1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số phương pháp song song dạng runge kutta giải bài toán không cương

17 338 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 420,87 KB

Nội dung

I HC QUC GIA H NI TRNG I HC KHOA HC T NHIấN NGUYN THU THY MT S PHNG PHP SONG SONG DNG RUNGE - KUTTA GII BI TON KHễNG CNG LUN N TIN S TON HC H NI - 2014 I HC QUC GIA H NI TRNG I HC KHOA HC T NHIấN NGUYN THU THY MT S PHNG PHP SONG SONG DNG RUNGE - KUTTA GII BI TON KHễNG CNG Chuyờn ngnh: Toỏn hc tớnh toỏn Mó s: 62 46 30 01 LUN N TIN S TON HC Ngi hng dn khoa hc: GS.TSKH Nguyn Hu Cụng H NI - 2014 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi Cỏc kt qu nờu lun ỏn l trung thc v cha tng c cụng b bt k cụng trỡnh no khỏc Tỏc gi Nguyn Thu Thy LI CM N Lun ỏn c hon thnh di s hng dn ca GS TSKH Nguyn Hu Cụng Thy ó dn dt tỏc gi lm quen vi nghiờn cu khoa hc t tỏc gi ang l hc viờn cao hc Ngoi nhng ch dn v mt khoa hc, s ng viờn v lũng tin tng ca thy dnh cho tỏc gi luụn l ng lc ln giỳp tỏc gi t tin v say mờ nghiờn cu Qua õy tỏc gi xin by t s bit n sõu sc v lũng quý mn i vi thy Tỏc gi cng xin c by t lũng bit n n cỏc thy cụ v cỏc bn ng nghip xemina B mụn Toỏn hc tớnh toỏn, trng i hc Khoa hc T nhiờn-i hc Quc Gia H Ni ó to mụi trng hc v nghiờn cu thun li giỳp tỏc gi honh thnh lun ỏn ny Ti õy tỏc gi ó nhn c nhiu ch dn, gúp ý cng nh mt mụi trng nghiờn cu sụi ni v thõn thin, iu khụng th thiu quỏ trỡnh nghiờn cu, hon thnh lun ỏn ca tỏc gi Tỏc gi xin gi li cỏm n ti cỏc thy cụ khoa Toỏn-C-Tin hc, Phũng Sau i hc, Trng i hc Khoa hc T nhiờn- i hc Quc Gia H Ni, ni tỏc gi ó hc v nghiờn cu Tỏc gi xin c by t lũng bit n n Ban Giỏm hiu, Ban ch nhim khoa Toỏn-Tin v B mụn Toỏn ng dng trng i hc S phm H Ni ó to nhng iu kin thun li quỏ trỡnh tỏc gi hc tp, cụng tỏc v hon thnh lun ỏn ny Trong quỏ trỡnh hc v hon thnh lun ỏn, tỏc gi ó nhn c s quan tõm giỳp v gúp ý ca GS.TSKH Phm K Anh, PGS.TSKH V Hong Linh, Tỏc gi xin chõn thnh cm n cỏc Giỏo s v s giỳp quý bỏu ny Cui cựng, tỏc gi xin c by t lũng bit n n ụng b, b m, anh ch em hai bờn ni ngoi, cựng chng v bn bố ó gúp ý v ng viờn tỏc gi quỏ trỡnh hc v hon thnh lun ỏn Tỏc gi MC LC MC LC DANH MC CC T VIT TT MT S K HIU CHUNG M U Chng MT S KIN THC C S 1.1 11 Phng phỏp Runge-Kutta 12 1.1.1 Cp chớnh xỏc ca phng phỏp Runge-Kutta 14 1.1.2 Tớnh n nh ca phng phỏp Runge-Kutta 15 1.2 Cỏc phng phỏp Runge-Kutta hin 16 1.3 Cỏc phng phỏp Runge-Kutta n 18 1.4 Phng phỏp Runge-Kutta lp song song (PIRK) 21 1.4.1 Ni dung phng phỏp PIRK 23 1.4.2 Cp chớnh xỏc ca phng phỏp PIRK 24 1.5 1.4.3 S n nh ca phng phỏp PIRK 24 1.4.4 S hi t ca quỏ trỡnh lp 26 Mt s mó tớnh toỏn tun t 26 1.5.1 Phng phỏp kp thờm cú cp chớnh xỏc - mó DOPRI5 1.5.2 Phng phỏp kp thờm cú cp chớnh xỏc 8- mó DOPRI853 28 Phng phỏp ngoi suy- mó ODEX 31 Ba bi toỏn th 37 1.5.3 1.6 27 Chng PHNG PHP LP SONG SONG DNG RUNGEKUTTA HAI BC MT DA TRấN CC IM TRNG KHP GAUSS-LEGENDRE 2.1 2.2 40 Phng phỏp dng Runge-Kutta