1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề cương ôn tập toán học kì II lớp 11 môn toán

10 512 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,01 MB

Nội dung

PHẦN HÌNH HỌC Các dạng toán cơ bản:  Chứng mính hai đường thẳng vuông góc  Chứng minh đường thẳng vuông góc với mặt phẳng  Chứng minh hai mặt phẳng vuông góc  Tính góc giữ

Trang 1

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II MÔN TOÁN: BAN CƠ BẢN

A PHẦN GIẢI TÍCH

I Cấp số nhân

Các dạng toán cơ bản

- Chứng minh một dãy số là một cấp số nhân

- Tìm số hạng đầu u1, công bội q, tổng n số hạng đầu của một cấp số nhân

- Tìm số hạng thứ n của cấp số nhân

Bài 1: Chứng minh các dãy số (un) sau là cấp số nhân

.2

5

n

n

2

n n

2

n n

u   

d u n  ( 5)2n1 e u n  ( 1) 3n 3n1 f

1

1

1 2 5

u



Bài 2 : a) Viết năm số xen giữa các số 1 và 729 để được một cấp số nhân có bảy số hạng Tính tổng các số hạng của

cấp số này

b) Viết sáu số xen giữa các số -2 và 256 để được một cấp số nhân có tám số hạng Nếu viết tiếp thì số hạng thứ 15

là bao nhiêu ?

c) Viết bốn số xen giữa các số 5 và 160 để được một cấp số nhân

Bài 3 : Cho các cấp số nhân (un) với công bội q

a) Biết u1 = 2, u6 = 486 Tìm q

b) Biết 2 4 8

,

qu  Tìm u1

c) Biết u1 = 3, q = -2 Hỏi số 192 là số hạng thứ mấy ?

Bài 4 : Cấp số nhân (un) có : 1 5

51 102

  

a) Tìm số hạng đầu tiên và công bội của cấp số nhân

b) Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng 3069

c) Số 12 288 là số hạng thứ mấy ?

Bài 5 : Ba số x + 6y, 5x + 2y, 8x + y theo thứ tự đó lập thành cấp số cộng; đồng thời, các số x – 1, y + 2, x – 3y

theo thứ tự đó lập thành cấp số nhân Hãy tìm x và y

Bài 6 :Tìm cấp số nhân (un), biết: 12 22 32 42

15 85





Bài 7 : Tìm số hạng đầu và công bội của CSN (un) ,biết :

a) 5 1

15

6

 

  

 ; b)

10 20

   

Bài 8 : Một cấp số cộng và một cấp số nhân có số hạng thứ nhất bằng 5 ,số hạng thứ hai của cấp số cộng lớn hơn số

hạng thứ hai của cấp số nhân là 10 ,còn các số hạng thứ 3 bằng nhau Tìm các cấp số ấy

II Giới hạn

1 Giới hạn của dãy số

Các dạng toán cơ bản:

 Tính giới hạn của dãy số

 Tính tổng của cấp sô nhân lùi vô hạn

Bài 1.Tính các giới hạn sau:

a)

2 3

1 6 lim

n

n

b)

1 2

5 3

2

n

n n

Trang 2

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12

chất lượng cao

c)

2 4

1 9

lim

2

n

n n

d) lim(n3 2n2 n1) e) lim( n2  n  1  n ) f) lim( n2  nn )

Bài 2 Tính các tổng sau:

a)

10

) 1 (

10

1 10

1

A

2

) 1 (

8

1 4

1 2

1

1

B

2

) 1 (

2

1 2

1 1 2

2 

n

n C

2 Giới hạn của hàm số

Các dạng toán cơ bản

 Tính giới hạn của hàm số

 Xét tính liên tục của hàm số

 Sử dụng tính liên tục của hàm số trên một đoạn để chứng minh phương trình có nghiệm

Bài 1 :Tính các giới hạn sau:

1)

4

4 5

lim

2

x

x

2

2 1

lim

x

1

2

2

x x

x

4)

4

2

16 lim

2

x

x



5)

2

2

lim

x

x

x

4x 1 3 lim

 

lim

x 4

lim

x

Bài 2: Tính các giới hạn sau:

1)

3

lim

3

x

x

x

2

x x

x

2

1 ( 1 )

3 5 lim

x x

 0

lim

x x

Bài 3: Tính các giới hạn sau:

1)

1

2

3

lim



x

3

lim

1

x



2



x x

2

lim

x

x



5) lim ( x2 2 x 3 x )

x

7) lim ( 2  1 2 1)

x

Bài 4: Tính các giới hạn sau:

     2) lim ( 4  2 2  3 )

x 3) lim (  2 3 2 2   3 )



Bài 5: Xét tính liên tục trên R của hàm số sau:

a)

2 4

2

x

 

2

2

1

1 )

(

x x

x x

1 ,

1 ,

x

x

Bài 6: Cho hàm số f(x) =

2 2

x x

khi x x

x m khi x

Với giá trị nào của m thì hàm số liên tục tại x = - 2

Bài 7: CMR phương trình sau có ít nhất hai nghiệm: 2x310x 7 0

III Đạo hàm

Bài 1: Tìm đạo hàm các hàm số sau:

1) yx3 2x1 2)y2x4 2x2 3x 3) ( 2 )(5 3 2)

x x

x

y   4) y  ( t3  2 )( t  1 )

5) yx(2x1)(3x2) 6) 2 3

) 3 ( ) 2 )(

1

y 7) y  x( 2 5)3 8) y = (1- 2t)10 9) y = (x3 +3x-2)20 10) 7 2

y x 3x 2 12) yx4  6 x2  7

Trang 3

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12

chất lượng cao

13)

2

3

2

x

x

4 2

5 6

2 2

x

x x

1

2

2 

x

x

) 1 (

3

x x y

2

17

y

x

18) y =

2

3 2 2

x

x x

2

1 x  20) yx1 x2

x

y3 6 22) 3 42 53 64

x x x x

3 2

4 3

2

2

x x

x x

3 3

6 1

x x y

25) 1 x

y

1 x

26) y  x x

27) 1 y

x x

29)

2 2

2

a x

x

y

 , ( a là hằng số) 30) y = 3 x2 ax  2 a , ( a là hằng số)

Bài 2: Tìm đạo hàm các hàm số sau:

1) y = sin2x –cos2x 2) y = sin5x – 2cos(4x +1) 3) y2sin2x.cos3x 4) ysin 2x1

5) y sin 2x 6) ysin2 xcos3 x 7) y(1cotx)2 8)y  cos x sin2 x

9) y= sin(sinx) 10) y = cos( x3 + x -2) 11) y  sin (cos3x)2 12) y = x.cotx

13)

x

x y

sin

2

sin

1

-

 14) y cot (2x3 )

4

y tan

2

 16)y sin x x

x sin x

 

17)y 1 2tan x 18)y  2 tan x  2 19)

x x

x x

y

cos sin

cos sin

2 sin4 x

y 

Bài 3: Tìm đạo hàm cấp 2 của của hàm số sau:

1) yx3 2x1 2)y2x4 2x2 3

3)

2

3 2

x

x

4 2

5 6

2 2

x

x x y

5) y = sin2x – cos2x 6) y = x.cos2x 7) y  x 8) 2

x

Bài 4: Tìm vi phân của của hàm số:

1)yx4 2x1 2) y(x3 2)(x1) 3)

4 2

5 6

2 2

x

x x

y 4) y3sin2 x.sin3x

Bài 5: a) Cho f(x) 3x1, tính f ’(1) b) Cho    6

f x  x 10 Tính f '' 2  

c) f x sin 3x Tính ;   0

f ''    f '' f ''   

          

Bài 6: Cho hàm số: y = x3 + 4x +1 Viết PT tiếp tuyến của đồ thị hàm số trong của trường hợp sau:

a) Tại điểm có hoành độ x0 = 1;

b) Tiếp tuyến có hệ số góc k = 31;

c) Song song với đường thẳng d: y = 7x + 3;

d) Vuông góc với đường thẳng : y = - 1 5

16x

Bài 7: Chứng minh rằng các hàm số sau thoả mãn của hệ thức:

a) f(x)x5 x3 2x3 thoả mãn: f'(1) f'(1)4f(0); b)    

2

x 3

y t / m : 2y ' (y 1)y"

x 4 c) y = a.cosx +b.sinx thỏa mãn hệ thức: y’’ + y = 0

d) y = cot2x thoả mãn hệ thức: y’ + 2y2 + 2 = 0

Bài 8: Giải phương trình : y’ = 0 biết rằng:

1) yx3 3x2 9x5 2) yx4 2x2 5 3) yx4 4x3 3 4) 2

x

5)

2

15 5

2

x

x

x

x x

4

2 

x

x

2

1

y

9) ycos x sin x  x 10) y 3sin xcosxx 11)y20cos3x12cos5x15cos4x

Trang 4

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

Bài 9: Giải của bất phương trình sau:

1) y’ > 0 với 3 2

yx 3x 2 2) y’ < 4 với 2 3

2

1 3

1 3  2  

y

3) y’ ≥ 0 với

1

2

2

x

x x

y 4) y’ > 0 với yx4 2x2 5) y’≤ 0 với y  2 xx2

Bài 10: Cho hàm số: ( 1) 3( 1) 2

3

1) Tìm m để phương trình y’ = 0:

a) Có 2 nghiệm b) Có 2 nghiệm trái dấu

c) Có 2 nghiệm dương d) Có 2 nghiệm âm phân biệt

2) Tìm m để y’ > 0 với mọi x

B PHẦN HÌNH HỌC

Các dạng toán cơ bản:

 Chứng mính hai đường thẳng vuông góc

 Chứng minh đường thẳng vuông góc với mặt phẳng

 Chứng minh hai mặt phẳng vuông góc

 Tính góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng

 Tính khoảng cách từ điểm đến đường thẳng, đến mặt phẳng ; khoảng cách giứa hai đường thẳng chéo nhau, khoảng cách giữa hai mặt phẳng song song

Bài 1: Cho hình chóp S.ABCD, ABCD là hình vuông cạnh a, tâm O; SA(ABCD);

SA = a 6 AM, AN là các đường cao của tam giác SAB và SAD;

1) CMR: Các mặt bên của chóp là các tam giác vuông Tính tổng diện tích các tam giác đó

2) Gọi P là trung điểm của SC Chứng minh rằng OP  (ABCD)

3) CMR: BD  (SAC) , MN  (SAC)

4) Chứng minh: AN  (SCD); AM SC

5) SC  (AMN)

6) Dùng định lí 3 đường vuông góc chứng minh BN  SD

7) Tính góc giữa SC và (ABCD)

8) Hạ AD là đường cao của tam giác SAC, chứng minh AM,AN,AP đồng phẳng

Bài 2: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B , SA(ABC) Kẻ AH , AK lần lượt vuông góc với SB , SC tại H và K , có SA = AB = a

1) Chứng minh tam giác SBC vuông

2) Chứng minh tam giác AHK vuông và tính diện tích tam giác AHK

3) Tính góc giữa AK và (SBC)

Bài 3: Cho tứ diện ABCD có (ABD) (BCD), tam giác ABD cân tại A; M , N là trung điểm của BD và BC

a) Chứng minh AM (BCD)

b) (ABC) (BCD)

c) kẻ MH AN, cm MH(ABC)

Bài 4: Cho tứ diện ABCD , tam giác ABC, tam giác ACD cân tại A và B; M là trung điểm của CD

a)CM: (ACD) (BCD)

b)kẻ MHBM chứng minh AH(BCD)

c)kẻ HK(AM), cm HK(ACD)

Bài 5: Cho hình chóp S.ABCD, đáy ABCD là một hình thang vuông có BC là đáy bé và góc ACD  900

a) tam giác SCD, SBC vuông

b)Kẻ AH  SB, chứng minh AH  (SBC)

c)Kẻ AK  SC, chứng minh AK  (SCD)

Bài 6: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA=SB=SC=SD=a 2; O là tâm của hình vuông ABCD

a) cm (SAC) và (SBD) cùng vuông góc với (ABCD)

Trang 5

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

b) cm (SAC) (SBD)

c) Tính khoảg cách từ S đến (ABCD)

d) Tính góc giữa đường SB và (ABCD)

e) Gọi M là trung điểm của CD, hạ OHSM, chứng minh H là trực tâm tam giác SCD

f) tính góc giưa hai mặt phẳng (SCD) và (ABCD)

g) Tính khoảng cách giữa SM và BC; SM và AB

Bài 7: Cho hình chóp S.ABCD có SA(ABCD) và SA=a; đáy ABCD là hình thang vuông có đáy bé là BC, biết

