Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 42 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
42
Dung lượng
1,85 MB
Nội dung
http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC MÔN TOÁN www.facebook.com/dethithu.net http://dethithu.net TUYỂN TẬP HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG HAY VÀ ĐẶC SẮC (phiên 1) Giáo viên : Nguyễn Minh Tiến *Truy cập http://dethithu.net ngày để tải đề thi thử THPT Quốc Gia ( Đại Học ) môn TOÁN – ANH – VĂN – LÝ – HÓA – SINH nhất,nhanh từ trường THPT trung tâm luyện thi đại học nước.Chúng cập nhật đề thi thử ngày nên bạn yên,luôn có đề thi thử để bạn tham khảo *Tham gia nhóm : ÔN THI ĐH TOÁN – ANH trn Facebook đ cng hi đáp, hc : http://facebook.com/groups/onthidhtoananhvan *Like Fanpage : Đ Thi Th THPT Quc Gia – Ti Liu Ôn Thi đ cp nht nhiu hn qua Facebook http://facebook.com/dethithu.net Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Đề 01 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A (1; 5), điểm B nằm đường thẳng (d1 ) : 2x + y + = chân đường cao hạ đỉnh B xuống đường thẳng AC nằm đường thẳng (d2 ) : 2x + y − = Biết điểm M (3; 0) trung điểm cạnh BC Tìm tọa độ đỉnh B C tam giác Lời giải tham khảo : ne t Gọi điểm B (a; −2a − 1) ∈ (d1 ) Điểm H (b; − 2b) ∈ (d2 ) Ta có M trung điểm BC ⇒ C (6 − a; 2a + 1) −→ −→ AH = (b − 1; − 2b) HC = (6 − a − b; 2a + 2b − 7) −→ −→ AH HC phương ⇒ u −→ −→ Ta có H ∈ AC nên AH HC phương (1) it b−1 − 2b = ⇔ a = 11 − 6b 6−a−b 2a + 2b − −→ −→ H chân đường cao hạ từ B xuống AC ⇒ AH⊥BH ⇔ AH.BH = −→ −→ −→ BH = (b − a; 2a − 2b + 9) ⇒ AH.BH = ⇔ (b − 1) (b − a) + (3 − 2b) (2a − 2b + 9) = (2) t ⇔ 5b2 − 5ab − 25ab + 7a + 27 = d e Thay (1) vào (2) ta 5b2 − 5b (11 − 6b) − 25b + (11 − 6a) + 27 = b=2 ⇔ 35b − 122b + 104 = ⇔ 52 b= 35 w Thay ngược lại ta có điểm B C cần tìm 45 , đáy lớn CD nằm đường thẳng (d) : x − 3y − = Biết hai đường chéo AC BD vuông góc với cắt điểm I (2; 3) Viết phương trình đường thẳng BC biết điểm C có hoành độ dương w w Đề 02 : Trong hệ tọa độ Oxy hình thang cân ABCD có diện tích Lời giải tham khảo : ABCD hình thang cân ⇒ tam giác ICD vuông cân I Ta có CD = 2d (I; CD) = √ √ |2 − 3.3 − 3| √ = 10 ⇒ IC = 20 10 Lấy C (3a + 3; a) ∈ (d) ⇒ IC = (3a + 1)2 + (a − 3)2 = 20 ⇔ a = ±1 ⇒ C (6; 1) −→ Phương trình BD qua điểm I nhận IC làm vtpt ⇒ BD : 2x − y − = D giao điểm BD CD ⇒ D (0; −1) Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! √ Đặt IA = IB = x ⇒ SIAB = x2 ; SIAD = x = SIBC ; SICD = 10 √ x = (tm) √ 45 ⇒ SABCD = x2 + 2x + 10 = ⇔ √ 2 x = −5 (loai) −→ −→ DI = ⇒ DI = 2IB IB (∗) u ⇒ ne t HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Gọi B (b; 2b − 1) ∈ BD từ (∗) ⇒ B (3; 5) Phương trình đường thẳng BC qua B C ⇒ BC : 4x + 3y − 27 = it Bài toán giải xong w w w Lời giải tham khảo : d e t Đề 03 (k2pi Lần 15 - 2014) : Trong hệ tọa độ Oxy cho hình vuông ABCD có phương trình đường thẳng AD (d) : 3x − 4y − = Gọi E điểm nằm bên hình vuông ABCD cho tam giác EBC cân có BEC = 150o Viết phương trình đường thẳng AB biết điểm E (2; −4) Tam giác BEC cân có BEC = 150o ⇒ tam giác BEC cân E Gọi H hình chiếu E lên AD ⇒ H trung điểm AD HE = d (E; AD) = Đặt cạnh hình vuông AB = x x Tam giác BEC cân E có BEC = 150o ⇒ EBC = 15o Gọi I trung điểm BC ⇒ BI = ; EI = x−3 Tam giác BIE vuông I có góc EBI = 15o ⇒ tan 15o = Tổng hợp toán đặc sắc EI 2x − = BI x Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG ⇒2− √ 3= √ 2x − ⇔x=2 x Phương trình đường thẳng EH qua điểm E vuông góc với AD ⇒ EH : 4x + 3y + = Đường thẳng AB // EH ⇒ AB có dạng (d) : 4x + 3y + α = √ √ |α − 4| = BI = ⇔ α = ± 5 √ Phương trình đường thẳng AB (d) : 4x + 3y + ± = Ta có d (E, AB) = ne t Bài toán giải xong u Đề 04 : Trong hệ trục tọa độ Oxy cho tam giác ABC biết đường cao kẻ từ A, trung tuyến kẻ từ B phân giác kẻ từ C có phương trình (d1 ) : 3x − 4y + 27 = 0; (d2 ) : 4x + 5y − = 0; (d3 ) : x + 2y − = Xác định tâm bán kính đường tròn ngoại tiếp tam giác ABC .d e t it Lời giải tham khảo : → = (3; −4) Ta có AH⊥BC ⇒ BC