1. Trang chủ
  2. » Giáo Dục - Đào Tạo

333 bài toán tích phân 14 trang

14 330 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 161,96 KB

Nội dung

‹ 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC‹ 1/ Cho hàm số : f(x)= x.sinx+x2 Tìm nguyên hàm hàm số g(x)= x.cosx biết nguyên hàm triệt tiêu x=k π 2/Định m ñể hàm số: F(x) = mx +(3m+2)x2 -4x+3 nguyên hàm hàm số: f(x) = 3x2 +10x-4 3/Tìm họ nguyên hàm hàm số: f(x)= cos x.sin8x TÍNH : π π 4/I = ∫ 3tg x dx 12 / I = π π π π π − cos x π ∫ sin x dx 14/I = ∫ + cos x dx π π x x dx π sin cos 2 ∫ 15/I = 7/ I = ∫ sin2 x.cos2xdx π 8/I = ∫ π (2cos2 x-3sin2 x)dx 16/I = 9/ I= π ∫ − π π − x ) dx π s in ( + x ) sin ( ∫ − π ∫ π π cotg2x dx 17/I = ∫ esin x sin 2x dx π π 10 / I = sin x − sin x cot gx dx ∫ sin x π 13*/ I = 5/I = ∫ (2cotg x + 5) dx 6/I = ∫ sin x dx π (tgx-cotgx)2 dx 18/ π 11/ I = ∫ cos x dx e tgx + 2 I= ∫ cos x Xuct om ang web chuy˚n n hi v oŸn h c ! π dx x2 − x2 dx 35/I = ∫ 2 x 16 − x 36*/I = ∫ dx 2 x x −9 19/ I = ∫ sin x dx π π ∫0 cos x dx 20/ I = π 2 ∫ cos x(sin 21/I = x + cos x)dx 2 ∫ x − x dx 37/I = −1 π 38/I = ∫ x (x + 4)3 dx 22/ I = ∫ cos3 xdx 0 π ∫ 39/I = 3 − −2 ln 41/I = x dx 26/I = ∫ 2x + 1 27/I = ∫ x dx e + 28/I = ∫ dx −x − e e 2x dx 29/I = ∫ x e +1 e− x dx 30/I = ∫ − x + e e ln x 31/I = ∫ dx x(ln x + 1) 42/I = ∫ 1 π dx x x +1 dx − 2x 43/I = ∫ sin xdx π dx cos x 44*/I = ∫ e−2x 45/I = ∫ − x dx + e ln 46/I = ∫ dx x e +1 π 47/I = ∫ x +1 32/I = ∫ dx 3x + ang web chuy˚n n hi x2 +1 x ∫ e − 1dx 25/I = ∫ x + x dx om ∫ 40*/I = ∫ x − x dx Xuct x2 − dx x 4sin x 23/ I = ∫ dx + cosx 24/ I = ∫ 34/I = π sin v oŸn h c ! x cot gx dx 2 ln x + ln x 48/I = ∫ dx x e 33/I = ∫ (x − 3) x − 6x + dx π e sin(ln x) dx x 49/I = ∫ 64/I = ∫ sin x.sin 2x.sin 3xdx π 50/I = ∫ x (x − 1)5 dx 65/I = ∫ cos 2x(sin x + cos x)dx 51/I = ∫ (1 + 2x)(1 + 3x + 3x )3 dx 52/I = ∫ 1+ x 1x π 3 π 66*/I = ∫ ( cos x − sin x )dx dx x7 dx 67/I = ∫ + x − 2x 53/I = ∫ tg x + cot g x − 2dx π 4cos x − 3sin x + dx 4sin x 3cos x + + π 68*/I = ∫ 54/I = ∫ (1 − x )3 dx 69/I = ∫ x − xdx 1 dx 2x +3 0e ln ex 55*/I = ∫ 56/I = ∫ (e + 1) x x +1 dx 3x + π x 71*/I = ∫ sin dx 2 x 72*/I = ∫ dx + x + − x 70/I = ∫ dx 57/I = ∫ x(e 2x + x + 1)dx −1 π 58/I = ∫ − cos3 x sin x.cos5 xdx ∫ x + x dx 73/I = 0 ∫ 59*/I = π x x2 + ln(1 + x) dx x + 1 74**/I = ∫ dx π sin x dx sin x + cos x x 60/I = ∫ dx + cos 2x ln 61/I = ∫ ln Xuct om 75/I = ∫ eπ e 2x 76/I = ∫ cos(ln x)dx dx e −1 x ang web chuy˚n n hi v oŸn h c ! x2 +1 62/I = ∫ ln xdx x e 77*/I = ∫ + x dx x2 dx (x + 1) x + 1 x dx 1 + x −1 78/I = ∫ 63/I = ∫ + 3ln x ln x dx x e 79/I = ∫ π cos x dx − 5sin x + sin x 94/I = ∫ 80/I = ∫ ln(x − x)dx e2 95*/I = ∫ ( e e 81/I = ∫ (ln x) dx 82/I = ∫ e −4 ln x dx x −1 3π ln x 83/I = ∫ dx ln x ∫ cos 2x + 1dx 98/I = π π 84/I = ∫ x ln(x + 1)dx 99/I = ∫ cos x ∫ x + dx 1 86/I = ∫ dx 4−x 85/I = sin xdx 2π 100/I = ∫ + sin xdx 3π π2 101/I = π ln(sin x) 102/I = ∫ − sin xdx ∫ sin xdx 88/I = ∫ cos x π dx π x sin x dx + cos x 1 105*/I = ∫ dx x −1 (x + 1)(4 + 1) 104*/I = ∫ 90*/I = ∫ ln( + x − x)dx ang web chuy˚n n hi 103/I = ∫  ln(x + x + 1)  dx   −1 om ∫ sin 2x dx π π 89/I = ∫ cos(ln x)dx Xuct ∫ x − 2x − x + dx 97/I = e2 87/I = ∫ x − dx 96/I = e2 1 − )dx ln x ln x v oŸn h c ! 91*/I = ∫ x4 106*/I = ∫ dx x + −1 1 2 x −1 x +1 92/I = ∫ dx x x3 dx 93/I = ∫ x − 16 dx π2 107/I = ∫ x sin xdx π2 108/I = ∫ x cos xdx π dx x − 4x − 5 124/I = ∫ dx x − 6x + 1 125/I = ∫ dx −5 2x + 8x + 26 2x + 126/I = ∫ dx x + 127/I = ∫ dx x (x + 1) 123/I = ∫ 109/I = ∫ x.sin x cos xdx x 2ex 110*/I = ∫ dx (x + 2) π 111/I = ∫ e 2x sin xdx x 112/I = ∫ x ln(1 + )dx e ln x dx (x + 1) 113/I = ∫ 128*/I = e 2 1+ x 114/I = ∫ x.ln dx − x x −3 dx (x 1)(x 3x 2) + + + 4x 130/I = ∫ dx (x + 1) 1 131/I = ∫ dx (x + 4x + 3) 129/I = ∫  ln x  115/I = ∫   dx ⇒ I < x   t π 116/I = ∫ sin x.ln(cos x)dx π π e2 117/I = sin 2x dx ∫ −π (2 + sin x) sin x dx (sin x + 3) 132/I = ∫ ∫ cos (ln x)dx Xuct om ang web chuy˚n n hi v oŸn h c ! π π 4sin x dx 133/I = ∫ π − cos x 118/I = ∫ dx cos x π π dx cos x 119*/I = ∫ 1 dx π cos x.sin x 134/I = ∫ 120/I = ∫ x 3e x dx π 121/I = ∫ e sin x π 135/I = ∫ sin x.tgxdx sin x cos xdx π π 136/I = sin 2x dx + cos x 122/I = ∫ π π sin x 137/I = ∫ dx 2 (tg x + 1) cos x 152/I = π 153/I = − 139/I = 140/I = cos x − 155/I = + sin x x + + (x + 4) dx cos x ∫ cos4 x + sin x dx 156/I = ∫ cos x 141/I = ∫ dx sin x cos x + + 142/I = ∫ dx x (x + 1) 1 −3 x 9+x dx π ∫ + 3cos x dx ∫ ∫ 1+ e 2x 154/I = ∫ e x sin xdx π 143/I = ∫ + e 2x π ∫ cos x + dx π − π 2 3e 4x dx 138/I = ∫ 2 π sin x + 9cos x π ∫ sin 2x dx π dx x+9 − x 157/I = ∫ x sin xdx π 158/I = ∫ x cos xdx dx 159/I = ∫ cos x dx Xuct om ang web chuy˚n n hi v oŸn h c ! π 144/I = ∫ 1 160/I = ∫ sin x dx sin x dx cos x π2 145/I = ∫ x − xdx x−4 dx x + x + 147/I = ∫ dx −1 x + 2x + dx 148/I = ∫ 4x − x π 146/I = ∫ 162/I = 163/I = ∫ x cos x sin x dx π 164/I = ∫ 4x − x + dx −1 ∫ 150/I = −2 151/I = ∫ π 2x − x + 4x + 13 dx x 3+ e 165/I = ∫ e dx dx 166/I = ∫ e3x sin 4x dx π sin 2x dx + cos x 183/I = ∫ dx x − 6x + 1 x + 3x + dx 184/I = ∫ x +3 185/I = ∫ dx x (x + 1) ln(1 + x) dx 186/I = ∫ x + 1 1+ x4 dx 187/I ∫ + x 182/I = ∫ x 2ex dx (x + 2) 168/I = ∫ e 169/I = ∫ (1 + x) ln x dx e 170/I = ∫ x ln x dx 1 e 171/I = ∫ ln x dx e 172/I = ∫ x(2 − ln x) dx 1 e2 188/I = ∫ x15 + x dx 1 173/I = ∫ ( − )dx ln x e ln x ang web chuy˚n n hi x π om ∫ x cos x sin x dx 167/I = ∫ e2x sin x dx Xuct ∫ x cos x dx π 149/I = ∫ x sin x dx 161/I = v oŸn h c ! 