1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập hình học không gian trong đề thi

12 369 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 514,61 KB

Nội dung

Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc www.laisac.page.tl Tuynchnvỏpỏn: LuynthithiHccacỏctrngtrong ncnm2012. M Mụụn n:H HèèN NHH H CK KH Hễ ễN NGG GIIA AN om (laisacctvdỏn) HèNHCHểP c c Bi1.ChohỡnhchúpSABCDcúỏyABCDlhỡnhvuụngcnh a ,tamgiỏcSABu,tam giỏcSCDvuụngcõntiS.GiI,J,KlnltltrungimcacỏccnhAB,CD,SA. Chngminhrng (SIJ )^(ABCD).TớnhthtớchkhichúpK.IBCD. Gii. T githittacú: S K A D K ' I J H oc C B uo AB ^SIỹ ý ị AB^ (SIJ) AB ^ IJỵ Do AB è(ABCD)ị (SIJ)^ (ABCD). (SIJ )^(ABCD) ỹ ý ị SH ^ (ABCD) (SIJ)ầ (ABCD)= IJỵ +Goi KlhỡnhchiuvuụnggúccaK lờn (ABCD)khiú KK'//SH Kltrungim SAnờn Kltrung im AH&KK' = SH Tútacú:V K.IBCD = KK'.SIBCD a a SJ = CD = IJ = a ị DSIJ vuụng tiSvỡ:SI +SJ2 = IJ2 Dthy: SI = 2 SI.SJ a a = ị KK '= hthcSI.SJ=SH.IJ ị SH = IJ (IB+ CD).BC 3a2 Tacú IBCD lhỡnhthangvuụngtaiBvCnờnSIBCD = = a Thayvotac VK IBCD = 32 kh on gb +K SH ^ IJ Bi2 Chohỡnhchúp S ABCD cúỏylhỡnhthangvuụngti A v B vi BC lỏynh.Bit rngtam giỏc SAB ltamgiỏcucúcnhvidibng 2a vnmtrong mtphng vuụnggúcvimtỏy, SC =a vkhongcỏcht D timtphng ( SHC) bng 2a (õy H ltrung im AB ).Hóytớnhthtớchkhichúptheo a. Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc S Gii Tgithitsuyra SH ^( ABCD ) v 2a B a C a 2a A a 45 H D SH = a a 2a =a H TheonhlýPythagorastacú a C CH = SC - SH =a 4a C'C Doútamgiỏc HBC vuụngcõnti B v BC =a Gi E = HC ầADththỡtamgiỏc HAE cngvuụngcõnvdoú CE = 2a = d ( D HC ) =d ( D( SHC ) ) suyra DE = 2a ì = 4a ị AD =3a. A a a 2a D B m E ( BC + DA )ì AB =4a (.v.d.t.).Vy 4a3 VS ABCD = ì SH ì S ABCD = (.v.t.t.) 3 Suyra S ABCD = c co 45 uo Bi3 Chohỡnhchúptgiỏcu S.ABCDcúcnhbờnto viỏy mt gúc600 vcnh ỏy bng a. 1) TớnhthtớchkhichúpS.ABCD. 2) QuaAdngmtphng (P)vuụnggúcviSC Tớnhdintớchthitdintobimtphng (P)cthỡnhchúpS.ABCD. Gii. S = M a a = 2 * VS ABCD = SO.SABCD a C = a a = on gb E oc a) *SABCD = a2 * é SBO =600 ị SO= AOtan600 = B I F O A D kh b) *Gis (P)ầSC = M Vỡ (P)^SC v A ẻ(P) nờn AM ^ SC Mtkhỏc,gi EF =(P)ầ (SBD) vi E ẻSBFẻ SD thỡ EF//BD v EF quaI vi I = AM ầ SO (do BD ^SC(P)^ SC nờn BD//(P)). *Tathymtphng (P) ct S.ABCD theothitdinltgiỏc AEMF cútớnhcht AM ^ EF. Doú SAEMF = AM.EF a VAMltrungtuynca DSAC MtkhỏcAOcngltrungtuynca DSAC nờnI ltrng tõmca DSAC EF SI 2 2a *Tacú = = ị EF = BD= BD SO 3 *Tathy DSAC u(vỡgúc éSAC = 600,SA= SC.),m AM ^ SC nờn AM = Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc 1 a 2a a2 ị SAEMF = AM.EF = = 2 3 c a 15 oc BC = AB =2a uur uuur *Tacú IA = -2IH ị HthuctiaicatiaIAv IA =2IH BC = AB =2a 3a a Suyra IA = a,IH = ị AH = IA + IH = 2 a Tacú HC = AC + AH - AC AH cos 450 ị HC = om Bi4.Chohỡnhchúp S.ABCcúỏy ABC ltam giỏc vuụngcõnnh A, AB =a 2.Gi Il trung im uur uuur ca cnh BC. Hỡnh chiu vuụng gúc H0 ca S lờn mt phng (ABC) tha IA = -2IH Gúc gia SC v mt ỏy (ABC) bng 60 Hóy tớnh th tớch chúp S.ABC v khongcỏchttrungimKcaSBnmtphng(SAH). Gii uur uuur *Tacú IA = -2IH ị HthuctiaicatiaIAv IA =2IH Vỡ SH ^ ( ABC ) ị ( SC , ( ABC ) )= éSCH = 600 ị SH = HC.tan 600 = a oc u Tacú HC = AC + AH - AC AH cos 450 ị HC = Vỡ SH ^ ( ABC ) ị ( SC , ( ABC ) )= éSCH = 600 ị SH = HC.tan 600 = ThtớchkhichúpS.ABCDl: VS ABC = S DABC.SH = a 15 a3 15 ( dvtt ) gb ỡ BI ^ AH ị BI ^ ( SAH) ợ BI ^ SH d ( K ,( SAH) ) SK 1 a ị = = ị d ( K , ( SAH ) ) = d ( B,( SAH ) )= BI = 2 d ( B,( SAH ) ) SB on Bi5.Chohỡnhchúp S ABC cúỏyltamgiỏc ABC vuụngti B SA vuụnggúcviỏy, AB =a , SA = BC =2a Trờntiaicatia BA lyim M saocho ã ACM =a (00 < a 0)SAtoviỏy(ABC)mtgúcbng600. ã=300 GltrngtõmtamgiỏcABC.Haimtphng(SGB)v TamgiỏcABCvuụngtiB, ACB kh on VS ABCD = (SGC)cựngvuụnggúcvimtphng(ABC).TớnhthtớchhỡnhchúpS.ABCtheoa. GiiGiKltrungimBC.Tacú SG ^ ( ABC ) éSAG = 600, AG = 3a 9a 3a SG = TrongtamgiỏcABCt AB = x ị AC = x BC = x 3. 9a 243 Tacú AK = AB +BK nờn x = Suyra VS ABC = SG.S ABC = a (vtt) 14 112 Tú AK = Bi9. Cho hỡnh chúp S.ABCD cú ỏy l hỡnh vuụng cnh a, SA vuụng gúc vi mt phng ỏy v SA=a.GiM,NlnltltrungimcacỏccnhSB,SDIlgiaoimcaSCvmtphng (AMN).ChngminhSCvuụnggúcviAIvtớnhthtớchkhichúpMBAI. Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc Gii Chngminh SC ^AI :Tacú N M D A C B SV MAB = a2 ị VMBAI SI IH SI.BC a = ị IH= = SC BC SC 3 a = SVMAB.IH= 36 co I ỡ AM ^ SB ỡ AN ^ SD ị AM ^ SC ị AN ^ SC ị SC ^ (AMN) ị SC ^ AI ợ AM ^ BC ợAN ^ CD K IH // BC ị IH ^(SAB) (vỡ BC ^(SAB) )ị VMBAI = SVMAB.IH 2 SA a a a SI.SC = SA ị SI= = = = 2 SC SA + AC 3a m S c Bi10: ChohỡnhchúpS.ABCcúỏyltamgiỏcvuụngtiA,AB=3,AC=4gúctobicỏc mtbờnvỏybng60o.TớnhthtớchcakhichúpS.ABC Gii. S N M H C K V = S DABC.SH m S DABC = AB AC =6 oc A uo GiHlhỡnhchiuca Slờn(ABC)M,N,Klnltlhỡnhchiuca HlờnhcnhAB,AC,BC.Khiúth tớchVcakhichúpctớnh bicụngthc gb ưTớnhSH. XộtcỏctamgiỏcSHM,SHN, SHKvuụngtiH, cúcỏcgúcSMH,SNH,SKH bng 600 doúHM=HN=HK=>Hltõm ng trũnnitiptamgiỏcABC=> B 2SABC HM = = 1=>SH=HM.tan60 = on AB + BC +CA Vy V = 3.6 =2 3 