1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bai 8 HDGBTTL ly thuyet co so ve duong thang phan 4 hocmai vn

6 267 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 0,95 MB

Nội dung

Khóa học Luyện thi Quốc gia PEN-C: Môn Toán – Thầy Lê Bá Trần Phương Hình học giải tích không gian LÝ THUYẾT CƠ SỞ VỀ PHƢƠNG TRÌNH ĐƢỜNG THẲNG (Phần 4) HƯỚNG DẪN GIẢI BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƢƠNG Bài Trong không gian cho điểm A(-4;-2;4) đường thẳng (d) có phương trình: x = -3 + 2t; y = - t; z = -1 + 4t; t  R Viết phương trình đường thẳng () qua A; cắt vuông góc với (d) Lời giải:    d  B  B(3  2t;1  t; 1  4t ) , Vt phương ud  (2; 1;4)  x  1  3t    AB.ud   t  nên B(-1;0;3), phương trình đường thẳng   AB :  y  2t z   t  Bài Trong không gian tọa độ Oxyz cho mặt phẳng(P) : 4x - 3y + 11z – 26 = đường thẳng: (d1 ) : x y  z 1 x 4 y z 3   (d ) :   1 1 a CM: (d1 ) (d ) chéo b Viết phương trình đường thẳng  nằm (P) cắt (d1 ) (d ) Lời giải:   a.Ta có : u ( d1 )  (1; 2;3) u ( d2 )  (1;1; 2) M1 (0;3; 1)   d1  ; M (4;0;3)   d       M1M  (4; 3; 4)  u ( d1 ) u ( d2 )  M1M  23    d1   d  chéo  b d1  ( P)  A  A(2;7;5) d  ( P)  B  B(3; 1;1)  AB  (5; 8; 4)  ( AB) : x  y 7 z 5   8 4 Bài Trong không gian với hệ tọa độ Oxyz, cho điểm A (2; 1; 0), B(1;2;2), C(1;1;0) mặt phẳng (P): x + y + z – 20 = Xác định tọa độ điểm D thuộc đường thẳng AB cho đường thẳng CD song song với mặt phẳng (P) Lời giải: Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học Luyện thi Quốc gia PEN-C: Môn Toán – Thầy Lê Bá Trần Phương Hình học giải tích không gian x   t   AB qua A có VTCP AB  (1;1; 2) nên có phương trình :  y   t (t  )  z  2t  D  AB  D (2 – t; + t; 2t)    CD  (1  t ; t ; 2t ) Vì C  (P) nên : CD / /( P)  CD  n ( P ) 1(1  t )  1.t  1.2t   t   5  Vậy : D  ; ;  1 2  Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học Luyện thi Quốc gia PEN-C: Môn Toán – Thầy Lê Bá Trần Phương Hình học giải tích không gian BÀI TẬP BỔ SUNG Bài Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x  y  z   hai điểm A(1; 7; – 1), B(4; 2; 0) Lập phương trình đường thẳng d hình chiếu vuông góc đường thẳng AB lên mặt phẳng (P) Lời giải  x   3t  PTTS AB:  y   5t  Giao điểm AB với (P) là: M(7; –3; 1)  z  t Gọi I hình chiếu B (P) Tìm I(3; 0; 2) Hình chiếu d đường thẳng AB đường thẳng MI  x   4t   Phương trình đường thẳng d là:  y  3t  z   t Bài Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng (d1 ) : x  y  z  10   1 x  t  (d2 ) :  y   t Viết phương trình đường thẳng (d) song song với trục Ox cắt (d1) A, cắt (d2)  z  4  2t B Tính AB Lời giải Giả sử: A(8  2t1 ;6  t1 ;10  t1 )  d1, B(t2 ;  t2 ; 4  2t2 )  d2   AB  (t2  2t1  8, t2  t1  4; 2t2  t1  14)    t  t   t  22 AB, i  (1;0;0) phương   1 2t2  t1  14   t2  18  A(52; 16;32), B(18; 16;32)  x  52  t   Phương trình đường thẳng d:  y  16  z  32  Bài Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;2; –1), đường thẳng (): x2 y z2 mặt phẳng (P): x  y  z   Viết phương trình đường thẳng qua A, cắt   đường thẳng () song song với (P) Lời giải x   t  x2 y z2      y  3t () : (P) có VTPT n  (2;1;1)  z  2  2t  Gọi I giao điểm () đường thẳng d cần tìm  I (2  t;3t; 2  2t )   AI  (1  t , 3t  2,   t ) VTCP d    Do d song song mặt phẳng (P)  AI n   3t    t    AI   2; 9; 5  x 1 y  z 1 Vậy phương trình đường thẳng d là:   9 5 Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học Luyện thi Quốc gia PEN-C: Môn Toán – Thầy Lê Bá Trần Phương Hình học giải tích không gian Bài Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) đường