2 189/I = ∫ 175/I = ∫ x ln(1 + ) dx x ln x 176/I = ∫ dx x e ln x dx 177/I = ∫ (x + 1) 178/I = ∫ x ln π 190/I= π sin 2x.cos x dx + cos x 192/I = ∫ 1+ x dx 1− x π sin 2x + sin x dx + 3cos x 193/I = ∫ π − 2sin x dx + sin 2x 194/I = ∫ 3 sin x cos x dx π ∫ 195/I = 181/I= ∫ ln x dx 180/ ∫ e π sin 2x ∫ + sin x dx 196/I = ∫ x −1 ) dx x+2 212/I = ∫ π 197/I = ∫ ( −1 π dx tgx cos x + cos x dx x4 214/I = ∫ dx x −1 −3 π 2 dx ∫ −1 x + + x dx 201/I = ∫ x+2 + 2−x 200/I = sin 3x dx + cos x 215/I = ∫ 2 216/I = ∫ ang web chuy˚n n hi x +1 2 199/I = ∫ ( x + − x − ) dx om x + 2x x2 dx − x x 213/I = ∫ dx 4−x 198/I = ∫ x.tg x dx Xuct dx 191/I = ∫ (esin x + cos x) cos x dx π sin x −x e π 179/I = ∫ cos x.ln(1 − cos x) dx π e +e x e e ex 174/I = ∫ (x + x) ln x dx v oŸn h c ! x2 1− x2 dx ln(1 + x) 202/I = ∫ dx x2 1− x2 dx 217/I = ∫ + x 2 π sin 2x dx + cos x 218/I = sin 2008 x 204/I = ∫ dx 2008 2008 + sin x cos x 219/I = 221/I = ∫ x + 1dx x +1 dx x2 π π sin 222/I = ∫ (cos3 x + sin x)dx x dx cos x 207/I = ∫ x2 +1 223/I = ∫ dx x +1 π 208/I = ∫ cos x.cos 4x dx 224/I = ∫ (1 + x) e 2x dx π 209/I = ∫ 2x dx x e + e e ln x 210/I = ∫ dx (x + 1) e 211/I = ∫ π 226/I = ∫ dx x +1 + x x +1 dx 3x + 242/I = ∫ π + sin x dx cos3x + sin 2x dx + sin x 2cos x 243/I = ∫ 2 229/I = ∫ x (1 − x)3 dx 244/I = ∫ ang web chuy˚n n hi dx π sin 2x + cos 2x dx cos x + sin x om cos x + (1 + e x ) 228/I = ∫ dx 2x + e Xuct cos x 225/I = ∫ π + sin 2x 227/I = ∫ dx 1+ x2 − ex dx + ex 220/I = ∫ x − x dx 205/I = ∫ sin x.ln(1 + cos x)dx ∫ ∫ π 206/I = ∫ ln π x3 203/I = ∫ v oŸn h c ! x3 1− x2 dx π sin x.cos 2 x 230/I = ∫ dx cos x + 1 x − 3x + 2 246/I = dx 232*/I = ∫ x sin x.cos xdx 247/I = ∫ π 2 cos x dx + cos 2x 234/I = ∫ dx x (x + 1) 233/I = ∫ 248/I = π x x +9 dx dx π cos x + sin x dx + sin 2x π π 254*/I = ∫ −1 − sin x dx x (1 + cos x)e 241/I = ∫ π sin x dx cos x + 267/I = ∫ π Xuct x x2 −1 cos x dx + cos 2x 252/I = ∫ dx (1 + x)x x +1 253/I = ∫ dx 3x + ∫ cos x cos x − cos xdx π2 ∫ cos x cos x − cos xdx − dx 251/I = ∫ 240*/I = ∫ ln( x + a + x)dx 255/I = − x2 π π π x2 sin x dx sin x + 238/I = ∫ x sin x cos xdx − 1− x2 dx x2 250/I = ∫ 236/I = ∫ dx π 2 ∫ 1− x 249/I = ∫ x (1 − x )6 dx 235/I = ∫ sin 2x(1 + sin x)3 dx x +1 dx 3x + ∫ π 239/I = ∫ 2 π 237/I = ∫ 4x − 231/I = ∫ 245/I = x3 268/I = π om ∫ ang web chuy˚n n hi v oŸn h c ! sin x dx x 10 π π 269/I = ∫ sin x cos x(1 + cos x) dx 256/I = ∫ tg xdx π π + sin x 257*/I = ∫ + cos x π sin x − cos x 270/I = ∫ dx + + sin x cos x e x dx π 258/I = ∫ (1 − x )3 dx sin x − cos x 271/I = ∫ dx + + sin x cos x 0 π π 259/I = ∫ x.tg xdx sin x cos x + cos x dx sin x + 272/I = ∫ dx 2 (4 + x ) 3x 261/I = ∫ dx x +2 − x5 dx 262*/I = ∫ x(1 x ) + 260/I= ∫ 273/I = ∫ dx x a x + 2x + 10x + 274/I = ∫ dx x + 2x + x3 275/I = ∫ dx (x + 1) 276/I = ∫ dx x + 1 x +1 277*/I = ∫ dx + x 1 x 278/I = ∫ dx (2x + 1) 279/I = ∫ dx 2 + x +1 π cos x dx − sin x 263/I = ∫ π sin x dx cos x 264/I = ∫ π sin x + sin x dx cos 2x 265/I = ∫ π dx π sin x + cos x 265/I = ∫ 3 266/I = ex 280/I = ∫ dx ∫ x (1 + x ) 295/I = ∫ om ang web chuy˚n n hi x 1− x dx Xuct v oŸn h c ! x x −1 dx 11 281*/I = ∫ x ln(x + + x ) 1+ x dx 297*/I = ∫ 1 283/I = ∫ x ln(x + 1) dx 298/I = ∫ 3x dx x + 2x + 1 4x − 285/I = ∫ dx x + 2x + x + 2 286/I = −1 (3 + 2x) 287/I = ∫ π 299/I = x + 1+ x dx x + 1+ x2 dx cos x dx cos x + dx π cos x dx − cos x 302/I = ∫ π sin x dx sin x + 303/I = ∫ π π cos3 x 304/I = ∫ dx cos x + 290/I = ∫ (cos3 x + sin x)dx π π 305/I = 291/I = ∫ cos5 x sin xdx ∫ 2cos x + sin x + dx π 292/I = ∫ cos 2x(sin x + cos x)dx π π 293/I = ∫ dx + sin x ang web chuy˚n n hi cos x ∫ (1 − cos x)2 dx 306/I = π om dx 301/I = ∫ cos x + sin x 289/I = ∫ dx + sin 2x π Xuct −1 + π π + 1+ x dx dx sin x cos x π cos x 288/I = ∫ dx cos 2x + 0 π x 1+ x x3 300/I = ∫ + 12x + 4x ∫ 1+ x dx π ∫ 0x 284/I = ∫ ∫ 282/I = ∫ (x − 1) ln x dx x3 296/I = 307/I = ∫ tg3 x dx v oŸn h c ! 12 π π dx − cos x 321*/I = ∫ tg5 x dx 294/I = ∫ π 1 dx ∫ 2x −1 + e π sin x dx 309*/I = ∫ x + −π 322/I = ∫ cotg x dx 308*/I = π π 323/I = π π sin x dx 310*/I = ∫ cos x sin x + π π sin x dx 4 + cos x sin x tgx 312*/I = ∫ − ln (cos x) 0 π sin x dx cos x + 325/I = ∫ dx π cos 2x dx π − cos 2x 326/I = ∫ π sin x dx + cos x sin x 1 314*/I = ∫ x dx (e 1)(x 1) + + −1 313*/I = ∫ 315*/I = ∫ e 316*/I = ∫ π 3x +1 x π 327*/I = ∫ ( 1 2 dx 329*/I = ∫ cos x dx cos − 3cos x + x t 2et 318*/Tìm x> cho ∫ dt = (t + 2) 317*/I = ∫ π 319*/I = ∫ π ln 3 tan x cos x cos x + 330/I = ∫ x − x3 dx x4 ex (e + 1) e − π −1 e4 331/I = t gx − ) dx tgx + x dx x3 + 328*/I = ∫ dx x2 + ∫ + tgx dx 324*/I = 311/I = ∫ π ∫ tg x dx x x dx dx ∫ x cos (ln x + 1) e π dx 333*/I = ∫ ln(1 + tgx)dx Xuct om ang web chuy˚n n hi v oŸn h c ! 13 320*/I = ∫ −3x + 6x + 1dx Xuct om ang web chuy˚n n hi v oŸn h c ! 14

Ngày đăng: 27/09/2016, 11:08

w