có vtcp − u w → = (a; b) vtcp đường thẳng AC Ta có CD phân giác góc C Gọi − u w →, − → − → − → ⇒ cos (− u u4 ) = cos (u3 , u5 ) − → = (2; −1) u w b=0 |2a − b| 10 ⇒√ √ = √ √ ⇔ 25 a2 + b2 b=− a → = (3; −4) loại trùng với u − → Với b = − a ⇒ chọn − u → = (1; 0) Với b = ⇒ − u −→ Điểm A ∈ (d1 ) ⇒ A (−1 + 4a; + 3a) C ∈ (d3 ) ⇒ C (5 − 2c; c) ⇒ AC = (6 − 2c − 4a; c − 3a − 6) → → − Ta có − u AC phương ⇒ c − 3a − = M trung điểm AC ⇒ M (1) 4a + − 2c 3a + c + ; Trung điểm M thuộc (d2 ) 2 Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG ⇒ 4a + − 2c 3a + c + + − = ⇔ 31a − 3a + 40 = 2 (2) Từ (1) (2) ⇒ a = 1; c = ⇒ A (−5; 3) ; C (−1; 3) Phương trình đường thẳng BC qua C vuông góc với AH ⇒ BC : 4x + 3y − = B giao điểm BM BC ⇒ B (2; −1) ne t Bài toán cở : Biết tọa độ đỉnh √ tam giác tìm tọa độ tâm bán kính đường tròn ngoại tiếp tam 13 65 giác Tâm I −3; − R = 8 u Đề 05 : Trong hệ trục tọa độ Oxy cho tam giác ABC cân A có phương trình đường thẳng chứa cạnh AB BC (d1 ) : 7x − y + 17 = 0; (d2 ) : x − 3y − = Viết phương trình đường cao xuất phát từ đỉnh C tam giác ABC biết điểm M (2; −1) nằm đường thẳng AC Lời giải tham khảo : → = (a; b) vtpt đường thẳng AC Gọi − n it → = (7; −1), BC có vtpt − → = (1; −3) Đường thẳng AB có vtpt − n n d e t 10 |a − 3b| →, − → − → − → √ =√ √ Tam giác ABC cân A ⇒ cos (− n n2 ) = cos (n2 , n3 ) ⇒ √ 50 10 10 a2 + b2 a=b ⇔ a2 + 6ab − 7b2 = ⇔ a = −7b → = (7; −1) loại phương với − → Với a = −7b chọn − n n → = (1; 1) ⇒ đường thẳng AC : x + y − = Với a = b chọn − n w Tọa độ C giao điểm BC AC ⇒ C (3; −2) w Phương trình đường cao xuất phát từ C (d) : x + 7y + 11 = w Đề 06 : Trong hệ trục tọa độ Oxy cho tam giác ABC có phương trình đường cao đường phân giác xuất phát từ đỉnh A (d1 ) : x − 2y = 0; (d2 ) : x − y + = Biết điểm 180 M (1; 0) nằm cạnh AB diện tích tam giác ABC Tìm tọa độ đỉnh tam giác ABC Lời giải tham khảo : Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG A giao điểm (d1 ) (d2 ) ⇒ tọa độ điểm A (−2; −1) Qua M kẻ đường thẳng ⊥(d2 ) cắt (d2 ) I AC N MN qua M ⊥(d2 ) ⇒ (M N ) : x + y − = I giao điểm MN (d2 ) ⇒ I (0; 1) I trung điểm MN ⇒ N (−1; 2) Điểm B ∈ AB ⇒ B (3a + 1; a), điểm C ∈ AC ⇒ C (b; 3b + 5) −→ −→ −→ −→ Ta có BC⊥AH ⇔ AH⊥BC ⇔ AH.BC = −→ −→ AH = (2; 1) ; BC = (b − 3a − 1; 3b + − a) (1) u ⇒ (b − 3a − 1) + (3b + − a) = ⇔ 5b − 7a + = ne t Phương trình đường thẳng (AB) : x − 3y − = (AC) : 3x − y + = (2) it |8b + 14| 180 Ta có SABC = d (C, AB) AB = √ (3a + 3)2 + (a + 1)2 = 10 a= Từ (1) (2) ⇒ thay ngược lại ta có điểm A, B, C 22 a=− t Bài toán giải xong w d e Đề 07 : Trong hệ trục tọa độ Oxy cho tam giác ABC vuông A có AC = 2AB, phương trình đường thẳng chứa cạnh AB có phương trình (d) : 2x − y + = 0, điểm G 0; trọng tâm tam giác ABC Tìm tọa độ đỉnh tam giác ABC biết đỉnh B có hoành độ bé −2 w w Lời giải tham khảo : Gọi M trung điểm AC ⇒ AM = M C = AB ⇒ ∆BAM vuông cân A ⇒ M BA = 45o Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG → vtpt đường thẳng (d) ⇒ − → − → Gọi − n √ √ n1 = (2; −1) n2 = (a; b) vtpt đường thẳng BG |2a − b| →, − → ⇒ cos (− n ⇒√ √ = n2 ) = 2 2 a + b a = 3b ⇔ 3a2 − 8ab − 3b2 = ⇔ a=− b b → = (1; −3) ⇒ đường thẳng BG qua G có vtpt − → ⇒ BG : x − 3y + = chọn − n n 2 B giao điểm AB BG ⇒ B (−4; −1) ( thỏa mãn ) u Với a = − ne t → = (3; 1) ⇒ đường thẳng BG qua G có vtpt − → ⇒ BG : 9x + y − = Với a = 3b chọn − n n 2 x=− loại hoành độ điểm B nhỏ −2 B giao điểm AB BG ⇒ 13 y= −→ −−→ M trung điểm AC ⇒ M (3a − 1; a) ∈ BG ta có BG = BM ⇒ M (2; 1) it Phương trình đường thẳng AC qua điểm M vuông góc với AB ⇒ AC : x + 2y − = Tọa độ điểm A giao điểm AC AB ⇒ A (−2; 3) ⇒ C (6; −1) t Bài toán giải xong w d e Đề 08 ( k2pi Lần 14 - 2014) : Trong hệ trục tọa độ Oxy cho tam giác ABC có điểm B ; Đường tròn nội tiếp tam giác ABC tiếp xúc với cạnh BC, CA AB D, E F Biết điểm D (3; 1) phương trình đường thẳng EF có phương trình (d) : y − = Tìm tọa độ đỉnh A biết đỉnh A có tung độ không âm w w Lời giải tham khảo : Phương trình đường thẳng BC qua điểm B D ⇒ BC : y − = ⇒ BC//EF Do tam giác ABC cân A D trung điểm BC Phương trình đường thẳng AD qua D vuông góc với BC ⇒ AD : x − = Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Điểm E (a; 3) ∈ EF ta có BE = BD ⇒ a− 25 + 22 = ⇔ a− 2 a=2 = ⇔ a = −1 a = ⇒ phương trình AB qua điểm B E ⇒ AB : 4x − 3y + = A giao điểm AB AD ⇒ A 3; 13 a = −1 ⇒ phương trình AB qua điểm B E ⇒ AB : 4x + 3y − = Vậy điểm A 3; ( loại) ne t A giao điểm AB AD ⇒ A 3; − 13 u Đề 09 : Trong hệ trục tọa độ Oxy cho hình chữ nhật ABCD có AD = 2AB điểm A (1; 5), phương trình đường chéo BD 3x + 4y − 13 = Tìm tọa độ đỉnh lại hình chữ nhật biết B có hoành độ âm .d e t it Lời giải tham khảo : w √ Xét tam giác ABD vuông A có BD2 = AB + AD2 = 5AB ⇒ BD = AB w Phương trình đường chéo BD có w ⇒ cos ABD = |3a + 4b| √ =√ 2 5 a + b Với a = − AB =√ BD → = (3; 4) Gọi → − vtpt − n n = (a; b) vtpt đường thẳng AB 11 a=− b ⇔ 4a2 + 24ab + 11b2 = ⇔ a=− b ⇒ cos ABD = 11 − b chọn → n = (11; −2) ⇒ đường thẳng AB có phương trình 11x − 2y − = Tọa độ điểm B giao điểm AB BD ⇒ B 14 ; 5 loại B có hoành độ âm − Với a = − b chọn → n = (1; −2) ⇒ đường thẳng AB có phương trình x − 2y + = Tọa độ điểm B giao điểm AB BD ⇒ B (−1; 4) ( thỏa mãn ) Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Phương trình đường thẳng AD qua điểm A vuông góc với AB ⇒ AD : 2x + y − = Tọa độ điểm D giao điểm AD BD ⇒ D (3; 1) Trung điểm I BD có tọa độ I 1; ⇒ C (1; 0) Vậy B (−1; 4) ; D (3; 1) ; C (1; 0) Bài toán giải xong u ne t Đề 10 : Trong hệ trục tọa độ Oxy cho hình thoi ABCD có phương trình đường chéo BD √ (d) : x − y = Đường thẳng AB qua điểm P 1; , đường thẳng CD qua điểm √ Q −2; −2 Tìm tọa độ đỉnh hình thoi biết độ dài AB = AC điểm B có hoành độ lớn .d e t it Lời giải tham khảo : Ta có AB = AC ⇒ tam giác ABC ⇒ ABC = 60o ⇒ ABD = 30o w w w → = (1; −1) Giả sử → − Đường thẳng BD có vtpt − n n = (a; b) vtpt AB √ √ |a − b| →, → − ⇒ cos (− n = ⇔ a2 + 4ab + b2 = ⇔ a = −2 ± b n) = √ √ 2 a2 + b2 √ √ − − Với a = −2 − b chọn → n = −2 − 3; đường thẳng AB qua điểm P có vtpt → n ⇒ √ AB : + x − y − = Tọa độ điểm B giao điểm AB BD ⇒ B 2 √ ; √ 1+ 1+ loại xB > √ √ − − Với a = −2 + b chọn → n = −2 + 3; đường thẳng AB qua điểm P có vtpt → n ⇒ √ √ AB : − x − y − + = Tọa độ điểm B giao điểm AB BD ⇒ B (2; 2) thỏa mãn √ √ Ta có CD // AB CD qua điểm Q ⇒ CD : − x − y + − = Tọa độ điểm D giao điểm BD CD ⇒ D (−4; −4) ⇒ tọa độ tâm k hình thoi trung điểm BD ⇒ K (−1; −1) Tổng hợp toán đặc sắc Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Phương trình đường chéo AC qua điểm K vuông góc với BD ⇒ AC : x + y + = Tọa độ điểm A giao điểm AB AC ⇒ A ( ) Tọa độ điểm C giao điểm CD AC ⇒ C ( ) Bài toán giải xong Lời giải tham khảo : ⇒ a+5 b+2 ; 2 ∈ (d2 ) u Giả sử điểm B (a; b) Ta có trung điểm AB M ne t Đề 11 : Trong hệ trục tọa độ Oxy cho tam giác ABC có A (5; 2)phương trình đường trung trực cạnh BC trung tuyến xuất phát từ đỉnh C (d1 ) : 2x+y−5 = 0; (d2 ) : x+y−6 = 0.Tìm tọa độ đỉnh B, C tam giác ABC a+5 b+2 + − = ⇔ a + b − = ⇔ b = − a ⇒ B (a; − a) 2 Lấy điểm C (c; − c) ∈ (d2 ) a + c 13 − a − c ; 2 it (d1 ) trung trực BC ⇒ trung điểm BC N ∈ (d1 ) 13 − a − c −5=0⇔a+c+3=0 (1) −→ → −→ (d1 ) trung trực BC ⇒ BC⊥(d1 ) ⇒ BC⊥− ud1 ta có − u→ d1 = (1; −2) ; BC = (c − a; a − − c) d e t ⇒a+c+ (2) w ⇒ c − a − (a − − c) = ⇔ 3c − 3a + = c + a = −3 a=− Từ (1) (2) ta có ⇔ 3c − 3a = −2 c = − 11 ⇒ tọa độ điểm B C w Bài toán giải xong w Đề 12 : Trong hệ trục tọa độ Oxy cho tam giác ABC có A (−1; −3), trực tâm H (1; −1) tâm đường tròn ngoại tiếp tam giác I (2; −2) Xác định tọa độ đỉnh B, C tam giác ABC Lời giải tham khảo : Gọi D điểm đối xứng với A qua I ⇒ AD đường kính đường tròn tâm I I trung điểm AD ⇒ D (5; −1) AD đường kính đường tròn tâm I ⇒ CD⊥AC, H trực tâm ⇒ BH⊥AC ⇒ CD//BH Tương tự ta có CH//BD ⇒ BHCD hình bình hành ⇒ BC DH cắt trung điểm đường Tổng hợp toán đặc sắc 10 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG √ √ AK Ta có AK = AM = ⇒ = AM Lấy điểm M (m; − 2m) Ta có −→ −−→ AK = ⇒ AK = AM ⇒ M (3; −3) AM 5 