Báo cáo toàn văn Kỷ yếu hội nghị khoa học lần IX Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM II-P-1.20 HIỆU CHỈNH HIỆU ỨNG MATRIX TRONG PHÉP PHÂN TÍCH HUỲNH QUANG TIA X ĐỐI VỚI MẪU HAI THÀNH PHẦN FE – CR Huỳnh Trúc Phương 1, Lưu Đặng Hoàng Oanh1, Huỳnh Thị Thu Hương 1, Lê Lệ Mai Trường Đại Học Khoa Học Tự Nhiên, ĐHQG-HCM Trường Đại học Sư phạm Tp.HCM Email: htphuong@hcmus.edu.vn TÓM TẮT Một nghiên cứu cho việc hiệu chỉnh hiệu ứng matrix phép phân tích huỳnh quang tia X mẫu hai thành phần Fe – Cr thực dựa hệ phân tích huỳnh quang tia X với nguồn kích H3 – Zr Bộ môn Vật Lý Hạt Nhân, Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM Trong nghiên cứu này, thuật toán Claisse – Quintin áp dụng để hiệu chỉnh hiệu ứng hấp thụ pháp phân tích hàm lượng mẫu Fe-Cr Kết phép phân tích thu được: wFe = 0,39 ± 0,02 (g/g), wCr = 0,40 ± 0,01 (g/g) So sánh với kết hàm lượng mẫu chuẩnthấy có phù hợp tốt, sai lệch từ 0,01% đến 2% Từ khóa: Hiệu chỉnh hiệu ứng matrix, mẫu hai thành phần GIỚI THIỆU XRF (X-ray fluorescence) phương pháp phân tích thành phần hóa học loại vật liệu dựa vào việc ghi lại phổ tia X phát từ vật liệu tương tác với xạ tới Kỹ thuật có nhiều ưu điểm không phá hủy mẫu, có độ xác cao, có khả phân tích đồng thời nhiều nguyên tố lúc với thời gian chiếu ngắn Phương pháp phân tích XRF linh hoạt cho ứng dụng nhiều lĩnh vực khoa học, nghiên cứu kiểm soát chất lượng [1], [2] Tuy nhiên phương pháp phân tích XRF có số nhược điểm hiệu ứng tăng cường hiệu ứng hấp thụ nguyên tố matrix ảnh hưởng đến cường độ đo nguyên tố phân tích Đối với mẫu mỏng, hai hiệu ứng bỏ qua, mẫu dày, hiệu chỉnh cho hiệu ứng matrix cần thiết Do đó, việc khắc phục ảnh hưởng hiệu ứng matrix mô hình toán học có ý nghĩa đặc biệt quan trọng tính xác kết phân tích PHƯƠNG PHÁP TÍNH TOÁN Phương pháp hiệu chỉnh matrix Xét mẫu hai thành phần, i nguyên tố phân tích, j nguyên tố tham gia hiệu ứng hấp thụ tăng cường.Ta có phương trình thuật toán hiệu chỉnh matrix Claisse – Quintin sau [1], [5], [6]: w i = R i 1 + α lin,ij w j (1) αlin,ij = αij + αijj wm (2) w m = - wi (3) đó, với wi w j hàm lượng nguyên tố i, j mẫu; αlin,ij hệ số hiệu chỉnh tuyến tính; R i cường độ tương đối xác định phương trình: Ri = Ii Ii(P) (4) với I i Ii(P) cường độ xạ đặc trưng nguyên tố i mẫu phân tích mẫu tinh khiết Giả sử mẫu chứa hai nguyên tố i, j chất nền, ta có: w i = R i 1 + αij w j + αijj w 2j + αijj w n w j với wn (5) hàm lượng chất có mẫu phương trình (5) giả thuyết số đếm thu trừ phông ISBN: 978-604-82-1375-6 218 Báo cáo toàn văn Kỷ yếu hội nghị khoa học lần IX Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM Dùng mẫu so sánh (*) có hàm lượng nguyên tố i j gần với mẫu phân tích Hàm lượng thành phần mẫu phân tích tính từ mẫu so sánh (*) sau [7], [8]: wi = w*i + Δwi (6) Từ phương trình (5), ta có: w*i = R*i + αij w*j + αijj w*j + αijj w*n w*j Lập tỉ số (7) wi giả thuyết w n = w*n , ta có: * wi αij + 2.αijj w *j + αijj w *n Ii w i = w * 1 + Δw j * * * * Ii + α w + α w + α w w ij j ijj j ijj n j * i (8) đó, w *i I*i hàm lượng cường độ tia X đặc trưng nguyên tố i mẫu so sánh Đặt: w i(bk) = w *i δj = Ii I*i (9) αij + 2.