hai bc mt da trờn cỏc im trựng khp Gauss-Legendre 41 2.1.1 n nh tuyn tớnh 44 2.1.2 Th nghim s 49 Phng phỏp lp song song dng Runge-Kutta hai bc mt da trờn cỏc im trựng khp Gauss-Legendre 50 2.2.1 iu kin bc 52 2.2.2 S hi t ca quỏ trỡnh lp 54 2.2.3 Min n nh 55 2.2.4 Th nghim s 57 2.2.5 So sỏnh vi cỏc phng phỏp song song 59 2.2.6 So sỏnh vi cỏc mó tun t 62 Chng PHNG PHP LP SONG SONG GI RUNGE-KUTTA HAI BC VI CHIN LC IU KHIN BC LI 3.1 3.2 3.3 65 Phng phỏp gi Runge-Kutta hai bc kp thờm vi bc li thay i 66 3.1.1 iu kin bc 68 3.1.2 Cụng thc kp thờm 72 Phng phỏp PIPTRK vi chin lc iu khin bc li 73 3.2.1 iu kin bc cho cụng thc d bỏo 75 3.2.2 S hi t ca quỏ trỡnh lp 77 3.2.3 iu khin bc li 77 Th nghim s 79 3.3.1 Xỏc lp phng phỏp PIPTRKSC 79 3.3.2 So sỏnh vi cỏc mó song song 81 3.3.3 So sỏnh vi cỏc mó tun t 83 3.3.4 Tớnh hiu qu ca chin lc iu khin bc li 85 Chng PHNG PHP GI RUNGE-KUTTA BA BC 4.1 4.2 89 Phng phỏp gi Runge-Kutta ba bc (EPThRK) 90 4.1.1 iu kin bc 92 4.1.2 Tớnh n nh 97 Cỏc th nghim s 98 4.2.1 Chn phng phỏp EPThRK 98 4.2.2 So sỏnh vi cỏc mó song song 100 4.2.3 So sỏnh vi cỏc mó tun t 102 4.2.4 So sỏnh phng phỏp EPThRK vi phng phỏp TBTPIRKG v PIPTRKSC 104 KT LUN KIN NGH MT S HNG NGHIấN CU TIP THEO 108 109 DANH MC CễNG TRèNH KHOA HC CA TC GI LIấN QUAN N LUN N 110 TI LIU THAM KHO 111 MT S K HIU CHUNG Mt s kớ hiu thụng thng Rd khụng gian cỏc vộc t thc d chiu C s phc C s phc vi phn thc khụng dng Vi s phc z C, Re(z), Im(z) ln lt l phn thc v phn o ca s phc z (A) l ph ca ma trn A (A) l bỏn kớnh ph ca ma trn A Ly tha ca mt vộc t Gi s c = (c1 , c2 , , cs )T , ú ck = (ck1 , ck2 , , cks )T Toỏn t exp( d ) dx d d d2 dn exp( ) = + + + ããã + + dx dx 2!dx n!dxn Kớ hiu vộc t e Vộc t e luụn hiu l vộc t cú tt c cỏc thnh phn bng Vộc t hm Gi s f (x, y) l hm thc ca hai bin x, y Nu thay x v y tng ng bi hai vộc t v = (v1 , v2 , , vs )T v w = (w1 , w2 , , ws )T thỡ ta c vộc t hm vi s thnh phn: f (v, w) = [f (v1 , w1 ), f (v2 , w2 ), , f (vs , ws )]T Nu x R, cũn y thay bi w = (w1 , w2 , , ws )T thỡ ta cú: f (x, w) = [f (x, w1 ), f (x, w2 ), , f (x, ws )]T DANH MC CC T VIT TT EPThRK Explicit pseudo three-step Runge-Kutta method Phng phỏp gi Runge-Kutta ba bc ERK Explicit Runge-Kutta Runge-Kutta hin IRK Implicit Runge-Kutta Rungge-Kutta n PC Predictor-Corrector D bỏo-Hiu chnh PIPTRK parallel-iterated pseudo two-step Runge- Kutta methods Phng phỏp lp song song gi Runge-Kutta hai bc PIPTRKSC Parallel-iterated pseudo two-step Runge-Kutta method with step size control Phng phỏp lp song song gi Runge-Kutta hai bc vi chin lc iu khin bc li PTRK Pseudo two-step RK methods Phng phỏp gi Runge-Kutta hai bc TBTIRKG Two-step-by-two-step IRK methods based on Gauss-Legendre collocations points Phng phỏp dng Runge-Kutta n hai bc mt da trờn cỏc im trựng khp Gauss-Legendre TBTRKG Two-step-by-two-step Runge-Kutta-type corrector methods based on Gauss-Legendre collocation points Phng phỏp hiu chnh dng Runge-Kutta