Giả sử điểm B (a; b) với a > ABCD hình vuông nên AB ⊥ BM ⇒ (a − 1) (a − 3) + (b − 1) (b + 3) = ⇔ a2 − 4a + b2 + 2b = AB = ⇒ (a − 1)2 + (b − 1)2 = 16 ⇔ a2 − 2a + b2 − 2b = 14 (1) (2) ne t Từ (1) (2) ⇒ B (1; −3) M trung điểm BC ⇒ C (5; −3) Phương trình đường thẳng AD qua A vuông góc với AB ⇒ AD : y = Phương trình đường thẳng CD qua C vuông góc với BC ⇒ CD : x = u D giao điểm CD AD ⇒ D (5; 1) Bài toán giải xong it Đề 34 : Trong mặt phẳng với hệ tọa độ Oxy cho hình thoi ABCD có đường chéo AC nằm đường thẳng (d) : x + y − = Điểm E (9; 4) nằm đường thẳng chứa cạnh AB, điểm √ F (−2; −5) nằm đường thẳng chứa cạnh AD, AC = 2 Xác định tọa độ đỉnh hình thoi biết điểm C có hoành độ âm w w w d e t Lời giải tham khảo : Qua E kẻ đường thẳng vuông góc với đường chéo AC cắt AC M cắt AD N Phương trình đường thẳng EN qua E vuông góc với AC ⇒ EN : x − y − = AC cắt EN điểm M ⇒ M (3; −2) M trung điểm EN ⇒ N (−3; −8) Phương trình đường thẳng AD qua F N ⇒ AD : 3x − y + = A giao điểm AC AD ⇒ A (0; 1) Lấy điểm C (c; − c) ∈ AC ⇒ AC = c2 + c2 = ⇒ c = ±2 ⇒ C (−2; 3) Tổng hợp toán đặc sắc 28 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Gọi I tâm hình thoi ⇒ I trung điểm AC ⇒ I (−1; 2) Phương trình đường chéo BD qua điểm I vuông góc với AC ⇒ BD : x − y + = D giao điểm AD BD ⇒ D (1; 4) I trung điểm BD ⇒ B (−3; 0) Bài toán giải xong ne t Đề 35 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có điểm C (5; 1), trung tuyến AM, điểm B thuộc đường thẳng (d) : x + y + = Điểm N (0; 1) trung điểm AM, điểm D (−1; −7) không nằm đường thẳng AM khác phía so với đường thẳng BC đồng thời khoảng cách từ A D tới đường thẳng BC Xác định tọa độ điểm A B .d e t it u Lời giải tham khảo : − Giả sử → n = (a; b) vtpt đường thẳng BC ⇒ BC : ax + by − 5a − b = w w |−6a − 8b| |5a| Ta có d (A, BC) = d (D, BC) = 2d (N, BC) ⇒ √ =√ 2 a +b a2 + b2 a=− b 2 ⇒ 16a − 24ab − 16b = ⇒ a = 2b w Với a = 2b ⇒ BC : 2x + y − 11 = ( loại N D phía với BC) Với a = − b ⇒ BC : x − 2y − = ( thỏa mãn ) B giao điểm đường thẳng BC (d) ⇒ B (−3; −3) M trung điểm BC ⇒ M (1; −1) N trung điểm AM ⇒ A (1; 3) Bài toán giải xong Tổng hợp toán đặc sắc 29 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Đề 36 : Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD có A (−2; 6), đỉnh B nằm đường thẳng (d) : x − 2y + = Trên hai cạnh BC CD lấy hai điểm M N cho BM 14 = CN Xác định tọa độ đỉnh hình vuông biết AM BN cắt điểm I ; 5 it u ne t Lời giải tham khảo : Ta có ∆ABM = ∆BCN ⇒ BM A = BN C ⇒ BM A + CBN = 90o ⇒ BN ⊥ AM Phương trình đường thẳng AI qua A I ⇒ AI : 4x + 3y − 10 = t Phương trình đường thẳng BN qua I vuông góc với AI ⇒ BI : 3x − 4y + 10 = d e B giao điểm đường thẳng (d) BI ⇒ B (2; 4) Phương trình đường thẳng BC qua B vuông góc với AB ⇒ BC : 2x − y = M giao điểm BC AI ⇒ M (1; 2) w √ √ Ta có AB = 5, BM = ⇒ BM = BC ⇒ M trung điểm BC w ⇒ tọa độ điểm C (0; 0) Giả sử H tâm hình vuông ⇒ H trung điểm AC ⇒ H (−1; 3) w H trung điểm BD ⇒ D (−4; 2) Bài toán giải xong Đề 37 : Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD Gọi E trung điểm 11 cạnh AD, điểm H ;− hình chiếu B lên CE M ;− trung điểm BH 5 5 Xác định tọa độ đỉnh hình vuông ABCD biết đỉnh A có hoành độ âm Lời giải tham khảo : Tổng hợp toán đặc sắc 30 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG ne t www.dethithu.net Gọi G trung điểm BC ⇒ GM đường trung bình tam giác BCH ⇒ GM // CE u ABCD hình vuông có E, G trung điểm AD BC ⇒ AG // CE Qua G có hai đường thẳng song song với CE A, G, M thẳng hàng hay AM ⊥ BH ⇒ phương trình đường thẳng AM : 2x + y = 0, phương trình đường thẳng CE : 2x + y − = it M trung điểm BH ⇒ B (−1; −2) BM ED = = ⇒ AM = 2BM AM CD √ √ Có BM = Tam giác ABM vuông M có AM = 2BM = ⇒ AB = 5 d e t Hai tam giác ABM CED đồng dạng ⇒ Lấy điểm A (a; −2a) ∈ AM ⇒ AB = (a + 1) + (2 − 2a) = 16 ⇔ 5a2 − 6a − 11 = ⇔ a = −1 a= 11 ⇒ A (−1; 2) ⇒ phương trình đường thẳng AD qua A vuông góc với AB ⇒ AD : y = w E giao điểm AD CE ⇒ E (1; 2), E trung điểm AD ⇒ D (3; 2) w Phương trình đường