Bi11.ChohỡnhchúpS.ABCD,ỏyABCDlhỡnhthoi.SA=x(0 BD = a ị SD = BD tan 600 =a Vy VS ABCD = SD.S ABCD = D C G a (vtt) E A )chngminhcBC ^ (SBD),kDH ^ SB=> Cú 1 a = + ị DH = 2 2 DH SD DB )GiEltrungimBC,kGK//DH,KthucHE=>GK ^ (SBC)v a GK EG a = = ị GK = Vyd(G,(SBC)= GK = 6 DH ED B DH ^ (SBC) Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc GiNlimixngcaNquaIthỡNthucAB,tacú: =>N(4ư5)=>PtngthngAB:4x+3y1=0 KhongcỏchtInngthngAB: d= 4.2 + 3.1 - 42 +32 = AC=2.BDnờnAI=2BI,tBI=x,AI=2xtrongtamgiỏcvuụngABIcú: m 1 = + suyrax= suyraBI = d x 4x TútacúBthuc(C): ( x - 2) + ( y - 1)2 =5 co imBlgiaoimcatAB:4x+3y1=0vingtrũntõmIbỏnkớnh Bi15.ChohỡnhchúpS.ABCDcúỏyABCDlhỡnhthoicnhavcúgúc ã ABC =600 ,haimt phng(SAC)v(SBD)cựngvuụnggúcviỏy,gúcgiahaimtphng(SAB)v(ABCD) bng 300.TớnhthtớchkhichúpS.ABCDvkhongcỏchgiahaingthngSA,CDtheoa. a a a2 , OI = ,S ABCD = oc CM = uo c Gii. GiO= AC IBD ,MltrungimABvIltrungimca AM. DotamgiỏcABCltamgiỏcucnhanờn: CM ^ AB,OI ^ AB v Vỡ(SAC)v(SBD)cựngvuụnggúcvi(ABCD)nờn SO ^( ABCD ) kh on gb ã = 300 OI , SI ) = SIO Do AB ^ OI ị AB ^SI Suyra: ộởã ( SAB ) , ( ABCD )ựỷ= (ã XộttamgiỏcvuụngSOItac: SO = OI t an300 = a 3 a = 4 1 a a a3 Suyra: V = S ABCD.SO = = 3 24 GiJ= OI ICD vHlhỡnhchiuvuụnggúccaJtrờnSI a v JH ^( SAB ) Do CD / / AB ịCD / /( SAB ).Suyra: Suyra: IJ = 2OI = d ( SA, CD ) = d ộởCD, ( SAB ) ựỷ = d ộở J ,( SAB )ựỷ= JH XộttamgiỏcvuụngIJHtac: JH = IJ s in300 = Vy d ( SA,CD )= a a = 2 a Bi16.Trongkhụnggian,chotamgiỏcvuụngcõnABCcúcnhhuyn AB=2a.TrờnngthngdiquaAvvuụnggúcvimtphng(ABC)lyimS,saocho mtphng(SBC)tovimtphng(ABC)mtgúc 600 Tớnhdintớchmtcungoitipt dinSABC Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc Gii. Tgithitsuyra DABC vuụngtiCkthpvi d ^(SAC ). Suyra BC ^( SAC ) S ã =600 Doú SCA Do DABC vuụngtiCvAB=2a TrongtamgiỏcvuụngSACtacú A B SA = AC.tan 600 =a m ị AC = BC =a Suyrabỏnkớnhmtcubng co TrongtamgiỏcSABcú: SB = SA2 + AB =a 10 C ã ã Do SCB = SAB =90 nờntdinSABCnitiptrongmtcungkớnhSB. SB a 10 = 2 VySmc= 4p R =10p a (.V.D.T) c LNGTR Bi1.Cholngtrtamgiỏcu ABC.A1B1C1 cúchớncnhubng Tớnhgúcvkhong uo cỏchgiahaingthng AB1 v BC1. Gii.Tớnhgúcvkhongcỏchgiahaingthng AB1 v BC1. Tacúỏylngtrltamgiỏcucnhbng5cỏcmtbờnlhỡnhvuụngcnhbng5 ị AB1 = BC1 =5 2.Dnghỡnhbỡnhhnh gb oc BDB1C1 ị DB1 = BC1 = 2, BD = C1 B1 =5,AD = CD.sin 600 =5 (do DACD vuụngti A vỡ BA = BC = BD) ị a = ( AB1 BC1 ) = ( AB1DB1) ( ) ( 2 ) ( ) + - AB12 + DB12 - AD2 AB1D nhntú AB1D= = = ị ã cosã AB1.DB2 2.5 2.5 on a = ã AB1D cosa = Tathy BC1 / / mp ( AB1 D ) ,AB1 èmp ( AB1D ) tú 3VB1.ABC 3VB.AB1D d ( BC1 , AB1 ) = d ( BC1 , mp ( AB1 D ) ) = d ( B,mp ( AB1D ) )= = dtDAB1D AB1 DB1.sina 25 5. ỡ ùcos a = ( a = ( AB1 BC1) ) = = = ỏps 1 15 ù AB1 AD1sina 2.5 2. ợd ( AB1 , BC1)= 2 kh BB1dtDABC A' Bi2. Cholngtrng ABC A' B 'C'cúth Cỏcmtphng(ABC ' ), ( AB 'C ), ( A'BC)ct O.TớnhthtớchkhitdinO.ABCtheoV. C' B' I Gii.GiI=AC ầ AC,J=AB ầ AB J O A C H M B tớchV. nhauti Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc (BA'C) ầ (ABC')=BIỹ ù (BA'C) ầ (AB'C)=CJý ị Olimcntm ù GoiO=BI ầ CJ ỵ TacỳOltrngtừmtamgicBAC m GiHlhnhchiucaOln(ABC) Do V ABClhnhchiuvunggỳcca V BACtrn(ABC)nnHltrngtừm V ABC OH HM = = A ' B AM 1 ị VOABC = OH SV ABC = A ' B.SVABC = V 9 Bi3.Cholngtrtamgiỏcu ABC A ' B ' C' cúcnhỏylavkhongcỏchtA a nmtphng(ABC)bng Tớnhtheo athtớchkhilngtr ABC A ' B ' C' oc c o GiMltrungimBC.Tacú: Gii.GiMltrungimBC,hAHvuụnggúcviAM BC ^ AMỹ ý ị BC ^ ( AA ' M )ị BC ^ AH BC ^ AA 'ỵ a M AH ^ A ' M ị AH ^ ( A ' BC )ị AH = 1 a Mtkhỏc: = + ị AA'= 2 AH A 'A AM 3a KL: VABC A ' B ' C' = 16 oc u Tacú: kh o ng b Bi4. Cho hỡnh lng tr ABC A1B1C1 cú ỏy l tam giỏc u cnh bng v A1 A = A1B = A1C =5.ChngminhrngtgiỏcBCC1B1 lhỡnhchnhtvtớnhthtớchkhilng tr ABC A1B1C1 Gii.Gi O ltõmcatamgiỏcu ABC ị OA = OB =OC Ngoi ta cú A1 A = A1B = A1C =5 ị A1O l trc ng trũn ngoi tip tam giỏc ABC ị A1O ^ ( ABC )ị AO lhỡnhchiuvuụnggúcca AA1lờn mp ( ABC). M OA ^ BC ị A1A ^BC AA1 / /BB1 ị BB1 ^BC hay hỡnh bỡnh hnh BCC1B1 l hỡnh ch nht. ổ2 3ử Tacú A1O ^ ( ABC )ị A1O ^ CO A1O = CA - CO = - ỗỗ ữữ = ố ứ 2 52 125 = 4 Bi5.Chohỡnhlpphng ABCD.A1B1C1D1 cúdicnhbng a.TrờncỏccnhABvCD Thtớchlngtr:V = dtDABC A1O = lylnltcỏcim M,N saocho BM = CN = x. XỏcnhvớtrớimMsaochokhongcỏch a Gii.Tacú MN / / BC ị MN / / ( A1 BC ) ị d ( MN , A1C ) = d ( MN , ( A1BC ) ) giahaidngthng A1C v MN bng Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc C1 D1 A1 B1 x 2 ã Vỡ A1 B ^ AB1 ị MK ^ A1B v CB ^ ( ABB1 A1)ị CB ^ MK Gi H = A1 B ầAB1 v MK / / HA,K ẻA1B ị MK = ã T D N C ú suy MK ^ ( A1 BC ) ị MK = d ( MN , ( A1 BC ) ) =d ( MN , A1C ) a x a a a ị = ị x = VyMthamón BM = 3 3 Bi6.Cholngtr ABCAÂB ÂC Â cúỏyltamgiỏcABCvuụngcõntiA,BC=2a, AAÂ vuụnggúc vimtphng(ABC).Gúcgia ( ABÂC ) v ( BBÂC ) bng 600.Tớnhthtớchlngtr ABCAÂB ÂC Â GiiTAkAI ^ BC ị IltrungimBC Â Â ) ị AI ^ BÂ C(1) ị AI ^ (BC CB BÂ TIkIM ^ BÂ C (2) M B Nờn MK = T(1)(2) ị BÂ C ^ (IAM) ị BÂ C ^ MA(3) T(2)(3) ị gúcgia(A BÂ C)v( BÂ CB) bnggúcgiaIMvAM= ã AMI =60 (DotamgiỏcAMIvuụngtiI) BÂ M A C I B oc uo TacúAI= BC =a