hai bc mt da trờn im trựng khp Gauss-Legendre TBTPIRKG two-step-by-two-step parallel-iterated Runge-Kutta-type PC methods based on Gauss-Legendre collocation points Phng phỏp lp song song dng Runge-Kutta hai bc mt da trờn cỏc im trựng khp Gauss-Legendre 111 TI LIU THAM KHO [1] Phm K Anh (2008), Gii tớch s, Nh xut bn i hc Quc Gia H Ni [2] Nguyn Hu Cụng (2002), Cỏc phng phỏp song song dng RungeKutta- Nystrăom, Nh xut bn i hc Quc Gia H Ni [3] Lờ Ngc Xuõn (2007), Mt s phng phỏp song song gii h phng trỡnh vi phõn, Lun ỏn Tin s Toỏn hc, i hc Khoa hc T nhiờn- i hc Quc gia H Ni Ting Anh [4] Bellen, A., Vermiglio, R., Zennaro, M (1990), "Parallel ODE-solvers with stepsize control", J Comput Appl Math 31, pp.277-293 [5] K Burrage (1993), "Efficient block predictor-corrector methods with a small number of corrections", J Comput Appl Math 45, pp.139-150 [6] K Burrage (1993), "Parallel methods for initial value problems", Appl Numer Math 11, pp.5-25 [7] K Burrage (1995), Parallel and Sequential Methods for Ordinary Differential Equations, Clarendon Press, Oxford [8] K Burrage and H Suhartanto (1997), "Parallel iterated methods based on multistep Runge-Kutta mehods of Radau type", Advances in Computational Mathematics 7, pp.37-57 [9] K Burrage (1978), "A special family of Runge-Kutta methods for solving stiff differential equations", BIT 18, pp.22-41 112 [10] J.C Butcher (1963), "Coefficients for the study of Runge-Kutta Integration Processes", J of the Australian Math Soc., 3, pp.185201 [11] J.C Butcher (1964), "Implicit Runge-Kutta processes", Math Comp 18, pp.50-64 [12] J.C Butcher (1964), "Integration processes based on Radau quadrature formulas", Math Comp 18, pp.233-244 [13] J.C Butcher (1964), "On Runge-Kutta processes of high order", J of the Australian Math Soc 4, pp.179-194 [14] J.C Butcher (1964), "On the attainable order of Runge-Kutta methods", Math Comp 19, pp.408-417 [15] J.C Butcher (1985), "The non-existence of ten stage eighth order explicit Runge-Kutta methods", BIT 27, pp.521-540 [16] J.C Butcher (1977), "A-stable implicit Runge-Kutta methods", BIT 17, pp.375-378 [17] J.C Butcher (1987), The Numerial Analysys of Ordinary Differential Equations, Runge-Kutta and General Linear Methods, Wiley, New York [18] N.H Cong (1994), "Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial-value problems", J Comput Appl Math 51, pp.117-125 [19] N.H Cong (1999), "Explicit pseudo two-step Runge-Kutta methods for parallel computers", Int J Comput Math 73, pp.77-91 [20] N.H Cong (1999), "Continuous variable stepsize explicit pseudo two-step RK methods", J Comput Appl Math 101, pp.105-116 113 [21] N.H Cong and T Mitsui (1996), "Collocation-based two-step Runge-Kutta methods", Japan J Indust Appl Math 13, pp.171183 [22] N.H Cong and T Mitsui (1997), "A class of explicit parallel twostep Runge-Kutta methods", Japan J Indust Appl Math 14, pp.303-313 [23] N.H Cong and