1. Trang chủ
  2. » Đề thi

de thi thu thpt quoc gia nam 2016 mon toan truong thpt yen the lan 3

5 223 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 447,87 KB

Nội dung

TRƯỜNG THPT YÊN THẾ (Đề thi gồm 01 trang) ĐỀ THI THỬ ĐẠI HỌC LẦN III LỚP 12 NĂM HỌC 2015 – 2016 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề Câu (2,0 điểm) Cho hàm số y  x  x (1) a) Khảo sát biến thiên vẽ đồ thị (C) hàm số (1) b) Tìm toạ độ giao điểm đồ thị (C) với đường thẳng d có phương trình y  Câu (1,0 điểm) Giải phương trình sau: a) 4x  2x  b) log22 3x   3log8 (3x 1)   Câu (1,0 điểm) Tính nguyên hàm: I    x  sin x  cos xdx Câu (1,0 điểm) Trong không gian cho hình vuông ABCD có cạnh a Tính diện tích xung quanh hình trụ tròn xoay quay đường gấp khúc BCDA quanh trục đường thẳng chứa cạnh AB thể tích khối trụ Câu (1,0 điểm) a) Giải phương trình 3sin x  cos2 x  cos x  sin x  sin x  b) Cho đa giác 12 đỉnh A1 A2 A12 nội tiếp đường tròn  O  Chọn ngẫu nhiên đỉnh đa giác Tính xác suất để đỉnh chọn tạo thành tam giác cạnh cạnh đa giác cho Câu (1,0 điểm) Cho hình lăng trụ tam giác ABC.A’B’C’ có cạnh bên a, đáy A’B’C’ tam giác cạnh a, hình chiếu vuông góc đỉnh B lên (A’B’C’) trung điểm H cạnh A’B’ Gọi E trung điểm cạnh AC Tính thể tích khối tứ diện EHB’C’và khoảng cách từ điểm C đến mặt phẳng (ABB’A’) Câu (1,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy , cho hình vuông ABCD có đỉnh C  4; 3 M điểm nằm cạnh AB ( M không trùng với A B) Gọi E, F hình chiếu vuông góc A, C lên DM I  2;3 giao điểm CE BF Tìm toạ độ đỉnh lại hình vuông ABCD biết đỉnh B nằm đường thẳng d có phương trình x  y  10    x  y  x  1  x  y  y Câu (1,0 điểm) Giải hệ phương trình:  tập số thực x  x  20  171 y  40 y  y      Câu (1,0 điểm) Cho x, y, z số thực không âm thoả mãn điều kiện: x  y  z  Tìm giá trị nhỏ biểu thức sau: P 16 x y y z z x 2 2 2  xy  yz  zx x yz - Hết Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN III LỚP 12 NĂM HỌC 2015 – 2016 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề TRƯỜNG THPT YÊN THẾ I Phần chung Câu 1.a TXĐ: D  R (1 điểm) lim y   Điểm 0.25 0.25 Nội dung x x  y '  4x3  4x; y '     x  1 Lập bảng biến thiên, nêu tính đồng biến, nghịch biến, cực đại cực tiểu Vẽ đồ thị: 0.25 0.25 1.b (1 điểm) Xét phương trình hoành độ giao điểm d (C) là: x  x  t  Đặt t  x , (t  0) , có phương trình t  2t    t  1 ( L) Với t  Tìm x   KL: Có hai giao điểm Câu (1 điểm) Câu (1 điểm)    3;3  3;3  I    x  sin x  cos xdx   x cos xdx   sin x cos xdx Vậy I  sin x  x sin x  cos x  c 0.25 0.25 0.25 0.25 0.25  x cos xdx   xd   sin x   x sin x   sin xdx   x sin x  cos x  c sin x  c2 0.25 0.25 2x   x 1 Ta có x  x     x   3 Vậy phương trình cho có nghiệm x  1 ĐK: x   Ta có log 22 3x   3log8 (3x  1)    log 22 3 x  1  log (3 x  1)   x  3 x   log (3x  1)  (Tm) KL    6  x   21 log (3 x  1)    3 x   64  2  sin x cos xdx   sin xd  sin x   0.25 0.25 0.25 0.25 0.25 Câu (1 điểm) Câu 5a (0,5 điểm) Ta có chiều cao độ dài đường sinh hình trụ a, bán kính đáy a Diện tích xung quanh 2 a Diện tích đáy  a 2  a3 Thể tích khối trụ là:  a a  3 KL Biến đổi phương trình thành    3sin2x  cos2x   3sin x  cos x       cos 2x    sin  x    3 6      sin  x           2sin2  x    sin  x        6 6    sin  x    6   Câu 5b (0,5 điểm)   k ; x  0.25 0.25 0.25   k2 x    k2 , k  Z Số phần tử không gian mẫu n    C123  220 Gọi A biến cố: “3 đỉnh tạo hành tam giác cạnh cạnh H” Số tam giác có hai cạnh cạnh H là: 12 Số tam giác có cạnh cạnh H 12.8 Suy n( A) C123  12  12.8  112 112 28 Vậy P( A)  220 55 Tìm nghiệm x  0.25 0.25 0.25 0.25 0.25 0.25 Câu (1 điểm) BE //( A' B' C ' ) nên d(E,(A’B’C’) = BH Tam giác BHB’vuông H nên a BH = BB '2  B' H  3  S A' B 'C '  A' B'.B' C '.sin 60  a  S HB'C '  a 1 a a a3  VEHB 'C '  BH S HB 'C '   3 16 3VC ABB ' A ' d (C , ( ABB ' A '))  ; S ABB ' A ' VC ABB ' A '  VABC A ' B 'C '  VC A' B ' C '  3a a a   8 0.25 0.25 SABB'A'  AH A ' B '  d (C , ( ABB ' A '))  a a2 a  2 3VC ABB ' A ' S ABB ' A ' 0.25 a3 a  24  a 3 0.25 Câu7 (1 điểm) DN DF (1)  DC DE DF ME Tam giác DFC đồng dạng với tam giác MEA nên (2)  DC MA AD MA Lại có tam giác DEA đồng dạng với AEM nên (3)  DE AE DF ME MA MA Từ (2) (3) suy (4)    DE AE AD AB DN MA Từ (1) (4) suy   DN  MA Do MBCN hình chữ DC AB Qua F kẻ FN song song với EC, cắt DC N Khi ta có nhật Mà tứ giác MBCF tứ giác nội tiếp nên năm điểm M, B, C, N ,F nằm đường tròn Suy góc BFN 900 suy FN vuông góc bới BF Mà Fn song song với EC nên EC  BF    b  10  Giả sử B  b; Từ IB.IC   B  0;5    Phương trình BC: x  y   Giả sử A  x; y  0.25 0.25  AB  BC Từ  suy A 8;1 A  8;9  AB  BC A  8;9 nhận thấy A I khác phía với BC nên loại 0.25 A 8;1 nhận thấy A I nằm phía với BC nên thoả mãn   Từ AD  BC suy D  4; 7  Vậy A 8;1 , B  0;5 , D  4; 7  Câu (1 điểm)   x  y  x  1  x  y  y Xét    x  x  20  171y  40  y  1 y  Ta có (1) (2) x    ĐK:  y    x  y  x  1  0.25 (1)  x  y  x  1  y  x  y   x  y  xy  y x  y  x  1  y x y 0 x y    1 y 0 y x   x  y   x  y   x  y  x  1  y 1 y Vì >0 với x, y thoả mãn điều kiện  x y x  y  x  1  y 0.25 Thế y  x vào phương trình (2) ta 0.25 x3  6x2  20  171x  40  x  1 5x 1     x  8  x  22 x  5  20  x  1 x   x       2   x  8  x  1  x    20  x  1 x   x      x   x    x  8 x   x  27 x  12   x   5x     Giải x  11  29 suy y  11  29 thoả mãn 0.25 Vậy hệ cho có nghiêm 11  29;11  29  Câu (1 điểm) x   y  z   x4  y  z  x4  y  z Ta có x y  y z  z x  2 Lại có x  x  x  3x ; y  y  y  y ; z  z  z  3z suy 0.25  x  y  z xy  yz  zx  0.25 2 2 2 2 x4  y  z   x2  y  z    x  y  z     x  y  z  Đo P   x2  y  z  x  y  z    2  x  y  z  1 16  2 x  y  z x  y  z 1 2 16 t 1  Đặt t  x  y  z, t   3;3 Ta có P  f  t   2t t 1 1 1 f ' t        0 3 2t  t  1 28 f t  nghịch biến  3;3 Do P  f  t   f  3  Đẳng thức xảy x  y  z  KL 0.25 0.25

Ngày đăng: 29/05/2016, 20:24

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w