1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giải thuật di truyền giải bài toán tối ưu đa mục tiêu

79 519 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 79
Dung lượng 1,14 MB

Nội dung

B ộ• GIÁO DỤC VÀ ĐÀO TẠO • • TRƯỜNG ĐẠI • HỌC • s PHẠM • HÀ NỘI • NGUYỄN THỊ NHUNG GIẢI THUÂT DI TRUYỀN GIẢI BÀI TOÁN TÓI u ĐA MUC TIÊU LUẬN VĂN THẠC SĨ TOÁN HỌC • • • Hà Nôi - 2015 B ộ• GIÁO DỤC VÀ ĐÀO TẠO • • TRƯỜNG ĐẠI • HỌC • s PHẠM • HÀ NỘI • NGUYỄN THỊ NHUNG GIẢI THUẬT DI TRUYỀN GIẢI BÀI TOÁN TÓI u ĐA MUC TIÊU Chuyên ngành: Toán ứng dụng Mã số : 60 46 01 12 LUẬN VĂN THẠC Sĩ TOÁN HỌC • • • Người hướng dẫn khoa học: TS.Phạm Thanh Hà Hà Nội - 2015 LỜI CẢM ƠN Trước vào phần cụ thể khóa luận tốt nghiệp này, muốn gửi lời cảm ơn chân thành đến TS Phạm Thanh Hà- người đưa đề tài, tận tình giúp đỡ hướng dẫn suốt thời gian thực khóa luận Tôi xin cảm ơn phòng quản lý đào tạo sau đại học trường Đại học sư phạm Hà Nội tạo điều kiện thuận lợi cho suốt thời gian học tập thực khóa luận Đồng thời xin gửi lời cảm ơn chân thành đến gia đình, bạn bè, đồng nghiệp đôn đốc, tạo điều kiện, hỗ trợ mặt tinh thần cho trình thực luận văn Cuối xin cảm ơn bạn cao học khóa 17 chuyên ngành toán ứng dụng trường Đại học sư phạm Hà Nội quan tâm, chia sẻ đóng góp ý kiến để hoàn thành luận văn Tôi xin chân thành cảm ơn! Hà Nội tháng 10 năm 2015 Học viền Nguyễn Thị Nhung LỜI CAM ĐOAN Tôi xin cam đoan số liệu kết nghiên cứu luận văn trung thực không trùng lặp với đề tài khác Tôi xin cam đoan giúp đỡ cho việc thực luận văn cảm ơn thông tin trích dẫn luận văn rõ nguồn gốc Hà Nội tháng 10 năm 2015 Học viên Nguyễn Thị Nhung MUC LUC • • Trang LỜI CẢM ƠN LỜI CAM ĐOAN MỤC LỤC DANH MỤC CÁC KÝ HIỆU DANH MỤC CÁC HÌNH MỞ Đ Ầ U CHƯƠNG CÁC KIẾN THỨC c BẢN VỀ TỐI u ĐA MỤC TIÊU 1.1 Quan hệ thứ tự không gian 1.2 Các định nghĩa 1.3.Bài toán tối ưu đa mục tiê u 10 1.4 Các khái niệm u 11 1.4.1 T ốiưupareto 11 1.4.2 Nghiệm tối ưu Pareto chặt yếu 12 1.4.3 Nghiệm tối ưu Pareto thường điểm hữu hiệu thường 14 1.5 Một số phương pháp giải toán tối ưu đa mục tiêu 17 1.5.1 Phương pháp buộc 17 1.5.2 Phương pháp tổng trọng số 19 1.5.3 Phương pháp tổng trọng số chấp nhận toán tối ưu mục tiêu 20 5.4 Phương pháp tổng trọng số chấp nhận cho toán tối ưu đa mục tiêu 24 CHƯƠNG CÁC KHÁI NIỆM c BẢN VỀ GIẢI THUẬT DI TRUYỀN 34 2.1 Các khái niệm giải thuật di truyền 34 2.1.1 Giới thiệu chung .34 2.1.2 Giải thuật di truyền đơn giản 35 2.2 Thuật toán di truyền 39 2.3 Giới thiệu thuật toán di truyền (Genetic Algorithm) 46 CHƯƠNG GIẢI THUẬT DI TRUYỀN GIẢI BÀI TOÁN TỐI u ĐA MỤC TIÊU 48 3.1 Một số thuật toán di truyền giải toán tối ưu đa mục tiêu .48 3.1.1 Thuật toán MOGA ( Multi-Objective Genetic Algorithm) 48 3.1.2 Thuật toán SPEA 50 3.1.3 Thuật toán SPEA2 51 3.1.4 Thuật toán NSGA (Thuật toán di truyền xếp nghiệm không trội ) 54 3.1.5 Thuật toán NSGA-II 55 3.2 Khoảng cách quy tụ - Crowding Distance 57 3.3 So sánh ưu điểm khuyết điểm thuật toán di truyền đa mục tiêu 60 3.4 Giải toán với thuật toán SPEA2: .61 3.5 Các giải thuật tiến hóa cho toán tối ưu đa mục tiêu 64 KẾT LUẬN 69 TÀI LIỆU THAM KHẢO 70 DANH MUC CÁC KÝ HIÊU • • / ưĩ (*)>/2 (*)) : Vector hàm mục tiêu X = (x ,, , xn) y e c to r q Uy ế t đ ị n h rii : Số lượng đoạn càn mịn hóa thứ i li : Chiều dài đoạn thứ i larg Chiều dài trung bình tất đoạn bước c : Hệ số nhân Pi, p2 : Điểm cuối đoạn ỗi : Khoảng cách vuông góc từ điểm biên đến nón R+Q Axi, Ax2 ; Kích thước lưới f(x,p) : Hàm mục tiêu vector X véc tơ tham số cố định p p : Vector tham số cố định g(x, p) : Vector ràng buộc bất đẳng thức YỚi tham số p h(x,p) : Vector ràng buộc đẳng thức với tham số p p, w : Vector trọng số fi : Hàm mục tiêu chuẩn hóa f Điểm utopia f Điểm nadir /* Điểm anchor thứ i Ne Số lượng lớn mà tập E chứa tập nghiệm không trội Np Số lượng cá thể quần thể/ kích thước tập p k : Tham số mật độ tính toán: k =f E nu : Số nghiệm trội nghiệm u s : Tập nghiệm trội nghiệm u P0,Pt ; Quàn thể ban đầu hệ thứ t Qt : Quần thể tạo thành từ cá thể pt Fj ; Biên chứa nghiệm không trội Với j= 1, , R Hi =Ri=E(ri) : Kỳ vọng ĩị ƠI P h n g sai Tị Oij : Hiệp phương sai Tị Ij fxe R : Vector giá trị kỳ vọng li reR ™ : Ma trận hiệp phương sai Oịj DANH MUC CÁC HÌNH Hình 1.1 Mô toán tối ưu đa mục tiêu 10 Hình 1.2a: Minh họa cho i, iv,v Hình 1.2b: Minh họa cho 11,111 12 Hình 1.3 Tuyến tính hóa đoạn biên Pareto 21 Hình 1.4 Xác định khoảng cách õi ỗ2 dựa 5j 23 Hình 1.5 Biên Pareto tìm phương pháp tổng trọng số 26 Hình 1.6 Biên Pareto tìm phương pháp tổng trọngsố chấp nhận hai mục tiêu 27 Hình 1.7: Minh họa phương pháp Adaptive Weight Sum 28 Hình 1.8: Trong trường hợp chiều, biên Pareto mặt mảnh biên Pareto tuyến tính hóa đoạn thẳng nối4 đỉnh 30 Hình 1.9 Minh họa chiều mô tả ràng buộc đẳng thức bổ sung cho trình minh hóa biên Pareto .32 Hình 2.1 Sơ đồ lai ghép điểm cắt .36 Hình 3.1: Minh họa bán kính ơshar° 49 Hình 3.2: Minh họa thuật toán MOGA 50 Hình 3.3: Minh họa tính toán độ thích nghi cá th ể 52 Hình 3.4.Minh họa cách xóa bỏ nghiệm có ơk nhỏ 52 Hình 3.5 Sơ đồ khối thuật toán SPEA2 53 Hình 3.6: Minh họa biên chứa nghiệm không trội thứ hạng tương ứng 54 Hình 3.7 Sơ đồ khối thể thuật toán NSGA-II .57 Hình 3.8 Minh họa khoảng cách quy tụ quanh nghiệm i 57 Hình 3.9 Minh họa biên thứ hạng 58 Hình 3.10 Minh họa quy tụ nghiệm quanh nghiệm .58 Hình 3.11 Minh họa khoảng cách quy tụ quanh nghiệm X 59 Hình 3.12 Kết chạy thuật toán YỚi số lượng hệ tối đa 50 số lượng cá thể hệ 50 62 Hình 3.13 Kết thực thuật toán với thông số đầu vào: số lượng cá thể hệ là: 50 số lượng hệ tối đa .63 Hình 3.14 Kết thực thuật toán với thông số đàu vào: số lượng cá thể hệ là: 100 số lượng hệ tối đa 100 63 Hình 3.15 Kết thực thuật toán với thông số đầu vào: số lượng cá thể hệ là: 200 số lượng hệ tối đa 200 64 55 Fj: Biên chứa nghiệm không trội thứ j, j= l, R Q: Tập lưu trữ nghiệm không trội qua hệ Thuật toán NSGA: Bước 1: VueP Gán nu=0 ; s u=0 Bước 2: VueP Nếu u trội V Su=Suu{v} Ngược lại V trội u Gán: nu=nu+l Bước 3: VueP Nếu: nu=0 Giữ u biên chứa nghiệm trội thứ Gánj=l Bước 4: Trong Fj^0 khởi tạo Q=0 VueFj V VeSu nv=nv-l Nếu nv=0 tìiì Q=Qu {y} Gánj=j+1 Fj=Q 3.1.5 Thuăt ■ toán NSGA-II Các kí hiệu thuật toán thuật toán NSGA - II cải tiến từ thuật toán NSGA Các biến: Pt - Quàn thể cha Qt - Quàn thể tạo thành từ cá thể Pt Fj - Biên chứa nghiệm không trội, với j= l, ,R N - Là số lượng cá thể quần thể Pt Bước 1: Tạo ngẫu nhiên quần thể cha PO với I PO I = N Gán t = 56 Bước 2: Tạo ngẫu nhiên quần thể cha PO với I PO I = N Gánt = Áp dụng toán tử chéo hóa đột biến cá thể quàn thể PO để tạo quần thể QO YỚi |QO| = N Bước Nếu điều kiện dừng thỏa mãn dừng xuất cá thể quần thể Pt Bước 4: Đặt Rt = Pt u Qt Bước 5: Dùng thuật toán xếp nghiệm không trội - NSGA để nhận diện biên chứa nghiệm không trội Fi, F2, Fk Rt Bước 6: Với i = 1, , k ta thực bước sau: i Tính khoảng cách “quy tụ” nghiệm Fi ii Tạo quần thể Pt+1 sau: Trường hợp 1: Nếu |Pt+l I + |Fi| < N thiết lập Pt+1 = Pt u Fi Trường hợp 2: Nếu |Pt+l I + |Fi I > N bổ sung N - |Pt+l I nghiệm mà có cá thể khác quy tụ từ quần thể Fi vào Pt+1 Bước 7: Sử dụng toán tử lựa chọn vòng nhị phân dựa khoảng cách quy tụ quanh nghiệm X để lựa chọn cá thể cha từ quần thể Pt+1 Áp dụng toán tử chéo hóa đột biến quần thể Pt+1 để tạo quần thể Qt+1 với IQt+11 = N Bước 8: Gán: 14—t + Quay lại “bước 3” 57 Kliởi tạ qiiantlifr bail đâu có N cá tliê Káldl giã cáí hítttt Itiục tiẻu Tim hạii£ quail the rO Lưa chon Chéo hũá V Xu at qilim die cnâi rirng dũng; Đột biến J Yes Điéukiệu íliiME thô a ? Gá thề ưu việt -V Cliọn N cã rhẻ Đánh giá hàm mục tiêu ' Hợp qiiàutliê cliíi, Xêp Liạng quân die mói tíio tỉlịuiỉl U51V Hình 3.7 Sơ đồ khếi thể thuật toán NSGA-n 3.2 Khoảng cách quy tụ - Crowding Distance Định nghĩa 3.1: Khoảng cách quy tụ cá thể hay nghiệm Xnằm biên chiều dài trung bình cạnh hình hộp(cuboid) h fi Hình 3.8 Minh họa khoảng cách quy tụ quanh nghỉệm i Tỉnh chất: Cho nghiệm Xvà y, nghiệm X thích nghiệm y Rs < Ry (Rs = Ry ds > dy ) 58 Trong đỏ: Rs, Ry biên thứ X thứ y ds dy khoảng cách quy tụ nghiệm X y tương ứng Giữa nghiệm không trội nghiệm có thứ hạn thấp nghiệm ưu tiên lựa chọn nghiệm lại Hình 3.9 Minh họa biên thứ hạng Khi nghiệm không ưội có thứ hạng nghĩa nghiệm nằm biên, nghiệm nằm ttong vùng cỏ quy tụ thấp ưu tiên lựa chọn nghiệm lại Nghiệm B thi gọi quy tụ nghiệm A © -I > x) • Cho 1= |Fj I ; x[i,k] nghiệm thứ i ik Gán dk(x[l,k]) = dk(x[l,k]) = 00 • ứngơ với i = 2, - ta tính: dk* 1(*j ,)ì = ỊẢ r n s x _ /*min Jk ~ Jk Bước 3: Tính tổng khoảng cách quy tạ tương ứng với hàm mục tiêu: d (x) =^ Jdk (x) Hình 3.11 Minh họa khoảng cách quỵ tụ quanh nghiệm X 60 3.3 So sánh ưu điểm khuyết điểm thuật toán di truyền đa mục tiêu a) Một số đặc điểm thuật toán MOGA; SPEA2 NSGA - II: E-Tập lưu Thuật Gán độ Ctf chế đa Cá thể trữ cá thể Ưu điểm toán thích nghỉ dạng ưu việt ưu việt Dựa MOGA thứ hạng Pareto Không có Không Khuyết điểm - Thuật toán Luôn hội tụ Đây thuật biên Pareto toán mở chậm có liện rộng Không quan đến tham thuật toán di số oshare bán truyền kính tính từ mục tiêu nghiệm X đến nghiệm Tính toán Dựa mật độ dựa manh nghiệm lận cận gần nghiệm SPEA2 trội nghiệm X Có Khoảng cách quy tụ cá thể quanh cá thể Có xếp thứ hạng NSGAthông qua II việc xếp - Cải thiện từ thuật toán SPEA2 Mất nhiều thời -Các Có gian cho việc nghiệm cực tính toán mật độ biên nghiệm độ bảo toàn thích nghi (nếu có) -Sô lượng - Khoảng cách nghiệm đạt quy tụ cuối cá thể quanh cá Không thể X có hiệu không thay Lực không đổi nhiều gian b) Ưu điểm thuật toán SPEA2 so với thuật toán SPEA: Thuật toán SPEA2 thuật toán cải tiến từ thuật toán SPEA Thuật toán hội tụ phân phối nghiệm biên Pareto tốt thuật toán SPEA hầu hết toán tối ưu nhiều mục tiêu 61 c) u điểm thuật toán SPEA2 so YỚi thuật toán NSGA - II: -Trong thuật toán NSGA - II tính ổn định kết độ mịn biên Pareto xấp xỉ phụ thuộc vào điều kiện dừng - tức số lượng hệ tối đa cần đạt đến -Trong thuật toán SPEA2 NSGA - II thiết lập thông số đầu vào: số lượng cá thể hệ số lượng hệ tối đa cần đạt đến tăng biên Pareto xấp xỉ mịn -Khi số lượng hàm mục tiêu - tức số chiều không gian hàm mục tiêu lớn thuật toán SPEA2 phân phối nghiệm biên Pareto xấp xỉ tốt NSGA - II Theo phân tích ưu khuyết điểm hải thuật toán, luận văn chọn thuật toán SPEA2 để giải số toán cụ thể, qua thấy hiệu thuật toán SPEA2 việc tìm biên Pareto xấp xỉ cách tốt 3.4 Giải toán với thuât toán SPEA2: Xét toán tối ưu mục tiêu sau: (Pl) MÙI {/,(*),/,(*)} T ro n g đó: f l (x) = \Jl + X , f 2(x) = x2 - x + Các thông số đầu vào thuật toán SPEA2 Matlab sau: Kích thước Sô lượng Kích thước etarec etamut v_rec_p y_mut_p 20 20 0,9 20 20 0,9 quần thể hệ Tour 20 20 50 50 Trong toán tử di truyền sử dụng là: • Toán tử Chéo hóa: Simulated Binary Crossover - SBX (Chéo hoá điếm) • Toán tử đột biến: Polynomial Mutation 62 Giai bai toan su dung S P E A u Hình 3.12 Kết chạy thuật toán với số lưựng hệ tối đa 50 số lirựng cá thể mẫỉ hệ 50 Tỉnh toán sỗ: Giải toán tối ưu hai hàm mục tiêu sau thuật toán SPEA2: f\ (-*1 ĩ %2 ) = ^'*'1 —2>XịX2+ 4x2+ x2 Thiết lập thông số đầu vào cho thuật toán sau: Kích thước Số lượng Kích thước etarec etamut v_rec_p v_mut_p 20 20 0,9 100 20 20 0,9 200 20 20 0,9 quần thể hệ Tour 50 50 100 200 Trong toán tử di truyền là: • Toán tử chéo hỏa: Simulated Binary Crossover - SBX Tương đương với toán tử chéo hóa điểm 63 Toán tử đột biến: Polynomial Mutation Giai bai toan su dung E P E A Hình 3.13 Kết thực thuật toán với thông số đầu vào ỉ số lưựng cá thể mẫỉ hệ là: 50 số lượng hệ tốỉ đa 50 Giai bai toan su dung S P E A < Biên Pareto sấp ĩd i 2.5 ỉ o o % 1.5 0,5 %, □ -0.5 Hình 3.14 Kết thực thuật toán với thông số đầu vào ỉ số lượng cá thể mãỉ hệ làỉ 100 số lượng hệ tốỉ đa 100 64 Giai bai toan S J dung S P E A Hình 3.15 Kết thực thuật toán với thông số đầu vào: số lượng cá thể mẫỉ hệ là: 200 số lượng hệ tếỉ đa 200 3.5 Các giải thuật tiến hóa cho toán tối ưu đa mục tiêu Giải thuật di truyền hay giải thuật tiến hóa họ giải thuật tìm kiếm dựa quần thể Giải thuật tiến hóa đặc biệt phù hợp để giải toán tối ưu đa mục tiêu Các giải thuật tiến hóa truyền thống biến cải để tìm kiếm tập Pareto-được-biết-tốt-nhất toán tối ưu đa mục tiêu lượt chạy Do đỏ, giải thuật tiến hóa cách tiếp cận metaheuristỉc ưa chuộng đế gỉảỉ toán tốỉ ưu hóa đa mục tiêu Trong số phương pháp tối ưu hóa đa mục tiêu dựa vào meta-heuristic, 70% phương pháp dựa vào giải thuật di truyền ([23]) Giải thuật MOEA biết Vector Evaluated Genetic Algorithm (VEGA) đề nghị Schaffer, 1985 [9] Sau đỏ, nhiều MOEA khác phát triển bao gồm Multi-objective Genetic Algorithm (MOGA) Fonseca Fleming, năm 1993 [10], Niched Pareto Genetic Algorithm (NPGA) Hom cộng sự, năm 1994 [11], Weight-Based 65 Genetic Algorithm (WBGA) Hajela Lin, năm 1992 [12], Random Weight Genetic Algorithm (RWGA) Murata Ishibuchi, năm 1995 [13], Nondominated Sorting Genetic Algorithm (NSGA) Srinivas Deb, năm 1994 [14], Strength Pareto Evolutionary Algorithm (SPEA) Zitzler Thiele năm 1999 [15], SPEA cải tiến (SPEA2) Zitzler cộng năm 2001 [16], Pareto-Archived Evolution Strategy (PAES) Knowles Come năm 2000 [17], Pareto Enveloped-based Selection Algorithm (PESA) Come cộng năm 2000 [18], Region-based Selection in Evolutionary Multiobjective Optimization (PESA-II) Come cộng năm 2001 [19], Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) Deb cộng năm 2002 [20], Rank-Density Based Genetic Algorithm (RDGA) Lu Yen năm 2003 [21] Dynamic MultiObjective Evolutionary Algorithm (DMOEA) Yen Lu năm 2003 [22] Điểm khác biệt giải thuật MOEA nằm cách gán độ thích nghi (fitness assignment), cách trì quàn thể ưu tú (elitism) tiếp cận nhằm đa dạng hóa quần thể ([23]) Một phương pháp hay dùng để gán độ thích nghi xếp hạng Pareto (Pareto ranking) mô tả sau • xếp hạng Pareto Phương pháp bao gồm việc gán thứ hạng cho cá thể không bị vượt trội quần thể đưa chúng vòng xem xét; tìm tập cá thể không bị vượt trội để gán thứ hạng tiếp tục Một phương pháp hay dùng để đa dạng hóa quần thể chia sẻ độ thích nghỉ (fitness sharing) Phương pháp chia sẻ độ thích nghi khuyến khích tìm kiếm vùng chưa thăm dò Pareto ữont cách giảm bớt độ thích nghi lời giải vùng cá thể mật độ cao Kỹ thuật chia sẻ độ thích nghi YỚi sổ đếm vùng lân cận (niche count) mô tả sau 66 • Chia sẻ độ thích nghi dựa vào số đếm vùng lân cận Phương pháp đòi hỏi phải giảm bớt độ thích nghi fi cá thể ỉ cách chia cho số đếm vùng lân cận nti tính cho cá thể Tức độ thích nghi dùng chung tính fi/ntj số đếm vùng lân cận m, giá trị ước lượng vùng lân cận cá thể ỉ đông đúc Nó tính cho cá thể quần thể hành theo công thức: rriị = Z/ePọp Sh[d[i, ỹ]], với d[i,j] khoảng cách Euclid hai cá thể i j Sh[đ\ hàm chia sẻ (sharing function) Sh[d] hàm d[i,j] cho Sh[0] = Sh[d > Gshare] = Thông thường Sh[đ\ = l- d /ơ share với d < ơshare Sh[d\ = với d > ơshare- Ở ơshare bán kính vùng lân cận, người dùng xác định để ước lượng độ cách biệt tối thiểu mong muốn hai lời giải cuối Các cá thể có khoảng cách phạm vi ơshare bị giảm bớt độ thích nghi YÌ chúng vùng lân cận Một phương pháp đa dạng hóa quần thể khác xác định thông số ơshare dùng khoảng cách mật độ (crowding distance) mà mô tả sơ lược sau • Phương pháp dùng khoảng cách mật độ Phương pháp đòi hỏi tính khoảng cách mật độ giá trị ước lượng mật độ lời giải bao quanh điểm xét i quần thể Đại lượng giá trị trung bình hai điểm lấy hai bên điểm xét ỉ dọc theo trục mục tiêu Đại lượng dùng chế chọn cha mẹ sau: lấy ngẫu nhiên hai lời giải X y; chúng có mức không vượt trội (non-domination rank) lời giải có khoảng cách mật độ cao chọn; ngược lại lời giải có mức không vượt trội thấp chọn Ngoài ra, việc trì quần thể ưu tú vấn đề quan trọng tối ưu hóa đa mục tiêu giải thuật MOEA Trong ngữ cảnh giải thuật MOEA, tất lời giải không bị vượt trội phát MOEA 67 coi lời giải ưu tú Có hai chiến lược thường dùng để thực việc trì quần thể ưu tú: (i) lưu trữ lời giải ưu tú quần thể (ii) lưu trữ lời giải ưu tú danh sách thứ cấp bên quần thể đưa chúng trở lại quàn thể Đặc điểm số giải thuật MOEA tiêu biểu mô tả sơ lược sau: • VEGA Gán độ thích nghỉ: quần thể phân thành K tiểu quần thể (K số mục tiêu) Các cá thể tiểu quần thể đánh giá theo mục tiêu riêng Cơ chế đa dạng hóa: Cách trì quần thể ưu tú: • MOGA Gán độ thích nghỉ: dùng cách xếp hạng Pareto (Pareto ranking) Cơ chế đa dạng hóa: chia sẻ độ thích nghi (fitness sharing) dùng số đếm vùng lân cận Cách trì quần thể ưu tú: • NSGA Gán độ thích nghỉ', xếp hạng dựa vào thứ tự mức độ không vượt trội (non-domination sorting) Cơ chế đa dạng hóa: chia sẻ độ thích nghi (fitness sharing) dùng số đếm vùng lân cận Cách trì quần thể ưu tú: •NSGA-II Gán độ thích nghi: xếp hạng dựa vào thứ tự mức độ không vượt trội (non-domination sorting) 68 Cơ chế đa dạng hóa: phương pháp dùng khoảng cách mật độ (crowding distance) Cách trì quần thể ưu tủ: có • SPEA Gán độ thích nghi: xếp hạng dựa vào kho lưu (external archive) lời giải không bị vượt trội Cơ chế đa dạng hóa: gom cụm (clustering) để tỉa bớt quần thể (external population) Cách trì quần thể ưu tủ', có • SPEA-2 Gán độ thích nghỉ: dựa vào sức mạnh cá thể vượt trội (dominator) Cơ chế đa dạng hóa: dùng mật độ dựa vào láng giềng gàn thứ k Cách trì quần thể ưu tú: có Độc giả có quan tâm đến giải thuật MOEA tiêu biểu khác, tham khảo tổng quan MOEA đầy đủ Konak cộng sự, 2006 ([23]) 69 KẾT LUÃN Trên toàn nội dung khóa luận Trong khóa luận trình bày số văn đề sau: Trình bày kiến thức sở, số phương pháp giải toán tối ưu đa mục tiêu Trình bày số khái niệm giải thuật di truyền, chế hoạt động giải thuật di truyền, thuật toán di truyền Luận văn giới thiệu số thuật toán di truyền để giải toán tối ưu đa mục tiêu là: MOGA, SPEA2, NSGA II Ưu điểm phương pháp xấp xỉ cách gần xác biên Pareto thực từ cá thể hay nghiệm khởi tạo ngẫu nhiên ban đàu Từ chọn nghiệm tối ưu tốt cho toán tối ưu nhiều mục tiêu, chí toán không lồi Đồng thời minh hoạ YÍ dụ giải toán với thuật toán SPEA2 chương trình Matlab Đe tài nghiên cứu phạm vi nhỏ thời gian có hạn nên không tránh khỏi hạn chế, thiếu sót, kính mong bảo thầy cô, bạn đọc để vấn đề nêu khóa luận đầy đủ hoàn thiện đồng thời rút cho số kinh nghiệm việc nghiên cứu khoa học [...]... tiềm tàng của giải thuật tiến hóa Luận văn sẽ tập trung nghiên cứu xây dựng giải thuật tiến hóa để giải quyết bài toán tối ưu đa mục tiêu 2 Mục đích nghiên cứu Nghiên cứu bài toán tối ưu đa mục tiêu và một số phương pháp giải bài toán tối ưu đa mục tiêu Nghiên cứu giải thuật tiến hóa trong đó có giải thuật di truyền Nghiên cứu xây dựng giải thuật di truyền trong giải bài toán tối ưu đa mục tiêu Cài đặt... toán tối ưu đa mục tiêu Cài đặt chương trình giải quyết một bài toán ứng dụng tối ưu đa mục tiêu 3 Đối tượng và phạm vỉ nghiên cứu Nghiên cứu bài toán tối ưu đa mục tiêu và một số phương pháp giải bài toán tối ưu đa mục tiêu Nghiên cứu giải thuật tiến hóa trong đó có giải thuật di truyền Nghiên cứu xây dựng giải thuật di truyền trong giải bài toán tối ưu đa mục tiêu 4 Phương pháp nghiên cứu - Nghiên cứu... kết hợp với cài đặt thực nghiệm 3 5 Ý nghĩa khoa học của đề tài Hệ thống các kiến thức về tối ưu đa mục tiêu và giải thuật di truyền, nghiên cứu ứng dụng giải thuật di truyền giải bài toán tối ưu hóa đa mục tiêu 4 CHƯƠNG 1 CÁC KIẾN THỨC C ơ BẢN VỀ TỐI ư u ĐA MỤC TIÊU 1.1 Quan hệ thứ tự trong không gian Trong Toán học, quan hệ hai ngôi là sự kết hợp hai phần tử bất kỳ trong cùng một tập hợp hoặc YỚi... tổng đến 1 và có Ai >0, i j* i = 1 .k với X* là nghiệm tối ưu của bài toán (*) 1.5 Một số các phương pháp giải bài toán tối ưu đa mục tiêu 1.5.1 Phương pháp rằng buộc a) Mô hình bài toán: Cho một bài toán đa mục tiêu YỚi p mục tiêu ^ Ị ấ ( Ạ / 2W / , w | 18 Sao cho X e R" Trong đó: X = ) e l" là không gian quyết định Ta chuyển bài toán trên thành bài toán rằng buộc là: Maxf ) Sao cho x =(xỉ, ,x )eR" f... = X 10 1.3.Bàỉ toán tối ưu đa muc tiêu Có rất nhiều lớp khác nhau để biểu di n cho bài toán tối ưu đa mục tiêu Trong phạm vi luận văn này ta sẽ biểu di n bài toán tối ưu đa mục tiêu dưới dạng sau: Minựi[x), ,fk (x)} (i^), sao cho- x M với Đặt: 7 = = i =1 là các hàm mục tiêu (*), ,/* (x))eR*|... cho bài toán hai mục tiêu - xác định một cách hình thức không gian nghiệm tối ưu Pareto, tìm nghiệm trên tập không lồi và bỏ qua các nghiệm tối ưu non-Pareto Tuy nhiên phương pháp này chỉ có thể giải bài toán tối ưu với 2 hàm mục tiêu Tổng trọng số chấp nhận được là phương pháp mở rộng của phương pháp tổng trọng số chấp nhận được hai mục tiêu để giải bài toán tối ưu với nhiều hàm mục tiêu Trong phần... đề tài Bài toán tối ưu hóa đa mục tiêu đặt ra yêu cầu tìm phương án tốt nhất để đạt được cực tiểu, cực đại nhiều mục tiêu cùng lúc, nếu có một phương án như vậy thì ta gọi là phương án lý tưởng Tuy nhiên trong bài toán tối ưu nhiều mục tiêu thường thì các mục tiêu xung đột với nhau nên việc cố gắng làm tăng giá trị tiểu, cực đại của mục tiêu này kéo theo giảm (tăng) cực đại, cực tiểu của mục tiêu khác,... được đối với bài toán tối ưu 2 muc tiêu a) Khái niệm cơ sở Trong phần trình bày này chúng ta giới thiệu một phương pháp xác định hiệu quả biên Pareto đối YỚi bài toán tối ưu hai mục tiêu và đây cũng chính là cơ sở giúp ta nghiên cứu phương pháp tổng trọng số chấp nhận được đối với bài toán tối ưu đa mục tiêu Phần trình bày trước phương pháp tổng trọng số tìm kiếm từng nghiệm một - tối ưu Pareto bằng... ,h-\,h,h + l, ,p Trong đó mục tiêu thứ h được tùy ý lấy max Công thức này là bài toán đơn mục tiêu Do đó có thể giải được bằng phương pháp đơn hình cho bài toán quy hoạch tuyến tính, b) Thuật toán: Bước 1: Xây dựng một thỏa hiệp - Giải lần lượt p bài toán đơn mục tiêu với các ràng buộc tương ứng Gọi nghiệm ứng với mục tiêu thứ k là: x k =(xf, ,**) với Sau đó tính giá trị của p hàm mục tiêu này đạt được tại... cầu các mục tiêu trong một mức độ chấp nhận được và phương án như thế gọi là phương án thỏa hiệp các mục tiêu Trên thực tế có rất nhiều bài toán tối ưu đa mục tiêu, đặc biệt trong kinh tế, kỹ thuật như các bài toán về thiết kế, lập kế hoạch Thuật toán tiến hóa hình thành dựa trên quan niệm cho rằng: quá trình tiến hóa tự nhiên là quá trình hoàn hảo nhất, hợp lý nhất, và nó tự mang tính tối ưu Quan

Ngày đăng: 21/06/2016, 08:43

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w