippine automotive transport sector Biomass and Bioenergy, 2004 26(6): p 579-585 [53.] Frửhlich, A and Rice, B., Evaluation of Camelina sativa oil as a feedstock for biodiesel production Industrial crops and products, 2005 21(1): p 25-31 [54.] Kửse, ệ., Tỹter, M and Aksoy, H.A., Immobilized Candida antarctica lipasecatalyzed alcoholysis of cotton seed oil in a solvent-free medium Bioresource technology, 2002 83(2): p 125-129 [55.] Zou, L and Atkinson, S., Characterising vehicle emissions from the burning of biodiesel made from vegetable oil Environmental technology, 2003 24(10): p 1253-1260 [56.] Kulkarni, M.G., Dalai, A.K and Bakhshi, N.N., Utilization of green seed canola oil for biodiesel production Journal of Chemical Technology and Biotechnology, 2006 81(12): p 1886-1893 [57.] Encinar, J., Gonzalez, J., Rodriguez, J and Tejedor, A., Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara c ardunculus L Oils with Ethanol Energy & fuels, 2002 16(2): p 443-450 [58.] Shah, S., Sharma, S and Gupta, M., Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil Energy & fuels, 2004 18(1): p 154-159 [59.] Pramanik, K., Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine Renewable energy, 2003 28(2): p 239-248 Trang 102 [60.] Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M and Hackel, S., Jatropha curcas L as a source for the production of biofuel in Nicaragua Bioresource technology, 1996 58(1): p 77-82 [61.] Banerji, R., Jatropha nana seed oil for energy Biomass and Bioenergy, 1991 1(4): p 247 [62.] Kusdiana, D and Saka, S., Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol Fuel, 2001 80(5): p 693698 [63.] Canoira, L., Alcantara, R., Jesỳs Garcớa-Martớnez, M and Carrasco, J., Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel Biomass and Bioenergy, 2006 30(1): p 76-81 [64.] Raheman, H and Phadatare, A., Diesel engine emissions and performance from blends of karanja methyl ester and diesel Biomass and Bioenergy, 2004 27(4): p 393-397 [65.] Sarma, A.K., Konwer, D and Bordoloi, P., A comprehensive analysis of fuel properties of biodiesel from koroch seed oil Energy & fuels, 2005 19(2): p 656-657 [66.] Peterson, C., Auld, D and Korus, R., Winter rape oil fuel for diesel engines: Recovery and utilization Journal of the American Oil Chemists' Society, 1983 60(8): p 1579-1587 [67.] Usta, N., Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine Biomass and Bioenergy, 2005 28(1): p 77-86 [68.] Karaosmanoglu, F., Vegetable oil fuels: A review Energy Sources, 1999 21(3): p 221-231 [69.] Giannelos, P., Zannikos, F., Stournas, S., Lois, E and Anastopoulos, G., Tobacco seed oil as an alternative diesel fuel: physical and chemical properties Industrial crops and products, 2002 16(1): p 1-9 [70.] Goodrum, J.W and Geller, D.P., Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity Bioresource technology, 2005 96(7): p 851-855 [71.] Puhan, S., Vedaraman, N., Ram, B.V., Sankarnarayanan, G and Jeychandran, K., Mahua oil (Madhuca Indica seed oil) methyl ester as biodieselpreparation and emission characterstics Biomass and Bioenergy, 2005 28(1): p 87-93 [72.] Ghadge, S.V and Raheman, H., Biodiesel production from mahua ( Madhuca indica) oil having high free fatty acids Biomass and Bioenergy, 2005 28(6): p 601-605 [73.] Altn, R., Cetinkaya, S and Yỹcesu, H.S., The potential of using vegetable oil fuels as fuel for diesel engines Energy Conversion and Management, 2001 42(5): p 529-538 [74.] Darnoko, D and Cheryan, M., Kinetics of palm oil transesterification in a batch reactor Journal of the American Oil Chemists' Society, 2000 77(12): p 1263-1267 Trang 103 [75.] Abdullah, A., Bassari, M and Basri, M., Selected readings on palm oil and its uses Malaysia: PORIM, 2002: p 25-176 [76.] Ooi, Y.