thẳng : x 1 y 1 z   Tìm toạ độ điểm M  cho MAB có diện tích nhỏ 1 Lời giải  x  1  t  PTTS :  y   t  z  2t Gọi M (   t ;1  t ; t )     Diện tích MAB S   AM , AB   18t  36 t  216 = 18(t  1)2  198 ≥ 198 Vậy Min S = 198 t  hay M(1; 0; 2) x  1 t x  y 1 z 1  Bài Trong không gian với hệ tọa độ Oxyz ,cho hai đường thẳng : d1 :  y   t d :    2 z   Viết phương trình mp(P) song song với d1 d , cho khoảng cách từ d1 đến (P) gấp hai lần khoảng cách từ d đến (P) Lời giải  Ta có : d1 qua điểm A(1 ; ; 1) vtcp : u1  1; 1;0   d qua điểm B (2; 1; -1) vtcp là: u2  1; 2;   Gọi n vtpt mp(P), (P) song song với d1 d nên    n = [ u1 ; u2 ] = (-2 ; -2 ; -1)  pt mp(P): 2x + 2y + z + m = d( d1 ;(P)) = d(A ; (P)) = 7m ; d( d ;( P)) = d( B;(P)) = 5 m d( d1 ;(P)) = d( d ;( P))   m   m  m  3 7  m  2(5  m)    m   17  m   2(5  m )   Với m = -3  mp(P) : 2x + 2y + z – = Với m = - 17 17  mp(P) : 2x + 2y + z =0 3 Bài Trong không gian với hệ trục Oxyz, cho đường thẳng d : x  y  z 1   Xét hình bình hành 2 2 ABCD có A(1 ; ; 0), C ( ; ; 2), D  d Tìm tọa độ B biết diện tích hình bình hành ABCD Lời giải Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học Luyện thi Quốc gia PEN-C: Môn Toán – Thầy Lê Bá Trần Phương Dd : Hình học giải tích không gian x  y  z 1    D(t  ;  2t  ;  2t  1) 2 2 S ABCD   S ACD  (1) Ta có AC  (1 ; ; 2); AD  (t  ;  2t  ;  2t  1) Suy [ AC , AD]  (4 ; 4t  ;  4t  9) Suy S ACD    1 AC , AD  16  (4t  7)  (4t  9)  32t  128t  146 (2) 2 Từ (1) (2) ta có 32t  128t  128   t  Suy D(0 ;  ;  3) Vì ABCD hình bình hành nên AB  DC Suy B(3 ; ; 5) Bài Trong không gian với hệ trục Oxyz, cho điểm A(1; 2;  1) hai đường thẳng 1 : x 1 y z 1   , 1 2 x y 1 z   Xác định tọa độ điểm M, N thuộc đường thẳng   cho 2 đường thẳng MN vuông góc với mặt phẳng chứa điểm A đường thẳng  2 : Lời giải Gọi (P) mặt phẳng chứa A 1 * 1 qua B (1; ; 1) có véctơ phương u1 (1; 1;  2) ; AB(0 ;  ; 2) Suy mặt phẳng (P) có véctơ pháp tuyến n  [ AB, u1 ]  (2 ; ; 2) * M  1  M (1  t ; t ;  2t ), N    N ( s ;  2s ;  2s ) Do MN  ( s  t  1; 2s  t  1;  2s  2t  1) MN  ( P )  s  t  s  t   s  2t    2 Suy t  2, s  2 Vậy M (1;  ; 5), N (2 ;  ; 4) Bài Trong không gian Oxyz cho hai điểm A(1; 4; 2), B(-1; 2; 4) đường x  1 t  thẳng(d):  y  2  t z  2t  (t  R ) Viết phương trình đường thẳng  qua A cắt đường thẳng (d) cho khoảng cách từ B đến  lớn Lời giải Hocmai.vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa học Luyện thi Quốc gia PEN-C: Môn Toán – Thầy Lê Bá Trần Phương Hình học giải tích không gian Giả sử  cắt d M nên M (1  t ; 2  t ; 2t ) Ta có d ( B, )  28t  152t  208 3t  10t  20 28t  152t  208 16(11t  8t  60) Xét hàm f (t )   f '(t )  3t  10t  20 (3t  10t  20)  t  2 f '(t )    30 , t   11 lim f (t )  t  28 Các em tự lập bảng biến thiên Từ BBT ta thấy maxf (t )  12  t  2  d ( B, ) max  12  t  2 Khi đường thẳng  có PT: x 1 y  z    4 3 x  t  Bài .Trong Không gian với hệ tọa độ Oxyz.Cho đường thẳng  :  y  2t z   điểm A(1, ,  1) Tìm tọa độ điểm E F thuộc đường thẳng  để tam giác AEF tam giác Lời giải       + Đường thẳng  qua M (0 , ,1) có vtcp u (1, , 0) ; M A  (1,0 ,2) ;  M A , u   ( ,  , 2)  + Khoảng cách từ A đến  AH = d ( A , )     M A , u     u + Tam giác AEF  AE  AF  AH   4  Vậy E , F thuộc mặt cầu tâm A , BK R = 5 x  t  y  2t  đường thẳng  , nên tọa độ E , F nghiệm hệ :  z   ( x  1)  y  ( z  1)  32   1 2 x   1 2 24  t = suy tọa độ E F :  y  5  z    Hocmai.vn – Ngôi trường chung học trò Việt   1 2 x   24  y   z    Tổng đài tư vấn: 1900 58-58-12 - Trang | -

Ngày đăng: 09/10/2016, 23:21