1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng hợp đề thi toán cao cấp các khóa Đại học Kinh tế TP HCM

3 785 5

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 475,83 KB

Nội dung

Tổng hợp đề thi toán cao cấp các khóa Đại học Kinh tế TP HCM. Bao gồm đại số tuyến tính, giải tích. Đề thi khảo sát các phần của toán cao cấp như ma trận định thức, hệ phương trình tuyến tính, vi phân, tích phân, ứng dụng vào kinh tế...

TR NG I H C KINH T TPHCM KHOA TOÁN & TH NG KÊ THI K T THÚC HOC PH N K38 MÔN : GI I TÍCH Th i gian làm bài: 75 phút H tên : Ngày sinh : MSSV : L p : STT : ……… CH ue h Mã đ thi 132 KÝ GT1 CH KÝ GT2 THÍ SINH CH N ÁP ÁN ÚNG R I ÁNH D U CHÉO (X) VÀO B NG TR L I : 10 11 A C D Câu 1: Hàm f (x, y)  ex  y A Hàm f (x, y) c c tr C Hàm f (x, y) đ t c c ti u toàn c c 2 Câu 2: Tích phân sau h i t A e  x ln dx B  e x dx (e x  1) ook  14 I M m/ PH N TR C NGHI M B Hàm f (x, y) đ t c c đ i D Hàm f (x, y) m d ng co  13 de t B 12 hi   xdx C  1 x2 Câu 3: Cho hàm f (x, y)  x  y2 Dùng vi phân toàn ph n, ta có A  0, 2.f x (10,5)  0,03.f y (10,5) D  tan(x)dx (10, 2)2  (4,97)2 g n b ng v i ceb B  0, 2.f x (10,5)  0,03.f y (10,5) C  0, 2.f x (10,5)  0,03.f y (10,5) D df (10,5) ww w.f a Câu 4: Gi s hàm f liên t c t i không kh vi t i đ t hàm g(x)  xf (x) Phát bi u sau sai A Hàm g(x) liên t c t i B Hàm g(x) m t vô bé x ti n v C Hàm g(x) kh vi t i D g(x)  f (x)  x.f (x) x  Câu 5: Cho hàm chi phí C  C(Q) Gi s chi phí biên t MC  2Q  20 t i Q  10 C  350 Khi A C  Q2  20Q B C  Q2  20Q  50 C C  2Q  330 D Không t n t i hàm C  C(Q) th a yêu c u Câu 6: Cho ph ng trình vi phân y  y  ex (1) A M i nghi m c a ph ng trình (1) đ u có gi i h n h u h n x   Trang 1/3 - Mã đ thi 132 Câu 8: ue h B Nghi m t ng quát c a ph ng trình (1) y  xex  C C M i nghi m c a ph ng trình (1) đ u có gi i h n h u h n t i x   D C ba câu đ u Câu 7: Cho ph ng trình vi phân y  y  (1) A Ph ng trình (1) có nghi m riêng d ng y  a sin(x  ) B M i nghi m c a ph ng trình (1) đ u có gi i h n x    C M i nghi m c a ph ng trình (1) đ u hàm b ch n D C ba câu đ u sai x2 t L  lim x  x hi  e dt t de t x  V i giá tr c a a hàm f liên t c t i x  x  m/ B a  1 D C ba câu đ u sai ook  2x.sin x Câu 9: Cho hàm f v i f (x)   a  A a  C a  1 Câu 10: Hàm f (x, y)    xy x y A Hàm f (x, y) c c tr B Hàm f (x, y) đ t c c đ i C Hàm f (x, y) đ t c c ti u D Hàm f (x, y) có hai m d ng D M t k t qu khác C L  B L  co A L   2 ceb Câu 11: Cho hàm s n xu t Cobb – Douglas Q(L, K)  4L K Khi đó, h s co giãn c a Q theo K t i (L, K)  (9, 4) A 0,125 B C D 0,5 Câu 12: Cho ph ng trình vi phân y  2y  3y  ex  2xe2x (1) Khi đó, ph ng trình (1) có m t nghi m riêng d i d ng A u(x)  axex  (bx  c)e2x ( a, b,c  ) ww w.f a B u(x)  axex  (ax  b)e2x ( a, b  ) C u(x)  axex ( a  ) D C ba câu đ u sai  emx x  Câu 13: Cho hàm f (x)    x  m x  A m  C m tùy ý hàm f kh vi t i B m  D C ba câu đ u sai Câu 14: Cho hàm f (x, y)  x  y3  9xy g(x, y)  2x  3xy  3y2  3x  9y Ch n m nh đ A Các hàm f (x, y) g(x, y) đ t c c ti u t i (3,3) B Các hàm f (x, y) g(x, y) đ t c c đ i t i (3,3) C Hàm f (x, y) đ t c c đ i t i (3,3), hàm g(x, y) đ t c c ti u t i (3,3) D Hàm f (x, y) đ t c c ti u t i (3,3), hàm g(x, y) đ t c c đ i t i (3,3) Trang 2/3 - Mã đ thi 132 PH N T LU N Bài : Cho hàm chi phí C(L,K) = 4L + 0,01K Dùng ph ng pháp nhân t Lagrange, tìm L, K cho ww w.f a ceb ook co m/ de t hi C(L,K) đ t c c ti u toàn c c v i u ki n L K =100 Bài : Gi i ph ng trình vi phân sau : y  3y  2y  2xex - H T ue h  Trang 3/3 - Mã đ thi 132

Ngày đăng: 12/10/2016, 10:17

TỪ KHÓA LIÊN QUAN