-S., Zakaria, R., Mohamed, A.R and Bhatia, S., Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel Biomass and Bioenergy, 2004 27(5): p 477-484 [77.] Kalam, M and Masjuki, H., Biodiesel from palmoilan analysis of its properties and potential Biomass and Bioenergy, 2002 23(6): p 471-479 [78.] Karmee, S.K and Chadha, A., Preparation of biodiesel from crude oil of Pongamia pinnata Bioresource technology, 2005 96(13): p 1425-1429 [79.] Njoku, O., Ononogbu, I and Owusu, A., An investigation on oil of rubber seed (Hevea brasiliensis) 1996 [80.] Ramadhas, A., Jayaraj, S and Muraleedharan, C., Characterization and effect of using rubber seed oil as fuel in the compression ignition engines Renewable energy, 2005 30(5): p 795-803 [81.] Ramezanzadeh, F.M., Rao, R.M., Windhauser, M., Prinyawiwatkul, W., Tulley, R and Marshall, W.E., Prevention of hydrolytic rancidity in rice bran during storage Journal of agricultural and food chemistry, 1999 47(8): p 3050-3052 [82.] Lakkakula, N.R., Lima, M and Walker, T., Rice bran stabilization and rice bran oil extraction using ohmic heating Bioresource technology, 2004 92(2): p 157-161 [83.] Cravotto, G., Binello, A., Merizzi, G and Avogadro, M., Improving solvent free extraction of policosanol from rice bran by highintensity ultrasound treatment European journal of lipid science and technology, 2004 106(3): p 147-151 [84.] Bhattacharyya, D., Chakrabarty, M., Vaidyanathan, R and Bhattacharyya, A., A critical study of the refining of rice bran oil Journal of the American Oil Chemists' Society, 1983 60(2): p 467-467 [85.] Leung, D.Y.C., Wu, X and Leung, M.K.H., A review on biodiesel production using catalyzed transesterification Applied Energy, 2010 87(4): p 10831095 [86.] Ayhan, D., Comparison of transesterification methods for production of biodiesel from vegetable oils and fats Energy Conversion and Management, 2008 49(1): p 125-130 [87.] Meher, L.C., Sagar, D.V and Naik, S.N., Technical aspects of biodiesel production by transesterificationa review Renewable and Sustainable Energy Reviews, 2006 10(3): p 248-268 [88.] Gerpen, J.V., Biodiesel processing and production Fuel processing technology, 2005 86(10): p 1097-1107 [89.] Cao, W., Han, H and Zhang, J., Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent Fuel, 2005 84(4): p 347-351 [90.] Arnold, W., Evaluation of Algae Biodiesel Production by Transesterification, WORCESTER POLYTECHNIC INSTITUTE, 2012, Trang 104 [91.] Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D and Knothe, G., Biodiesel production technology Report for the National Renewable Energy Laboratory USA: Department of Energy, 2004 30: p 42 [92.] Demirbas, A., Biofuels securing the planets future energy needs Energy Conversion and Management, 2009 50(9): p 2239-2249 [93.] Okechukwu, A.C., CALCULATION OF PHYSICAL AND PHASE EQUILIBRIUM PROPERTIES FOR BIOFUELS PROCESSES, Imperial College London, 2010, [94.] Demirbas, A., Progress and recent trends in biodiesel fuels Energy Conversion and Management, 2009 50(1): p 14-34 [95.] Saka, S and Kusdiana, D., Biodiesel fuel from rapeseed oil as prepared in supercritical methanol Fuel, 2001 80(2): p 225-231 [96.] Wen, G., Xu, Y., Ma, H., Xu, Z and Tian, Z., Production of hydrogen by aqueous-phase reforming of glycerol international journal of hydrogen energy, 2008 33(22): p 6657-6666 [97.] Ashok, P., Handbook of plant-based biofuels Boca Raton, FL: CRC Pr, 2009 [98.] Kontogeorgis, G.M and Folas, G.K., Thermodynamic Models for Industrial Applications2009: Wiley Online Library [99.] Tan, S.P., Adidharma, H and Radosz, M., Recent Advances and Applications of Statistical Associating Fluid Theory Industrial & Engineering Chemistry Research, 2008 47(21): p 8063-8082 [100.] Gross, J and Sadowski, G., Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules Ind Eng Chem Res., 2001 40: p 1244-1260 [101.] Lymperiadis, A., Adjiman, C.S., Galindo, A and Jackson, G., A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-) The Journal of chemical physics, 2007 127: p 234903 [102.] Lymperiadis, A., Adjiman, C.S., Jackson, G and Galindo, A., A generalisation of the SAFT-group contribution method for groups comprising multiple spherical segments Fluid phase equilibria, 2008 274(1): p 85-104 [103.] Papaioannou, V., Adjiman, C.S., Jackson, G and Galindo, A., Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-[gamma] group contribution approach Fluid Phase Equilibria, 2011 306: p 82 96 [104.] Zeng, Z.-Y., Xu, Y.-Y., Hao, X and Li, Y.-W., Application of the Simplified Perturbed-Chain SAFT to Hydrocarbon Systems with New GroupContribution Parameters Industrial & Engineering Chemistry Research, 2009 48(12): p 5867-5873 [105.] Peng, Y., Goff, K.D., dos Ramos, M and McCabe, C., Developing a predictive group-contribution-based SAFT-VR equation of state Fluid Phase Equilibria, 2009 277(2): p 131-144 Trang 105 [106.] Tihic, A., Kontogeorgis, G.M., Von Solms, N., Michelsen, M.L and Constantinou, L., A Predictive Group-Contribution Simplified PC-SAFT Equation of State: Application to Polymer Systems Ind Eng Chem Res., 2008: p 10.1021/ie0710768 [107.] Fredenslund, A., Jones, R.L and Prausnitz, J.M., Groupcontribution estimation of activity coefficients in nonideal liquid mixtures AIChE Journal, 1975 21(6): p 1086-1099 [108.] Guggenheim, E., Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1944 183(993): p 203-212 [109.] Gmehling, P.D.J., Company consortium for the revision, extension and further development of the group contribution methods UNIFAC, Mod UNIFAC (do) and the predictive equation of state PSRK, 2012: http://unifac.ddbst.de/ [110.] ong, N.H., Thuy, N.T and Tho, V..S., MODELING PHASE EQUILIBRIA RELEVANT TO BIODIESEL PRODUCTION: A COMPARISON OF gE MODELS, CUBIC EOS, CPA AND mGC-PC-SAFT international conference petroleum technology and human resources, (Hanoi university of mining and geology): p 76-85 [111.] Wilson, G.M., Johnston, R.H., Hwang, S.-C and Tsonopoulos, C., Volatility of coal liquids at high temperatures and pressures Industrial & Engineering Chemistry Process Design and Development, 1981 20(1): p 94-104 [112.] Soave, G., Equilibrium Constants from a Modified Redlich-Kwong Equation of State Chem Eng Sci., 1972 27: p 1197-1203 [113.] Peng, D.Y and Robinson, D.B., A New Two-Constant Equation of State Ind Eng Chem Fundam., 1976 15: p 59-64 [114.] Valderrama, J.O., The State of the Cubic Equations of State Industrial & Engineering Chemistry Research, 2003 42(8): p 1603-1618 [115.] Chapman, W.G., Gubbins, K.E., Jackson, G and Radosz, M., SAFT: Equation-of-state solution model for associating fluids Fluid Phase Equilibria, 1989 52: p 31-38 [116.] Chapman, W.G., Gubbins, K.E., Jackson, G and Radosz, M., New Reference Equation of State for Associating Liquids Ind Eng Chem Res., 1990 29: p 1709-1721 [117.] Wertheim, M., Fluids with highly directional attractive forces I Statistical thermodynamics Journal of Statistical Physics, 1984 35(1): p 19-34 [118.] Wertheim, M., Fluids with highly directional attractive forces II Thermodynamic perturbation theory and integral equations Journal of Statistical Physics, 1984 35(1): p 35-47 [119.] Wertheim, M., Fluids with highly directional attractive forces III Multiple attraction sites Journal of Statistical Physics, 1986 42(3): p 459-476 [120.] Wertheim, M., Fluids with highly directional attractive forces IV Equilibrium polymerization Journal of Statistical Physics, 1986 42(3): p 477-492 Trang 106 [121.] NguyenHuynh, D., Passarello, J.P., de Hemptinne, J.C and Tobaly, P., Extension of polar GC-SAFT to systems containing some oxygenated compounds: Application to ethers, aldehydes and ketones Fluid Phase Equilibria, 2011 307(2): p 142-159 [122.] Nguyen-Huynh, D., de Hemptinne, J.-C., Lugo, R., Passarello, J.-P and Tobaly, P., Modeling Liquid-Liquid and Liquid-Vapor Equilibria of Binary Systems Containing Water with an Alkane, an Aromatic Hydrocarbon, an Alcohol or a Gas (Methane, Ethane, CO2 or H2S), Using Group Contribution Polar Perturbed-Chain Statistical Associating Fluid Theory Industrial & Engineering Chemistry Research, 2011 50(12): p 7467-7483 [123.] Mourah, M., NguyenHuynh, D., Passarello, J.P., de Hemptinne, J.C and Tobaly, P., Modeling LLE & VLE of methanol + n-alkane series using GCPC-SAFT with a group contribution kij Fluid Phase Equilibria, 2010 298: p 154-168 [124.] Tran, T.K.S., NguyenHuynh, D., Ferrando, N., Passarello, J.P., de Hemptinne, J.C and Tobaly, P., Modeling VLE of H2 + Hydrocarbon Mixtures Using a Group Contribution SAFT with a kij Correlation Method Based on London's Theory Energy & Fuels, 2009 23(5): p 2658-2665 [125.] Kleiner, M and Sadowski, G., Modeling of Polar Systems Using PCP-SAFT: An Approach to Account for Induced-Association Interactions J Phys Chem C, 2007 111: p 15544-15553 [126.] Kleiner, M., Tumakaka, F and Sadowski, G., Thermodynamic Modeling of Complex Systems, in Structure & Bonding 2012, Springer Berlin / Heidelberg p 1-34 [127.] Peng, Y., Goff, K.D., dos Ramos, M.C and McCabe, C., Predicting the Phase Behavior of Polymer Systems with the GC-SAFT-VR Approach Industrial & Engineering Chemistry Research, 2009 49(3): p 1378-1394 [128.] Zhao, H., Ding, Y and McCabea, C., Phase behavior of dipolar associating fluids from the SAFT-VR+D equation of state J Chem Phys , 2007 127: p 084514-1 [129.] Gonzalez, D.L., Ting, P.D., Hirasaki, G.J and Chapman, W.G., Prediction of Asphaltene Instability under Gas Injection with the PC-SAFT Equation of State Energy & Fuels, 2005 19(4): p 1230-1234 [130.] Vargas, F.M., Gonzalez, D.L., Hirasaki, G.J and Chapman, W.G., Modeling Asphaltene Phase Behavior in Crude Oil Systems Using the Perturbed Chain Form of the Statistical Associating Fluid Theory (PC-SAFT) Equation of Stateõ Energy & Fuels, 2009 23(3): p 1140-1146 [131.] Gonzalez, D.L., Hirasaki, G.J., Creek, J and Chapman, W.G., Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State Energy & Fuels, 2007 21(3): p 1231-1242 Trang 107 [132.] Tamouza, S., Passarello, J.-P., Tobaly, P and de Hemptinne, J.-C., Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series Fluid Phase Equilibria 2004 222223: p 6776 [133.] Nguyenhuynh, D., Passarello, J.-P., Tobaly, P and De Hemptinne, J.-C., GC-SAFT as a predictive tool for computing VLE and LLE of systems involved in oil and gas industry, Proceedings of the 23rd European Symposium on Applied Thermodynamics-2008 (ESAT), Cannes, France, Oral presentation., 2008 [134.] de Hemptinne, J.-C., Lugo, R., NguyenHuynh, D and Barreau, A., Predictive Models and their Need in the Biofuel Industry VIII Iberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design Equifase 2009, Algarve - Praia da Rocha, Portugal, 17-21 October 2009, Invited oral presentation., 2009 [135.] Nguyenhuynh, D., De Hemptinne, J.-C., Lugo, R., Passarello, J.-P and Tobaly, P., Use of experimental association energies to guide the parametrization of cross-association phenomena using the polar PC-SAFT with group contributions (GC-PPC-SAFT) equation of state: application to vapour-liquid and liquid-liquid equilibria of water, Molecular Modeling and Simulation for Industrial Applications, Physico-Chemical Properties and Processes, March 22-23, 2010, Wuerzburg/ Germany, Oral presentation (www.wp-ttp.dk/pdf/Int_Workshop _Molecular_Modelling_Program.pdf), 2010 [136.] Barker, J.A and Henderson, D., Perturbation Theory and Equation of State for Fluids: The Square-Well Potential J Chem Phys., 1967 47: p 28562861 [137.] Huang, S.H and Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules Ind Eng Chem Res., 1990 29: p 2284-2294 [138.] NguyenHuynh, D., Passarello, J.-P., Tobaly, P and de Hemptinne, J.-C., Modeling phase equilibria of asymmetric mixtures using a Group Contribution SAFT (GC -SAFT) with a kij correlation method based on London's theory Part 1: application to CO2 + n-alkane, methane + n-alkane and ethane + n-alkane systems Ind Eng Chem Res., 2008 47(22): p 88478858 [139.] Jog, P.K., Sauer, S.G., Blaesing, J and Chapman, W.G., Application of Dipolar Chain Theory to the Phase Behavior of Polar Fluids and Mixtures Ind Eng Chem Res., 2001 40: p 4641-4648 [140.] Twu, C.H and Gubbins, K.E., Thermodynamics of polyatomic fluid mixturesII : Polar, quadrupolar and octopolar molecules Chemical Engineering Science, 1978 33(7): p 879-887 [141.] Al-Saifi, N.M., Hamad, E.Z and Englezos, P., Prediction of vaporliquid equilibrium in wateralcoholhydrocarbon systems with the dipolar Trang 108 perturbed-chain SAFT equation of state Fluid Phase Equilibria, 2008 271(12): p 82-93 [142.] NguyenHuynh, D., Passarello, J.-P., Tobaly, P and de Hemptinne, J.