thẳng BC qua B song song với AD ⇒ BC : y = −2 C giao điểm CE BC ⇒ C (3; −2) w Bài toán giải xong Đề 38 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có đỉnh A (−3; 4), đường phân giác góc A có phương trình (d) : x + y − = tâm đường tròn ngoại tiếp I (1; 7) Viết phương trình cạnh BC, biết diện tích tam giác ABC gập bốn lần diện tích tam giác IBC Lời giải tham khảo : Ta có IA = ⇒ phương trình đường tròn ngoại tiếp tam giác ABC có dạng (C) : (x − 1)2 + (y − 7)2 = 25 Phương trình phân giác góc A cắt đường tròn điểm thứ D ⇒ D (−2; 3) Tổng hợp toán đặc sắc 31 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG ne t www.dethithu.net AD phân giác góc A nên D trung điểm cung nhỏ BC ⇒ ID ⊥ BC u −→ Phương trình đường thẳng BC nhận AD làm vtpt ⇒ phương trình BC có dạng : 3x + 4y + α = d e Bài toán giải xong t it Ta có diện tích tam giác ABC gấp lần diện tích tam giác IBC nên d (A, BC) = 4d (I, BC) 114 α=− |7 + α| 31 + α ⇔ = ⇔ 131 5 α=− 9x + 12y − 114 = Phương trình đường thẳng BC 15x + 20y − 131 = w Đề 39 : Trong mặt phẳng với hệ tọa độ Oxy cho hình bình hành ABCD có điểm A (3; 5) Điểm H (1; 3) hình chiếu B lên AC đường trung trực BC có phương trình (d) : x+4y−5 = Tìm tọa độ đỉnh lại hình bình hành w w Lời giải tham khảo : Phương trình đường thẳng AC qua A H ⇒ AC : x − y + = Tổng hợp toán đặc sắc 32 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Phương trình đường thẳng BH qua H vuông góc với AC ⇒ BH : x + y − = Lấy điểm B (b; − b) ∈ BH C (c; c + 2) ∈ AC Đường thẳng (d) trung trực BC ⇒ BC ⊥(d) ⇒ (c − b) − (c + b − 2) = ⇔ 3c − 5b + = Trung điểm BC điểm M ∈ AC b+c 6−b+c + − = ⇔ 5c − 3b + = 2 Từ (1) (2) ⇒ b = −2 ⇒ c = −4 (2) ne t ⇒ b+c 6−b+c ; 2 (1) B (−2; 6) C (−4; −2) u Gọi I tâm hình bình hành ⇒ D (1; −3) Bài toán giải xong it Đề 40 : Trong mặt phẳng với hệ tọa độ Oxy cho hình thang ABCD có hai đáy AB CD biết B (3; 3) , C (5; −3) Giao điểm I hai đường cheo nằm đường thẳng (d) : 2x + y − = Diện tích tam giác ABC 12 Xác định tọa độ đỉnh lại hình thang biết CI = 2BI, điểm I có hoành độ dương điểm A có hoành độ âm w w w d e t Lời giải tham khảo : Lấy điểm I (m; − 2m) ∈ (d) Ta có IC = 2IB ⇒ (m − 5)2 + (6 − 2m)2 = (m − 3)2 + (2m)2 ⇔ m=1 m=− ⇒ I (1; 1) Phương trình đường thẳng AC qua I C ⇒ AC : x + y − = √ SABC = d (B, AC) AC = 12 ⇒ AC = 2 Tổng hợp toán đặc sắc 33 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG √ Lấy điểm A (a; − a) ∈ AC Ta có AC = a = 11 ⇒ (a − 5)2 + (5 − a)2 = 72 ⇒ ⇒ A (−1; 3) a = −1 Phương trình đường thẳng CD qua C song song với AB ⇒ CD : y = −3 Phương trình đường thẳng BD qua B I ⇒ BD : x − y = D giao điểm BD CD ⇒ D (−3; −3) ne t Bài toán giải xong u Đề 41 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông A, có trọng tâm G ; −2 , bán kính đường tròn ngoại tiếp B C thuộc đường thẳng (d) : 4x+3y −9 = Xác định tọa độ đỉnh tam giác ABC w d e t it Lời giải tham khảo : w 1 Gọi M trung điểm BC, ta có GM = AM = R = 3 ⇒ M thuộc đường tròn tâm G bán kính hay M ∈ (C) : x− + (y + 2)2 = 25 w Tọa độ M giao điểm (C) (d) ⇒ M (3; −1) Phương trình đường thẳng AM qua G M ⇒ AM : 3x − 4y − 13 = G trọng tâm tam giác ABC ⇒ AM = 3GM ⇒ A (−1; −4) Phương trình đường tròn ngoại tiếp tam giác ABC có tâm M R = ⇒ (C1 ) : (x − 3)2 + (y + 1)2 = 25 B C giao điểm (d) (C1 ) ⇒ B (0; 3) , C (6; −5) ngược lại Bài toán giải xong Tổng hợp toán đặc sắc 34 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Đề 42 : Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD có điểm M (3; 2) nằm đường chéo BD Từ M kẻ đường thẳng ME MF vuông góc với AB E (3; 4) AD F (−1; 2) Xác định tọa độ đỉnh hình vuông ABCD u ne t Lời giải tham khảo : it Phương trình đường thẳng AB qua E vuông góc với ME ⇒ AB : y = Phương trình đường thẳng AD qua F vuông góc với MF ⇒ AD : x = −1 t A giao điểm AB AD ⇒ A (−1; 4) d e ABCD hình vuông ⇒ ME = BE = AE = MF = −→ −→ Lấy điểm B (b; 4) ∈ AB Có AE = 2EB ⇒ AE = 2EB ⇒ B (5; 4) Phương trình đường thẳng BD qua M B ⇒ BD : x − y − = w D giao điểm AD BD ⇒ D (−1; −2) Gọi I tâm hình vuông ⇒ I trung điểm BD ⇒ I (2; 1) ⇒ C (5; −2) w Bài toán giải xong w Đề 43 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông A ( AB < AC) có tọa độ đỉnh B (2; 1) Đường cao AH có phương trình x + 2y − 10 = Trên cạnh AC lấy điểm D cho AB = CD Kẻ DM vuông góc với AH M Đường phân giác góc CBM cắt AH N Tìm tọa độ điểm N Lời giải tham khảo : Từ D hạ DI vuông góc với BC ( I thuộc BC) Ta có BAH = DCI ⇒ ∆ABH = ∆CDI ⇒ DI = BH Tứ giác DMHI hình chữ nhật ⇒ DI = MH BH = MH hay tam giác BHM vuông cân Tổng hợp toán đặc sắc 35 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Phương trình đường thẳng BN qua B tạo với BC góc α ne t Phương trình đường thẳng BC qua B vuông góc với AH ⇒ BC : 2x − y − = √ 2+2 o Gọi α góc tạo BN BH ta có cos 45 = cos α − ⇒ cos α = u Đến toán đơn giản viết phương trình đường thẳng tạo với đường thằng cho trước góc cho trước ( dành cho bạn đọc ) Bài toán giải xong .d e w w Lời giải tham khảo : t it Đề 44 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông A ngoại tiếp hình chữ nhật MNPQ Biết điểm M (−3; −1) N (2; −1) thuộc cạnh BC, Q thuộc cạnh AB, P thuộc cạnh AC, đường thẳng AB có phương trình x − y + = Xác định tọa độ đỉnh tam giác ABC w Phương trình đường thẳng BC qua M N ⇒ BC : y = −1 MNPQ hình chữ nhật ⇒ MN ⊥ MQ ⇒ phương trình MQ qua M vuông góc BC ⇒ M Q : x = −3 Q giao điểm MQ AB ⇒ Q (−3; 2) Phương trình PQ qua P vuông góc với MQ ⇒ P Q : y = Phương trình NP qua N vuông góc với MN ⇒ N P : x = P giao điểm PQ NP ⇒ P (2; 2) Phương trình đường thẳng AC qua P vuông góc với AB ⇒ AC : x + y − = Tổng hợp toán đặc sắc 36 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG A giao điểm AB AC ⇒ A − ; 2 C giao điểm BC AC ⇒ C (5; −1) Bài toán giải xong ; E (1; 0) lần 16 lượt tâm đường tròn ngoại tiếp nội tiếp tam giác Đường tròn (T ) tiếp xúc với cạnh BC cạnh AB, AC kéo dài có tâm F (2; −8) Xác định tọa độ đỉnh tam giác biết A có tung độ âm ne t Đề 45 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có I d e t it u Lời giải tham khảo : w Gọi D, K giao điểm thứ hai AE, BE với đường tròn tâm I Sử dụng góc nội tiếp góc có đỉnh bên đường tròn ta có EBD = BED ⇒ ∆EDB cân D w w Ta có đường tròn tâm F tiếp xúc với BC cạnh AB, AC kéo dài ⇒ AF phân giác góc BAC BF phân giác góc ABC ⇒ A, E, F thẳng hàng BE ⊥ BF Tam giác BEF vuông B có BD = DE ⇒ D trung điểm EF D trung điểm EF ⇒ D ; −4 Phương trình đường tròn ngoại tiếp tam giác ABC (C) : x− 2 + y− 16 = 65 16 Phương trình đường thẳng AF qua E F ⇒ AF : 8x + y − = A giao điểm đường tròn (C) AF ⇒ A ( ) Giả sử điểm B (a; b) Ta có B ∈ (C) ⇒ phương trình Tổng hợp toán đặc sắc 37 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG BE ⊥ BF ⇒ phương trình Từ ta có điểm B Bài toán giải xong ( Bài lười tính hihi ) ne t Đề 46 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có điểm M (3; −1) trung điểm BC Đường thẳng AC qua điểm F (1; 3) Điểm E (−1; −3) thuộc đường cao xuất phát từ B Xác định tọa độ đỉnh tam giác biết điểm D (4; −2) điểm đối xứng với điểm A qua tâm đường tròn ngoại tiếp tam giác ABC it u Lời giải tham khảo : t D đối xứng với A qua tâm đường tròn ngoại tiếp tam giác ⇒ AD đường kính ⇒ CD ⊥ AC d e Giả sử C (a; b) M trung điểm BC ⇒ B (6 − a; −2 − b) −→ −→ Ta có CD ⊥ AC ⇒ CF ⊥CD ⇒ (4 − a) (1 − a) + (3 − b) (−2 − b) = ⇔ a2 − 5a + b2 − b − = (1) w −→ −→ E thuộc đường cao hạ từ B ⇒ BE ⊥ AC ⇒ BE⊥CF (2) w w ⇒ (1 − a) (7 − a) + (1 − b) (3 − b) = ⇔ a2 − 8a + b2 − 4b + 10 = a = 5; b = −1 Từ (1) (2) ⇒ ⇒ C (5; −1) ⇒ B (1; −1) a = 4; b = −2 Phương trình đường thẳng AB qua B vuông góc với BD ⇒ AB : 3x − y − = Phương trình đường thẳng AC qua C F ⇒ AC : x + y − = A giao điểm AB AC ⇒ A (2; 2) Bài toán giải xong Tổng hợp toán đặc sắc 38 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! www.dethithu.net HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Đề 47 : Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD có đỉnh A (−4; 5) phương trình đường chéo (d) : 7x − y + = Viết phương trình cách cạnh hình vuông