AI a = IM= tan 60 c co m A kh on gb D IMC : D BÂ BC IM IC IM BÂC = BBÂ = ị B I BBÂ BÂC IC a 1 BÂC BBÂ = BÂB + 4a2 BBÂ = BÂC = a 3 2 3BÂB = BÂB +4a BBÂ = a 1 S DABC = AI BC = a.2a =a 2 VABC AÂBÂCÂ = a 2.a =a M C ACB =1200vngthng Bi7.ChohỡnhlngtrngABC.ABCcú AC = a, BC = 2a, ã A 'C tovimtphng ( ABB ' A') gúc 300.Tớnhthtớchkhilngtróchovkhongcỏch giahaingthng A ' B, CC' theoa. Gii Trong(ABC),k CH ^ AB ( H ẻAB ),suyra CH ^( ABB ' A ') nờn AHlhỡnhchiuvuụnggúccaAClờn(ABBA).Doú: ã ã ộở A ' C , ( ABB ' A ') ựỷ= (ã A ' C , A ' H ) = CA ' H = 300 a2 AC.BC s in1200 = 2 2 ã AB = AC + BC - AC.BC cos1200 = a ị AB = a ã S DABC = ã CH = 2.SDABC a 21 = AB Truy cp www.khongbocuoc.com download thờm cỏc ti liu hc khỏc CH 2a 21 Suyra: A 'C = = s in30 a 35 XộttamgiỏcvuụngAACtac: AA ' = A 'C - AC = a3 105 Suyra: V = SDABC AA '= 14 Do CC '/ / AA ' ịCC '/ / ( ABB ' A ').Suyra: a 21 m d ( A ' B, CC ' ) = d ( CC ', ( ABB ' A ') ) = d ( C , ( ABB ' A ') )= CH = co Bi8. ChokhilngtrtamgiỏcABCA1B1C1 cúỏyltamgiỏcucnh2a,imA1 cỏch ubaimA,B,C.CnhbờnA1Atovimtphngỏymtgúc a.Hóytỡm a,bitthtớch B1 A1 B A G uo TacútamgiỏcABCucnh2anờnSABC=a2 MtkhỏcA1A= A1B= A1C ị A1ABCltdinu. C1 I c khilngtrABCA1B1C1bng 3a3. GiGltrngtõmtamgiỏcABC,tacúA1Glngcao. H C 2a 3 oc TrongtamgiỏcABCcúAG= AH= 2a tan a gb Trong tamgiỏcvuụngA1AGcú: é A1AG= a A1G=AG.tan a= VLT=A1G.SABC=2 3a3 ị tan a = ị a =600 Tacú: kh on 3 1 M = a + b + ab + bc + abc = a + b + a.4b + b.4c + a.4b.16c 4 2 a + 4b b + 4c a + 4b + 16c 28( a + b + c) Ê 2a + b + + + = =7 4 12 12 16 Dubngxyrakhivchkhi a = , b = ,c = 7 [...]... a,bitthtớch B1 A1 B A G uo TacútamgiỏcABCucnh2anờnSABC=a2 3 MtkhỏcA1A= A1B= A1C ị A1ABCltdinu. C1 I c khilngtrABCA1B1C1bng 2 3a3. GiGltrngtõmtamgiỏcABC,tacúA1Glngcao. H C 2 3 2a 3 3 oc TrongtamgiỏcABCcúAG= AH= 2a 3 tan a 3 gb Trong tamgiỏcvuụngA1AGcú: é A1AG= a A1G=AG.tan a= VLT=A1G.SABC=2 3a3 ị tan a = 3 ị a =600 Tacú: kh on 3 3 1 1 1 M = 2 a + b + ab + bc + 3 abc = 2 a + b + a.4b + b.4c + 3 a.4b.16c 4... VABC AÂBÂCÂ = a 2.a 2 =a 3 2 M C ACB =1200vngthng Bi7.ChohỡnhlngtrngABC.ABCcú AC = a, BC = 2a, ã A 'C tovimtphng ( ABB ' A') gúc 300.Tớnhthtớchkhilngtróchovkhongcỏch giahaingthng A ' B, CC' theoa. Gii Trong( ABC),k CH ^ AB ( H ẻAB ),suyra CH ^( ABB ' A ') nờn AHlhỡnhchiuvuụnggúccaAClờn(ABBA).Doú: ã ã ộở A ' C , ( ABB ' A ') ựỷ= (ã A ' C , A ' H ) = CA ' H = 300 1 a2 3 AC.BC s in1200 = 2 2 2 2 2 ã AB

Ngày đăng: 27/08/2016, 22:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN