1. Trang chủ
  2. » Luận Văn - Báo Cáo

Về sự tồn tại của nghiệm bài toán cân bằng vectơ

49 308 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 1,11 MB

Nội dung

L (i) Lu uc (ii) Lu is h ct is m ng d n c t qu m t H L IC cg il ic nt tc d ng ng d ih c t ki n th c h ng d c bi Gi ih u th ng d c hi h ng th i c nh ng ki n th n u khoa h c c bi ct om n u ki n t t nh t , chia s t c c hi M tc g ng thi mong nh t h c H Thang Long University Libraty M CL C C S T N T I NGHI M C NG 1.1 t qu b tr 1.2 S t n t i nghi m c i gi thi t gi u 14 1.3 S t n t i nghi m c i gi thi t t u 19 1.4 C ng h p t 23 M H U HI U HI U HENIG C A 27 27 2.2 30 2.3 S t n t i nghi m 34 a t p nghi m 41 K T LU N 46 U THAM KH O 47 M U c nhi bao g m nhi ng h c bi bi ng th c mb ng s t n t i nghi u ki n t nh nghi m, thu Nhi u k t qu v s t n t i nghi m c n c Bianchi, Hadjisavv t qu v s t n t i nghi m h u hi u y u c v thi t u ho c t tl pm ts k t qu v s t n t i nghi m h u hi u, nghi m h u hi u Henig c b a t p nghi m h u hi u Henig c a b th c bi ng c nhi u c s t n t i nghi m c a Lu t qu u v s t n t i nghi m a t p nghi m c c a Bianchi, Hadjisavv Lu m ph n m t lu u tham kh o t n t i nghi m c ng vec t qu c Schaible [3] v s t n t i nghi m h u hi u y u c u ho c t ng vec im u ki n b c Thang Long University Libraty m h u hi u hi u Henig c b ng vec m nghi m h u hi u Henig c vec ng t qu v t qu v t n t i nghi m h u hi t p nghi m h u hi u y u c a b a t p nghi m h u hi ng th c bi t qu Stampacchia a X Gong [7] t qu v s t n t i nghi m h u hi u y u c a u ho c t u ki n b t qu a M Bianchi, N Schaible [3] 1.1 t qu b tr Cho X g gian vec Y gian vec C C sinh x y Do int C Y, int C Y y x C , Y x y y x int C, x y y x C, x x, y F(y, x) x, y F(x, y) > F(y, x) K, F F(x, y) F: K x K K 0, F(y, x) < F x y , x, y K, F(x, y) F(y, x) < f:K Y, Y }, L( ) {x K: f (x) K Y f:K Y U ( ) {x K: f (x) } ong K C L( ) {x K: f (x) - int C} = f 1[( L( ) {x K: f (x) - ( int C )} = f 1[( f:K (t ) Y int C )c ] int C )c ] - x, y K f ( x t ( y x)) , t [0, 1] Ta c C : V Y f:K C- f (x*) Y f ( x) V C, f U x U C1.3 H x* x* X cho K K f: K K CY x K - 10 Thang Long University Libraty T: A L (X, Y) (i) (Tx - Ty, x - y) (ii) Cho f 0, x, y A C*\{0} T - f ((Tx, x - y)) + f ((Ty, y - x)) 0, A C*\{0}, Cho T: A x, y A Cho f , L(X, Y) - hemi (t) := (T(ty + (l - t) x), y - x), t C*\{0} f (t) := f((T(ty + (1- t) x), y - x)), t - [0, 1] x, y [0, 1] i T C*\{0}, T ( f ) ( x0 ) q(x) v A A x0 q( x0 ) Y, A x0 X cho V + C, U( x0 ) 35 A, f [q(x) U( x0 ) V - C, q C A] C- C A CCho f C*\ f q: A x q R A f A A N q x0 C x0 T A q q1 q1, q2 C A N q2 C f q: A A A -q C- C f C*\ R A [3] Cho A C- X X x1, x2 A q(t x1 + (1- t) x2) A, t q: A Y [0, 1], tq( x1 ) + (1- t) q( x2 ) (Fan) f, cho A A0 A0 (x) n { x1, , x n A0 E( xi ) i x0 {E(x): x A0 } A0 cho E( x0 ) 36 Thang Long University Libraty 2A E: A n co { x1, , xn } E( xi ), x1, , xn } i A, X, f co (D C D L(X, Y) f(X, X*)], [ V(A, F) , Vf (A, F) (x, y) = (Tx, y - x) + q(y) - q(x), x, y x , A A f(F(x, y)) = f((Tx, y - x)) + f(q(y)) - f(q(x y E, G: A E(y) = {x A: f((Tx, x - y)) + f(q(x A: f((Ty, y - x)) + f(q(y 2A f(q(y))}, G(y) = {x A f(q(x))} 2.4 [10] A {E(y): y A} = {E(y): y {G(y): y A} A} n 37 E Vf (A, F) A - convexlike, [0, 1], (i) Cho x1, x2 F( x3 , y) (ii) : x3 tF( x1 , y) + (1 - t) F( x2 , y), Cho y1, y2 F(x, y3 ) A; y3 A, tF(x, y1 ) + (1 - t) F(x, y2 ), A , X, y C f A A, - , f(F(x, y)) F(x, x) 0, V(A, F) G: A G(y) = {x A: f(F(x, y)) , 0}, 2A A , y G(y {x : x0 f(F( x , y)) y A I G(y) cho { x x } x0 G(y) I 38 Thang Long University Libraty G(y { G(y): y A T A} n Do A ta i G(yi ) , y1, , yn A n B = { y1, , yn } x i A G(yi ) yi B cho x G( yi ) f(F(x, yi )) < i cho f(F(x, yi )) < - i x f(F(x, y x A, A yj > cho B cho f(F(x, y j )) + < g: A (2.5) Rn g(x) = ( f(F(x, y1 )) - , - f(F(x, y2 )) - , , - f(F(x, yn )) - ), x 39 A 2.5), - g(x) int Rn+ C F(x, y Do f x A (2.6) - t [0, 1], x1, x2 A A x3 g( x3 ) tg( x1 ) + (1 - t) g( x2 ) [8], g(A) + Rn+ Theo g(A) + int Rn+ t1, t2 , , tn n i ti cho n t ti ( ( f ( F ( x, yi ))) x ) A, n t x ti f ( F ( x, yi )) Theo y A (2.7) A cho n F ( x, y) f t x ti f (F ( x, yi )) A C , n f (F ( x, y)) t x ti f ( F ( x, yi )) A (2.8) 40 Thang Long University Libraty (2.7) - (2.8), ta suy x f(F(x, y)) A x = y, f(F(y, y)) - F(y, y) , f(F(y, y)) {G(y): y A} Ta suy x {G(y): y A} f(F(x, y)) , v x Vf (A, F) y A V(A, F) - 41 ng, L (X, Y) - hemi n , q: A [ (X, X*)], q(A) f theo q(x), C C } ,y (X, X*), , {Vf (A, F): (x, y) = (Tx, y - x) + q(y) - A 2A H: C H(f) = Vf (A, F), f Do C Y C 2.3.1, C f C H(f) H(f f C H(f) Khi x1, x2 i = 1, 2, f(F( xi , y)) = f((T xi , y - xi ) + q(y) - q( xi )) E, G: A y A 2A E(y) = {x A: f((Tx, x - y)) + f(q(x)) f(q(y))}, G(y) = {x A: f((Ty, y - x)) + f(q(y)) f(q(x))} x1, x2 Vf (A, F) x1, x2 E ( y) : y A 42 Thang Long University Libraty {E(y): y A} = {G(y): y A} i =1, 2, f((Ty, y - xi )) + f(q(y)) t [0, 1], f(q( xi y C l q f((Ty: y - (t x1 + (1- t) x2 )) + f(q(y)) A f C f(q(t x1 + (1- t) x2 y , t x1 + (1 - t) x2 t x1 + (1 - t) x2 {G(y): y A} = {E(y): y A} H(f), H(f H(f) ta C H Cho ( fn , xn ) graph (H) = {(f, x) ( fn , xn ) ( f0 , x0 ) xn H ( fn ) C C A Vf ( A, F ) , n 43 A: x H(f)}, A A; fn ((Txn , xn y)) Do fn (q( y)) y A fn (q( xn )) y A fn (q( xn )) T fn ((Ty, y xn )) fn C , fn (q( y)) Cho y A Do Ty Ty, y - x0 L(X, Y fn ((Ty, y- xn )) lim fn (q( xn )) n {(Ty, y - xn x0 xn f0 (Ty, y- x0 )) fn fn (q( y)) (2.9) f0 f0 (q( y)) f0 (q( x0 )) f0 ((Ty, y- x0 )) 2.10) f0 ((Ty, y x0 )) Do T v f0 ((Tx0 , x0 y)) f0 (q( x0 )) f0 (q( y)) y A D f0 (q( x0 )) f0 (q( y)) q (2.10) f0 C C- f0 (q( x0 )) y f0 (q( y)) A b y A, 44 Thang Long University Libraty y f0[(Tx0 , y- x0 ) q(y) q( x0 )] = f0 ( F ( x0 , y)) A x0 Vf ( A, F ) H ( f0 ) C Theo H(f) {H(f): f C } = {Vf (A, F): f [11], C } (X, X*) VH , w (A, F (X, X*) Theo x F(x, A) + C A VH(A, F) = {Vf(A, F): f C } Vf (A, F C H: C H(f) = Vf(A, F), f 2A C H(f) [11], VH(A, F C Do (X, X*) int C 45 Vw (A, F) = {Vf (A, F): f C*\{0}} ng theo (X, X* Vw(A, F f C f C*\{0} K T LU N Lu t qu v s t n t i nghi a t p nghi m c - n t qu v t n t i nghi m h u hi u y u c Bianchi Hadjisavvas - m: a Schaible [3]; t qu v t n t i nghi m h u hi u c a Gong [7]; - t qu v h u hi u y u c a b a t p nghi m h u hi ng th c bi p nghi m Stampacchia c a Gong [7] S t n t i nghi m p nghi m c c nhi tri n 46 Thang Long University Libraty [1] Aubin, J P., and Ekeland, I (1984), Applied Nonlinear Analysis, John Wiley, New York, NY [2] Bianchi, M., and Schaible, S (1996), Generalized monotone bifunctions and equilibrium problems, Journal of Optimization Theory and Applications, vol 90, pp 31-43 [3] Bianchi, M., Hadjisavvas, N., and Schaible, S (1997), Vector Equilibrium Problems with Generalized Monotone Bifunctions, Journal of Optimization Theory and Applications, vol 92, pp 527 542 [4] Borwein, J M., and Zhuang, D (1993), Superefficiency in vector optimization, Transactions of the American Mathematical Society, vol 338, pp 105 122 [5] Chen, G Y (1992), Existence of solutions for a vector variational inequality: An extension of the Hartman Stampacchia theorem, Journal of Optimization Theory and Applications, vol 74, pp 445 456 [6] F a n , K (1961), A Generalization of Tychonoff's fixed - point theorem, Mathematische Annalen, vol 142, pp 305 47 310 [7] Gong, X H (2001), Efficiency and Henig efficiency for vector equilibrium problems, J Optim Theory Appl., vol 108, 139 154 [8] Jahn, J (1986), Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt am Main, Germany [9] Jeyakumar, V., Oettli, W., and Natividad, M (1993), A Solvability theorem for a class of quasiconvex mappings with applications to Optimization, Journal of Mathematical Analysis and Applications, vol 179, pp 537 546 [10] Lassonde, M (1983), On the use of KKM multifunctions in fixed point theory and related topics, Journal of Mathematical Analysis and Applications, vol 97, pp 151 201 [11] Warburton, A R (1983), Quasiconcave vector maximization: connectedness of the sets of Pareto optimal and weak Pareto optimal Alternatives, Journal of Optimization Theory and Applications, vol 40, pp 537 557 48 Thang Long University Libraty 49

Ngày đăng: 03/07/2016, 00:51

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w