ABCD u ne t Lời giải tham khảo : it Ta có A không nằm (d) ⇒ (d) phương trình đường chéo BD Phương trình đường chéo AC qua A vuông góc với (d) ⇒ AC : x + 7y − 31 = d e I trung điểm AC ⇒ C (3; 4) t Tâm I hình vuông giao điểm AC BD ⇒ I − ; 2 √ √ Ta có AC = ⇒ hình vuông ABCD nội tiếp đường tròn tâm I bán kính R = w ⇒ (C) : x+ 2 + y− 2 = 25 B D giao điểm (d) (C) ⇒ B D có tọa độ (−1; 1) ; (0; 8) w Đến toán đơn giản dành cho bạn đọc w Đề 48 : Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD có AB = 2AD Gọi M 10 trung điểm cạnh CD Điểm G 2; trọng tâm tam giác BCM Tìm tọa độ đỉnh hình chữ nhật biết phương trình đường thẳng AM : x − = Lời giải tham khảo : Hình chữ nhật ABCD có AB = 2AD M trung điểm CD ⇒ AD = CM = DM = BC ⇒ ∆BCM vuông cân M ⇒ CG ⊥ BM ( G tâm ) Dễ thấy BM ⊥ AM ⇒ AM // CG ( vuông góc với BM) Tổng hợp toán đặc sắc 39 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Phương trình CG qua G song song với AM ⇒ CG : x − = ne t www.dethithu.net it u Gọi H trung điểm BM Ta có độ dài đoạn MH khoảng cách AM CG ⇒ MH = √ √ √ 2 ⇒ BM = ⇒ BC = CM = ⇒ CN = ⇒ MN = ⇒ MG = MN = √ 2 3 m=3 10 10 2 Lấy điểm M (1; m) ∈ AM ⇒ M G = (1 − 2) + m − = ⇒ 11 m= Với m = ⇒ M (1; 3) Phương trình MH qua M vuông góc với AM ⇒ M H : x = ⇒ H (2; 3) t H trung điểm MB ⇒ B (3; 3) d e −→ −→ Lấy điểm C (2; c) ∈ CG ta có HG = CG ⇒ HG = HC ⇒ C (2; 4) 3 M trung điểm CD ⇒ D (0; 2) Phương trình AD qua điểm D vuông góc với CD ⇒ AD : x + y − = 11 xét tương tự Bài toán giải xong w Với m = w A giao điểm AM AD ⇒ A (1; 1) w Đề 49 : Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD có A (1; 2), điểm C nằm đường thẳng (d) : 2x − y − = AB = 2AD Gọi M điểm nằm cạnh CD cho DM = 2CM Xác định tọa độ đỉnh hình chữ nhật biết phương trình cạnh BM : 5x + y − 19 = Lời giải tham khảo : 2x Đặt AD = BC = x ⇒ CD = AB = 2x ⇒ CM = CD = ⇒ BM = 3 ⇒ cos M BC = √ 13x BC 2 = √ ⇒ sin M BC = √ ⇒ cos ABM = √ BM 13 13 13 Tổng hợp toán đặc sắc 40 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG ne t www.dethithu.net B giao điểm AB BM ⇒ B (3; 4) it u − Góc AB BM góc ABM Gọi → n = (a; b) vtpt đường thẳng AB a = −b |5a + b| √ = √ ⇒ 17a2 + 10ab − 7b2 = ⇒ ⇒ cos ABM = √ 13 a2 + b2 26 a= b 17 − − Với a = −b ⇒ → n = (1; −1) Phương trình đường thẳng AB qua A có vtpt → n ⇒ AB : x − y + = Phương trình đường thẳng BC qua B vuông góc với AB ⇒ BC : x + y − = t C giao điểm BC (d) ⇒ C (4; 3) d e Phương trình đường thẳng AD qua A vuông góc với AB ⇒ AD : x + y − = Phương trình đường thẳng CD qua C vuông góc với BC ⇒ CD : x − y − = D giao điểm AD CD ⇒ D (2; 1) w Trường hợp lại làm tương tự w Bài toán giải xong w Đề 50 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC nhọn Đường thẳng chứa đường trung tuyến kẻ tử đỉnh A đường thẳng BC có phương trình (d1 ) : 3x + 5y − = 0; (d2 ) : x − y − = Đường thẳng qua A vuông góc với BC cắt đường tròn ngoại tiếp tam giác ABC điểm thứ hai D (4; −2) Viết phương trình cạnh AB AC biết hoành độ điểm B lớn Lời giải tham khảo : Trung điểm M BC giao điểm (d1 ) (d2 ) ⇒ M ;− 2 Phương trình đường thẳng AD qua D vuông góc với BC ⇒ AD : x + y − = A giao điểm AD AM ⇒ A (1; 1) Giả sử N trung điểm AD ⇒ N Tổng hợp toán đặc sắc ;− 2 41 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG ne t www.dethithu.net Phương trình trung trực AD qua N vuông góc với AD ⇒ (d3 ) : x − y − = u Phương trình trung trực BC qua M vuông góc với BC ⇒ (d4 ) : x + y − = Gọi I tâm đường tròn ngoại tiếp tam giác ABC ⇒ I giao điểm (d3 ) (d4 ) ⇒ I (3; 0) ⇒ IA = √ Đường tròn ngoại tiếp tam giác ABC có tâm I bán kính R = √ it ⇒ (C) : (x − 3)2 + y = Tọa độ B C giao điểm (C) (d2 ) ⇒ B, C có tọa độ (5; 1) ; (2; −2) continue w w w d e Bài toán giải xong t Hoành độ B lớn ⇒ B (5; 1) ; C (2; −2) Tổng hợp toán đặc sắc 42 Tham gia ngay! Group FB : ÔN THI ĐH TOÁN - ANH : http://facebook.com/groups/onthidhtoananhvan [...]