-C., Application of GC-SAFT EOS to polar systems using a segment approach Fluid Phase Equilibria, 2008 264: p 6275 [143.] NguyenHuynh, D., Passarello, J.-P., Tobaly, P and de Hemptinne, J.-C., Application of GC-SAFT EOS to polar systems using a segment approach Fluid phase equilibria, 2008 264(1): p 62-75 [144.] Tamouza, S., Utilisation Prộdictive de lEquation dEtat SAFT, PhD thesis, Universitộ Paris13, 2004, [145.] Nguyenhuynh, D., Modộlisation thermodynamique de mộlanges symộtriques et asymộtriques de composộs polaires oxygộnộs et/ou aromatiques par GCSAFT, PhD thesis, Universite Paris Nord, 2008, [146.] DIPPR Design Institute for Physical Property Data, Thermophysical Properties Database, 2002 [147.] NguyenHuynh, D., Falaix, A., Passarello, J.-P., Tobaly, P and de Hemptinne, J.-C., Predicting VLE of heavy esters and their mixtures using GC-SAFT Fluid Phase Equilibria, 2008 264: p 184-200 [148.] Solomonov, B.N., Novikov, V.B., Varfolomeev, M.A and Klimovitskii, A.E., Calorimetric determination of hydrogen-bonding enthalpy for neat aliphatic alcohols Journal of Physical Organic Chemistry, 2005 18(11): p 1132-1137 [149.] Taylor, C.A and Rinkenbach, W.H., The Properties of Glycol Diacetate J Am Chem Soc., 1926 48: p 1305-1309 [150.] Schwager, F., Marand, E and Davis, R.M., Determination of SelfAssociation Equilibrium Constants of Ethanol by FTIR Spectroscopy The Journal of Physical Chemistry, 1996 100(50): p 19268-19272 [151.] Reynolds, L., Gardecki, J.A., Frankland, S.J.V., Horng, M.L and Maroncelli, M., Dipole Solvation in Nondipolar Solvents: Experimental Studies of Reorganization Energies and Solvation Dynamics J Phys Chem , 1996 100: p 10337-10354 [152.] Lide, D.R., Physical Constants of Organic Compounds 85th ed CRC Handbook of Chemistry and Physics2005: CRC Press [153.] Karakatsani, E.K., Kontogeorgis, G.M and Economou, I.G., Evaluation of the Truncated Perturbed Chain-Polar Statistical Associating Fluid Theory for Complex Mixture Fluid Phase Equilibria Ind Eng Chem Res., 2006 45: p 6063-6074 [154.] Tsivintzelis, I., Spyriouni, T and Economou, I.G., Modeling of fluid phase equilibria with two thermodynamic theories: Non-random hydrogen bonding (NRHB) and statistical associating fluid theory (SAFT) Fluid Phase Equilibria, 2007 253: p 19-28 Trang 109 [155.] Yarrison, M and Chapman, W.G., systematic study of methanol + n-alkane vaporliquid and liquidliquid equilibria using the CK-SAFT and PC-SAFT equations of state Fluid Phase Equilibria, 2004 226: p 195205 [156.] Follegatti-Romero, L.A., Oliveira, M.B., Batista, F.R.M., Batista, E.A.C., Coutinho, J.A.P and Meirelles, A.J.A., Liquidliquid equilibria for ternary systems containing ethyl esters, ethanol and glycerol at 323.15 and 353.15 K Fuel, 2012 94(0): p 386-394 [157.] Oliveira, M.B., Teles, A.R.R., Queimad, A.J and Coutinho, J.A.P., Phase equilibria of glycerol containing systems and their description with the Cubic-Plus-Association (CPA) Equation of State Fluid Phase Equilibria, 2009 280: p 2229 [158.] DIPPR, Design Institute for Physical Property Data, Thermophysical Properties Database, 2002 [159.] Emami, F.S., Vahid, A., Elliott, J.R and Feyzi, F., Group Contribution Prediction of Vapor Pressure with Statistical Associating Fluid Theory, Perturbed-Chain Statistical Associating Fluid Theory, and Elliott Donohue Equations of State Industrial & Engineering Chemistry Research, 2008 47(21): p 8401-8411 [160.] Lymperiadis, A., Adjiman, C.S., Galindo, A and Jackson, G., A group contribution method for associating chain molecules based on the statistical associating fluid theory SAFT-gama J Chem Phys., 2007 127: p 234903 [161.] Tamouza, S., Passarello, J., Tobaly, P and de Hemptinne, J., Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series Fluid phase equilibria, 2004 222: p 67-76 [162.] CAROLINA DOS RAMOS, M., Haley, J.D., Westwood, J.R and McCabe, C., Extending the GC-SAFT-VR approach to associating functional groups: Alcohols, aldehydes, amines and carboxylic acids Fluid Phase Equilibria, 2011 306(1): p 97-111 [163.] Dahlmann, U and Schneider, G.M., (Liquid + Liquid) Phase Equilibria and Critical Curves of (Ethanol + Dodecane or Tetradecane or Hexadecane or 2,2,4,4,6,8,8-Heptamethylnonane) from 0.1 MPa to 120.0 MPa J Chem Thermodyn., 1989 21(0021-9614): p 997-1004 [164.] Korgitzsch, F.M., Study of Phase Equilibria as a Fundament for the Refinement of Vegetable and Animal Fats and Oils Dissertation, 1993: p 1219 [165.] DETHERM, Thermophysical properties of pure substances and mixtures, 2004 [166.] Korgitzsch, F., Study of phase equilibria as a fundament for the refinement of vegetable and animal fats and oils, Ph D Dissertation, TU Berlin, 1993, [167.] Garrido, N., Ferreira, O., Lugo, R., de Hemptinne, J.-C., Macedo, E.A and Bottini, S.B., A-UNIFAC modelling of binary and multicomponent phase equilibria of fatty esters+water+methanol+glycerol In VIII Iberoamerican Trang 110 Conference on Phase Equilibria and fluid properties for Process Design Portimóo ISBN 978-989-20-1694-8, 2009 [168.] Oliveira, M.B., Queimada, A.n.J and Coutinho, J.A.P., Modeling of Biodiesel Multicomponent Systems with the Cubic-Plus-Association (CPA) Equation of State Industrial & Engineering Chemistry Research, 2009 49(3): p 1419-1427 [169.] Pratas, M.J., Freitas, S.V., Oliveira, M.B., Monteiro, S.C., Lima, .S and Coutinho, J.A., Biodiesel density: Experimental measurements and prediction models Energy & fuels, 2011 25(5): p 2333-2340 [170.] Pratas, M.J., Oliveira, M.B., Pastoriza-Gallego, M.J., Queimada, A.J., Pi eiro, M.M and Coutinho, J.o.A., High-pressure biodiesel density: Experimental measurements, correlation, and Cubic-Plus-Association Equation of State (CPA EoS) modeling Energy & fuels, 2011 25(8): p 3806-3814 Trang 111 [...]... [6]) có tính đến các liên kết phân cực, liên kết hydro của từng cấu tử Luận văn này tập trung vào đánh giá, sử dụng mô hình nhiệt động GC- SAFT một cách phù hợp nhất, tối ƣu các thông số cấu tử tinh khiết để thu đƣợc Trang 15 kết quả mô phỏng các đặc tính cân bằng pha cấu tử và các hỗn hợp có trong quá trình sản xuất nhiên liệu sinh học biodiesel Mục tiêu nghiên cứu chính của luận văn là tối ƣu, dự đoán. .. bio-diesel (bên phải) xét trong hệ đẳng nhiệt, so sánh giữa dữ liệu thực nghiệm và dự đoán bằng hệ nhiệt động mGC -PC- SAFT 95 Trang 13 Hình 4 48: Tỷ trọng pha lỏng của Soybean bio-diesel xét trong hệ đẳng nhiệt, so sánh giữa dữ liệu thực nghiệm, dự đoán bằng hệ nhiệt động mGC -PC- SAFT và dữ liệu tính toán với hệ nhiệt động CPA 95 Trang 14 MỞ ĐẦU Từ thực trạng nguồn nhiên liệu hoá thạch đƣợc khai... số của mô hình nhiệt động để cho phép dự đoán cân bằng pha các hỗn hợp có trong quá trình sản xuất bio-diesel Các thông số của mô hình nhiệt động đƣợc tối ƣu thông qua dữ liệu thực nghiệm đƣợc công bố trên các tạp chí khoa học Cấu trúc luận văn bao gồm các nội dung chính nhƣ sau: Chương 1: Cung cấp những thông tin tóm tắt, tổng quan về nguyên liệu sử dụng trong quá trình sản xuất nhiên liệu biodiesel, ... sánh kết quả mô phỏng trong luận văn này và kết quả sử dụng mô hình NRTL có trong phần mềm Hysys 78 Hình 4.25: Cân bằng pha lỏng hơi hệ ethanol +methyl butanoate (trái) và (phải) So sánh kết quả mô phỏng trong luận văn này và kết quả sử dụng mô hình NRTL có trong phần mềm Hysys 79 Hình 4.26: Cân bằng pha lỏng hơi hệ methanol + glycerol (trái) và so sánh kết quả mô phỏng trong luận văn... trọng pha lỏng (phải) của các alcohols so sánh giữa phƣơng trình nhiệt động mGC -PC- SAFT đang sử dụng trong bài luận văn Điểm là dữ liệu thực nghiệm lấy từ DIPPR và đƣờng liên tục là kết quả tính toán sử dụng mGC -PC- SAFT 63 Hình 4.11: Kết quả tối ƣu thu đƣợc trên áp suất hơi của Hexanol so sánh giữa phƣơng trình nhiệt động mGC -PC- SAFT đang sử dụng trong bài luận văn, hệ nhiệt động NRTL trong. .. thiết kế quá trình sản xuất nhiên liệu sinh học [3] Theo các nghiên cứu tổng hợp của các nhóm nghiên cứu trong lĩnh vực sản xuất nhiên liệu bio-diesel từ các loại nhiên liệu khác nhau, nhiều nhóm tác giả đã khẳng định sự cần thiết phải xây dựng một mô hình nhiệt động đáng tin cậy để mô phỏng quá trình thiết kế, tính toán công nghệ Sự thiếu hụt thông tin hoặc sai số tính toán lớn hơn cho phép có thể gây... hiện tƣợng xuất hiện các pha không mong muốn trong hỗn hợp phản ứng nhƣ lỏng-hơi, lỏng-lỏng, lỏnglỏng-hơi [4] Do đó, phát triển mô hình nhiệt động có thể mô tả chính xác cân bằng pha và cân bằng phản ứng cho các hỗn hợp có trong hệ là rất quan trọng [5] Hiện nay, có rất nhiều mô hình nhiệt động đã đƣợc đề nghị sử dụng để tính toán các đặc tính của hệ sản xuất biodiesel (bao gồm các cấu tử: nƣớc, axit... kết quả mô phỏng trong luận văn này với các mô hình nhiệt động khác nhau 83 Hình 4.31: Cân bằng pha lỏng – lỏng hệ glycerol + methyl-hexanoate So sánh số liệu thực nghiệm (điểm) và mGC -PC- SAFT (đƣờng liền) 83 Hình 4.32: Cân bằng pha lỏng – lỏng hệ glycerol + methyl-octanoate So sánh số liệu thực nghiệm (điểm) và mGC -PC- SAFT (đƣờng liền) 84 Hình 4.33: Cân bằng pha lỏng – lỏng hệ glycerol... bio-diesel (bên phải) xét trong hệ đẳng nhiệt, so sánh giữa dữ liệu thực nghiệm và dự đoán bằng hệ nhiệt động mGC -PC- SAFT 94 Hình 4 45: Tỷ trọng pha lỏng của Soybean + Rapeseed bio-diesel (bên trái) và Rapeseed + Palm bio-diesel (bên phải) xét trong hệ đẳng nhiệt, so sánh giữa dữ liệu thực nghiệm và dự đoán bằng hệ nhiệt động mGC -PC- SAFT 94 Hình 4 46: Tỷ trọng pha lỏng của Soybean + Palm... nêu trên, có 3 vùng phân tách có trong quá trình công nghệ sản xuất bio-diesel, bao gồm quá trình tách pha (2 pha lỏng) trong thiết bị phản ứng và trong hai tháp chƣng cất để tiến hành tinh khiết glycerol và FAMEs Việc thiết kế các thiết bị tách yêu cầu các thông số nhiệt động chính xác về đặc tính vật lý, cân bằng pha của các cấu tử có trong hệ, theo đó, cân bằng pha lỏng – lỏng và cân bằng pha lỏng