T Mitsui (2003), "Parallel PC iteration of pseudo two-step RK methods for nonstiff IVPs", Japan J Indust Appl Math 20, pp.51-64 [24] N.H Cong, H Podhaisky and R Weiner (1998), "Numerical experiments with some explicit pseudo two-step RK methods on a shared memory computer", Comput Math Appl 36, pp.107-116 [25] N.H Cong and H.T Vi (1995), "An improvement for explicit parallel Runge-Kutta methods", Vietnam J Math 23, pp.241-252 [26] N.H Cong and L.N Xuan (2003), "Parallel-iterated RK-type PC methods with continuous output formulas", Int J Comput Math 80, pp.1027-1037 [27] N.H Cong and L.N Xuan (2003), "Parallel-iterated RK-type PC methods with continuous output formulas", Int J Comput Math 23, pp.241-252 [28] N.H Cong and L.N Xuan (2008), "Improved parallel-iterated pseudo two-step RK methods for nonstiff IVPs", Appl Numer Math 58, pp.160-170 [29] N.H Cong and L.N Xuan (2008), "twostep-by-twostep PIRK-type PC methods with continous output formulas", J Comput Appl Math 221, pp.165-173 114 [30] N.H Cong and N.T Thuy (2011), "Two-step-by-two-step PIRKtype PC methods based on Gauss-Legendre collocation points", J Comput Appl Math 236, pp.225-233 [31] N.H Cong and N.T Thuy (2012), Stability of Two-Step-by-TwoStep IRK methods based on Gauss-Legendre collocation points and an application, Vietnam Journal of Mathematics, 40, no.1, pp.115126 [32] N.H Cong and N.T Thuy (2014), "A class of explicit pseudo threestep Runge-Kutta methods", (submitted) [33] N.H Cong and N.T Thuy (2014), "Parallel iterated pseudo twostep RK methods with stepsize control", Japan Journal of Industrial and Applied Mathematics, 31, no 2, pp 441-460 [34] N.H Cong (2001), "A general family of pseudo two-step RungeKutta methods", SEA Bull Math 25, pp.61-73 [35] N.H Cong, "Explicit pseudo three-step Runge-Kutta-Nystrăom methods", in preparation [36] A.R Curtis (1975)," High-order explicit Runge-Kutta formulae , their uses and limitations", J Inst Math Appl 16, pp.35-55 [37] A.R Curtis (1964), Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quater Period, H.M.S.O., London [38] Gear, C.W (1988), "Parallel methods for ordinary differential equations", Calcolo 25, pp 1-20 [39] E Hairer (1978), "A Runge-Kutta method of order 10", J Inst Math Appl 21, pp.47-59 115 [40] E Hairer, S.P Nứrsett and G Wanner (1987), Solving Ordinary Differential Equations I Nonstiff Problems, 1st edition, SpringerVerlag, Berlin [41] E Hairer, S.P Nứrsett and G Wanner (1993), Solving Ordinary Differential Equations I Nonstiff Problems, 2nd edition, SpringerVerlag, Berlin [42] E Hairer and G Wanner (1991), Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin [43] P.J van der Houwen and N.H Cong (1993), "Parallel block predictor-corrector methods of Runge-Kutta type", Appl Numer Math 13, pp.109-123 [44] P.J van der Houwen and B.P Sommeijer (1990), "Parallel iteration of high-order Runge-Kutta methods with stepsize control", J