... (d; d − 2) ∈ (d2 ) ta có ID = 2IB ⇒ 2BI = ID ⇒ D (−1; −3) Bài toán giải quyết xong w w w Đề bài 15 : Trong hệ trục tọa độ Oxy cho hình chữ nhật ABCD có điểm C thuộc đường thẳng (d) : x + 3y + 7 = 0 và A (1; 5) Gọi M là điểm nằm trên tia đối của tia CB sao cho M C = 2BC, N là hình chi u vuông góc của B lên đường thẳng M D Xác định tọa độ các đỉnh B và C biết rằng 5 1 N − ; 2 2 Lời giải tham khảo : Gọi... 2 A ∈ AC ⇒ A (31 − 7a; a) Có IA = = 2 2 d e Bài toán giải quyết xong t ⇒ IA2 = ⇒ tọa độ điểm A ⇒ tọa độ điểm C w Đề bài 33 : Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD có A (1; 1) và AB = 4 9 3 Gọi M là trung điểm của BC, K ;− là hình chi u của D lên AM Tìm tọa độ các đỉnh còn 5 5 lại của hình vuông biết đỉnh B có hoành độ nhỏ hơn 2 w w Lời giải tham khảo : Phương trình đường thẳng AM đi... là tâm hình vuông ⇒ H là trung điểm của AC ⇒ H (−1; 3) w H là trung điểm của BD ⇒ D (−4; 2) Bài toán giải quyết xong Đề bài 37 : Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD Gọi E là trung điểm của 11 2 3 6 cạnh AD, điểm H ;− là hình chi u của B lên CE và M ;− là trung điểm của BH 5 5 5 5 Xác định tọa độ các đỉnh của hình vuông ABCD biết đỉnh A có hoành độ âm Lời giải tham khảo : Tổng hợp các... 114 α=− |7 + α| 31 + α 3 ⇔ = 4 ⇔ 131 5 5 α=− 5 9x + 12y − 114 = 0 Phương trình đường thẳng BC là 15x + 20y − 131 = 0 w Đề bài 39 : Trong mặt phẳng với hệ tọa độ Oxy cho hình bình hành ABCD có điểm A (3; 5) Điểm H (1; 3) là hình chi u của B lên AC và đường trung trực của BC có phương trình (d) : x+4y−5 = 0 Tìm tọa độ các đỉnh còn lại của hình bình hành w w Lời giải tham khảo : Phương trình đường... (1) và (2) ⇒ ⇒ a=4 D (5; 4) ne t Trung điểm M của AD có tọa độ M 5 I là trung điểm của AC ⇒ C (5; 1) 2 it Bài toán giải quyết xong w w w Lời giải tham khảo : d e t Đề bài 17 : Trong hệ trục tọa độ Oxy cho tam giác ABC vuông tại A, biết B và C đối xứng nhau qua gốc tọa độ O Đường phân giác trong góc B có phương trình (d) : x + 2y − 5 = 0 Tìm tọa độ các đỉnh của tam giác ABC biết đường thẳng AC đi... − 3y + 1 = 0 và CD : 2x − 6y + 17 = 0 AD và BC cắt nhau tại điểm K (2; 6) 7 Hai đường chéo cắt nhau tại điểm I 1; Xác định tọa độ các đỉnh của hình thang ABCD 3 it u Đề bài 18 : Trong hệ trục tọa độ Oxy cho hình thang ABCD có diện tích bằng w w d e t Lời giải tham khảo : w 15 Khoảng cách giữa AB và CD là d = √ 40 √ 1 3 10 Ta có diện tích hình thang S = (AB + CD) d ⇒ AB + CD = 2 2 AB d (I, AB) = =2... 2 2 = 10 2 5 2 Do đó C, D có tọa độ là 2; 7 2 ne t A, B là giao điểm của (C) và đường thẳng AB ⇒ A, B có tọa độ là (2; 1) ; (−1; 0) 1 ;3 2 ; Bài toán giải quyết xong u Đề bài 19 : Trong hệ trục tọa độ Oxy cho tam giác ABC có BC = 2AB, phương trình đường trung tuyến xuất phát từ đỉnh B là (d) : x + y − 2 = 0 Biết ABC = 120o và điểm A (3; 1) Tìm tọa độ các đỉnh còn lại của tam giác .d e t it Lời giải... Thi.Cập nhật hằng ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Thay vào ta được điểm M , lại có M là trung điểm của AC ⇒ tọa độ điểm C 2 ± √ 3; 4 ± √ 3 Bài toán giải quyết xong Đề bài 20 : Trong hệ trục tọa độ Oxy cho tam giác ABC cân tại A, phương trình cạnh BC là (d) : 2x − y + 3 = 0 Điểm I (−2; −1) là trung điểm cạnh BC, điểm E (4; 1) nằm trên cạnh AB Tìm tọa độ các đỉnh của tam giác biết diện tích tam giác... http://facebook.com/groups/onthidhtoananhvan http://dethithu.net - Đề Thi Thử Đại Học - THPT Quốc Gia - Tài Liệu Ôn Thi.Cập nhật hằng ngày! HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG Đề bài 21 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có điểm A (−1; −3) , B (5; 1) Điểm M nằm trên đoạn thẳng BC sao cho M C = 2M B Tìm tọa độ điểm C biết rằng M A = AC = 5 và đường thẳng BC có hệ số góc là một số nguyên Giả sử điểm... hệ số góc nguyên) Với a = 2; b = 1 ⇒ M (2; 1) phương trình BC đi qua M và B ⇒ BC : y = 1 ( thỏa mãn) Tọa độ điểm D (−1; 1) ⇒ C (−4; 1) Bài toán giải quyết xong Đề bài 22 : Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có trực tâm H (−3; 2) Gọi D, E là chân đường cao hạ từ B và C Điểm A thuộc đường thẳng (d) : x − 3y − 3 = 0, điểm F (−2; 3) thuộc đường thẳng DE và HD = 2 Tìm tọa độ đỉnh