αijj w *j + αijj w *n (10) + αij w *j + αijj w *j + αijj w *n w *j Phương trình (8) viết lại thành: w i = w i(bk) 1 + δ j Δw j (11) Để xác định hệ số ảnh hưởng αij αijj ta tiến hành dùng mẫu so sánh lập đồ thị theo phương trình [7]: wi -1 Ri = αij + αijj w m wj (12) đó, Ri w m xác định từ phương trình (3) xác định từ phương trình (4) Sau có hệ số αij αijj thay vào phương trình (10) để xác định δ j , w i(bk) xác định thực nghiệm qua công thức (9) Dùng w i(bk) δ j tính áp dụng cho phương trình lặp (13) [7]: * w i(n+1) = w i(bk) 1 + δ j w (n) j - wj (0) Trong phương trình (13) vòng lặp bắt đầu với w j = w(bk) j (13) [7] Phương pháp chuẩn ngoại tuyến tính Để xác định phương trình đường chuẩn hàm lượng theo phương pháp chuẩn ngoại tuyến tính, ta tiến hành dùng mẫu so sánh lập đồ thị theo phương trình [2]: w = a.I + b Khi để xác định hàm lượng (14) wi nguyên tố i mẫu ta thay cường độ tia X đặc trưng Ii nguyên tố i vào phương trình (14) THỰC NGHIỆM ISBN: 978-604-82-1375-6 219 Báo cáo toàn văn Kỷ yếu hội nghị khoa học lần IX Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM Thiết bị Trong phần thực nghiệm này, nguồn kích H3 – Zr sử dụng có hoạt độ 5mCi [4] Các mẫu chiếu đo hệ phổ kế huỳnh quang tia X Bộ môn Vật Lý Hạt Nhân trường Đại học Khoa Học Tự Nhiên vớidetector XR - 100SDD có FWHM = 125 eV đỉnh 5,9 keV nguồn Fe55 [9] Chuẩn bị mẫu Trong thực nghiện này, mẫu pha chế từ bột Fe tinh khiết (98%), bột Cr tinh khiết (99%) chất sử dụng NaHCO3 dạng bột (100%) Mẫu nén chặt hộp nhựa có bán kính 1,5 cm với bề dày mm Khối lượng mẫu chuẩn bị trình bày bảng 1, bảng bảng Bảng Khối lượng mẫu phân tích Khối lượng (g) Tên mẫu Fe Cr Chất A1 1,20 1,20 0,60 A2 1,20 1,20 0,60 A3 1,20 1,20 0,60 A4 1,20 1,20 0,60 A5 1,20 1,20 0,60 A6 1,20 1,20 0,60 Bảng Khối lượng mẫu so sánh Khối lượng (g) Tên mẫu Fe Cr Chất B1 0,90 1,80 0,30 B2 1,20 1,50 0,30 B3 1,80 0,90 0,30 C1 1,17 1,23 0,60 C2 1,23 1,17 0,60 C3 1,26 1,14 0,60 Bảng Khối lượng mẫu tinh khiết Khối lượng (g) Tên mẫu Fe Cr Chất D1 3,00 0 D2 3,00 Chiếu đo mẫu Sau đóng gói, mẫu chiếu đo hệ phổ kế XRF Bộ môn Vật Lý Hạt Nhân với nguồn kích H3 – Zr thời gian chiếu Phổ ghi nhận phần mềm Amptek DppMCA, sau xử lí phần mềm Colegram hiệu chỉnh thời gian chết KẾT QUẢ VÀ THẢO LUẬN Bằng cách thực bước phần phương pháp tính toán, ta xác định hàm lượng Fe Cr mẫu phân tích Bảng bảng trình bày so sánh kết phân tích phương pháp hiệu chỉnh matrix phương pháp chuẩn ngoại tuyến tính với kết hàm lượng pha chế Bảng Kết hàm lượng Fe phân tích thực nghiệm ISBN: 978-604-82-1375-6 220 Báo cáo toàn văn Kỷ yếu hội nghị khoa học lần IX Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM Hàm lượng Fe (g/g) Phương pháp Thực nghiệm Hiệu chỉnh matrix Độ sai biệt (%) Pha chế 0,39 ± 0,02 2,18 0,400 ± 0,003 Chuẩn ngoại tuyến tính 0,44 ± 0,01 9,43 Nhận xét: Kết phép đo thực nghiệm hàm lượng Fe mẫu phân tích sau hiệu chỉnh matrix có sai biệt so với giá trị pha chế ban đầu khoảng 2% Độ sai biệt không đáng kể, cho thấy phương pháp hiệu chỉnh công thực nghiệm phù hợp Trong phương pháp chuẩn ngoại tuyến tính có độ sai biệt 9,43% Bảng Kết hàm lượng Cr phân tích thực nghiệm Phương pháp Hàm lượng Cr (g/g) Thực nghiệm Hiệu chỉnh matrix Độ sai biệt (%) Pha chế 0,400 ± 0,06 0,01 0,400 ± 0,003 Chuẩn ngoại tuyến tính 0,38 ± 0,02 4,14 Nhận xét: Kết phép đo thực nghiệm hàm lượng Cr mẫu phân tích sau hiệu chỉnh matrix có sai biệt nhỏ so với giá trị pha chế ban đầu (khoảng 0,01%) Độ sai biệt không đáng kể, cho thấy phương pháp hiệu chỉnh công thực nghiệm phù hợp Trong phương pháp chuẩn ngoại tuyến tính có độ sai biệt 4,14% KẾT LUẬN Bằng cách áp dụng mô hình hiệu chỉnh matrix đề nghị cho mẫu hai thành phần Fe – Cr với mẫu phân tích mẫu pha chế biết trước hàm lượng, sau sử dụng phương pháp chuẩn ngoại tuyến tính xác định lại hàm lượng mẫu phân tích, ta nhận thấy có sai biệt cao kết phân tích phương pháp chuẩn ngoại tuyến tính giá trị hàm lượng pha chế thành phần mẫu (ảnh hưởng hiệu ứng matrix, không đồng kích thước hạt, hiệu ứng bề mặt mẫu, ….) Phương pháp hiệu chỉnh matrix với xem xét đến hiệu ứng hấp thụ tăng cường cho kết xác hẳn phương pháp chuẩn ngoại tuyến tính thông thường Lời cảm ơn: Chúng chân thành cám ơn đến Ban Khoa học Công nghệ, ĐHQH-HCM, Phòng Khoa học Công nghệ Trường Đại học Khoa học Tự nhiên hỗ trợ kinh phí trang thiết bị để thực đề tài CORRECTION OF MATRIX EFFECTS IN XRF WITH THE SAMPLES OF TWO ELEMENTS OF FE-CR ABSTRACTS A studying for correction to matrix effects in XRF with samples of two elements as Fe-Cr was have carried out, which based on the unit of XRF with excited by H 3-Zr source, at the Nuclear Physics Department, University of Science HCM City In this study, Claisse-Quintin was applied to correction for absorption effects in analysis of Fe-Cr concentration in the samples As results, obtained concentrations were, wFe = 0,39 ± 0,02 (g/g) and wCr = 0,40 ± 0,01 (g/g) Here, there is a very good with agreement in concentration between standard and sample, which deviation from 0.01% to 2% Keywords: Correction of Matrix effects, Fe-Cr in XRF TÀI LIỆU THAM KHẢO [1] Trần Phong Dũng (1996), Hiệu chỉnh ảnh hưởng hiệu ứng matrix phương pháp phân tích huỳnh quang tia X, Luận văn Thạc sĩ , Đại học Khoa học Tự nhiên, ĐHQG-HCM [2] Trần Phong Dũng, Huỳnh Trúc Phương, Thái Mỹ Phê (2003), Các phương pháp phân tích huỳnh quang tia X, NXB ĐHQG-HCM, tr.35-45 [3] Trương Thị Hồng Loan (2013), Xử lí thống kê số liệu thực nghiệm hạt nhân, NXB ĐHQG-HCM, tr.68-70 [4] Mai Văn Nhơn, Huỳnh Trúc Phương (2003), Phân tích vài nguyên tố phương pháp huỳnh quang tia X nhờ nguồn H3-Zr, Đề tài cấp Bộ [5] R M Rousseau (2006), Corrections for matrix effects in X – ray fluorescence analysis – A tutorial, ELSEVIER, pp 759 – 777 ISBN: 978-604-82-1375-6 221 Báo cáo toàn văn Kỷ yếu hội nghị khoa học lần IX Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM [6] R.M Rousseau (1998), The Fundamental Algorithm: An exhaustive study of the Claisse – Quintin Algorithm and the Tertian and Lachance identities part II: Application, The Rigaku Journal, 15(2), pp 14 – 25 [7] R.M Rousseau (2001), Concept of the Influence Coefficient, The Rigaku Journal, 18(1), pp – 21 [8] R.M Rousseau (2009), The Quest for a Fundamental Algorithm in X – Ray Fluorescence Analysis and Calibration, The Open Spectroscopy Journal, pp 31 – 42 [9] http://www.amptek.com ISBN: 978-604-82-1375-6 222