Comput Appl Math 29, pp.111-127 [45] P.J van der Houwen and B.P Sommeijer (1992), "Block RungeKutta methods on parallel computers", Z Angew Math Mech 68, pp.3-10 [46] P.J van der Houwen, and B.P Sommeijer (1991), "Iterated RungeKutta methods on parallel computers", SIAM J Sci Stat Comput 12, pp.1000-1028 [47] P.J van der Houwen, B.P Sommeijer and W Couzy (1992), "Embedded diagonally implicit Runge-Kutta algorithms on parallel computers", Math Comput 58, pp.135-159 [48] T.E Hull, W.H Enright, B.M Fellen and A.E Sedgwick (1972), "Comparing numerical methods for ordinary differential equations", SIAM J Numer Anal 9, pp.603-637 116 [49] G.Yu Kulikov and R Weiner (2010), "Variable-stepsize interpolating explicit parallel peer methods with inherent global error control", SIAM J Sci Comput 32, pp.1695-1723 [50] G.Yu Kulikov and R Weiner (2010), "Doubly quasi-consistent parallel explicit peer methods with built-in global error estimation", J Comput Appl Math 233, pp.2351-2364 [51] S.P Nứrsett and H.H Simonsen (1989), "Aspects of parallel RungeKutta methods, in Numerical Methods for Ordinary Differential Equations", Proceedings LAquilla 1987, Lecture Notes in Mathematics, 1386, (Edited by A Bellen, C.W Gear and E Russo), Springer-Verlag, Berlin [52] B.A Schmitt, R Weiner and S Jebens (2009), "Parameter optimization for explicit parallel peer two-step methods", Appl Numer Math 59, pp.769-782 [53] B.A Schmitt and R Weiner (2010), "Parallel start for explicit parallel two-step peer methods", Numer Algorithms 53, pp.363-381 [54] L.F Shampine and M.K Gordon (1975), Computer Solution of Ordinary Differential Equations, The Initial Value Problems, W.H Freeman and Company, San Francisco [55] O Axelsson (1969), "A class of A-stable methods", BIT 9, pp.185199 [56] K Dekker and J.G Verwer (1984), Stability of Runge-Kutta Mehtods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam [57] P Kaps (1981), Rosenbrock-type methods, in: Numerical Methods for Stiff Initial Value Problems, G Dahlquist and R Jeltsch (eds.), 117 Bericht Nr 9, Inst fă ur Geometrie und Praktische Mathematik der RWTH Aachen [58] J.D Lambert (1991), Numerical Methods for Ordinary Differential Systems, The Initial Value Problems, John Wiley & Sons [59] B.P Sommeijer, W Couzy and P.J van der Houwen (1992), "Astable parallel block methods for ordinary and integro-differential equations", Appl Numer Math 9, pp.267-281 [60] O Widlund (1967), "A note on unconditionally stable linear multistep methods", BIT 7, pp.65-70 [61] M.T Chu and H Hamilton (1987), "Parallel solution of ODEs by multi-block methods", SIAM J Sci Statist Comput 3, pp.342-353 [62] R Weiner, G.Yu Kulikov and H Podhaisky (2012), "Variablestepsize doubly quasi-consistent parallel explicit peer methods with global error control", Appl Numer Math 62, pp.1591-1603

Ngày đăng: 10/09/2016, 11:55

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w