AB = BC =a, AD =2a

a)Chứng minh các mặt bên của hình chóp là các tam giác vuông

b)Tính khoảng cách giữa AB và SD

c)M, H là trung điểm của AD, SM cm AH(SCM)

d)Tính góc giữa SD và (ABCD); SC và (ABCD)

e)Tính góc giữa SC và (SAD)

f)Tính tổng diện tích các mặt của chóp

Bài 8: Cho tứ diện OABC có OA, OB OC đôi một vuông góc nhau và OA=OB=OC=a

a)Chứng minh các mặt phẳng (OBC), (OAC), (OAB) đôi một vuông góc

b)M là trung điểm của BC, chứng minh (ABC) vuông góc với (OAM)

c)Tính khoảng cách giữa OA và BC

d)Tính góc giữa (OBC) và (ABC)

e)Tính d(O, (ABC) )

Bài 9: Cho chóp OABC có OA=OB=OC=a; AOC  120 ;0 BOA  60 ;0 BOC  900 cm

a)ABC là tam giác vuông

b)M là trung điểm của AC; chứng minh tam giác BOM vuông

c)cm (OAC)  (ABC)

d)Tính góc giữa (OAB) và (OBC)

Bài 10: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh C, CA=CB=2a, hai mặt phẳng (SAB) và

(SAC) vuông góc với mặt đáy, cạnh SA=a Gọi D là trung điểm của AB a)Cm: (SCD) (SAB)

b)Tính khoảng cách từ A đến (SBC)

c)Tính góc giữa hai mặt phẳng (SAB) và (SBC)

Bài 11: Cho tứ diện đều ABCD cạnh a

a)Tính khoảng cách giữa hai đường thẳng AB và CD

b)Tính góc giữa câc cạnh bên và mặt đáy

c)Tính góc giữa các mặt bên và mặt đáy

d)Chứng minh các cặp cạnh đối vuông góc nhau

Bài 12: Cho hình lập phương ABCD.A’B’C’D’; M, N là trung điểm của BB’ và A’B’

a)Tính d(BD, B’C’)

b)Tính d(BD, CC’), d(MN,CC’)

Bài 13: Cho hình lăng trụ đứng ABC.A’B’C’ có AB=BC=a; AC=a 2

a)cmr: BC vuông góc với AB’

b)Gọi M là trung điểm của AC, cm (BC’M) (ACC’A’)

c)Tính khoảng cách giữa BB’ và AC

Bài 14:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại C, CA=a; CB=b, mặt bên AA’B’B là hình vuông Từ

C kẻ đường thẳng CHAB, kẻ HKAA’

a) CMR: BCCK , AB’(CHK)

b) Tính góc giữa hai mặt phẳng (AA’B’B) và (CHK)

c) Tính khoảng cách từ C đến (AA’B’B)

MỘT SỐ ĐỀ THI HỌC KÌ II MÔN TOÁN 11

SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ II

MÔN: TOÁN LỚP 11 Thời gian làm bài: 90 phút

I Phần chung cho tất cả học sinh:

Trang 6

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

Bài 1 ( 2,5 điểm ) Hãy lựa chọn phương án đúng trong các trường hợp sau:

1, Cho tứ diện đều ABCD cạch a Độ dài hình chiếu của cạch AB trên mặt phẳng (BCD) bằng

2, Cho cấp số cộng có số hạng u1 = 1 và số hạng cuối u12 = 56 Công sai của cấp số cộng này là

A 2 B 4 C 5 D 6

3, Cho cấp số nhân ( un ) gồm n số hạng, un = 96, công bội q = 2, và tổng các số hạng sn = 189 Giá trị của n là

A 5 B 4 C 7 D 6

4, Cho hình lập phương ABCD.A’B’C’D’ Góc giữa hai đường thẳng AB’ và đường thẳng BC’ bằng

5,

2

7

lim

1

x

x

x



 

 bằng A 0 B 1 C -1 D 7

6,

2

2

0

4

lim

x

x x

x

bằng A -4 B 0 C -1 D 4

7, Phương trình tiếp tuyến của đồ thị hàm số y = x3 tại điểm có hoành độ bằng -1 là

A y = 3x B y = 3x + 1 C y = 3x + 2 D y = 3x -1

8, Đạo hàm của hàm số y = ( 3 – 2x2 )(1 + x2 ) là

A, - 8x3 + 2x B, - 8x3 – 2x C, - 8x3 + x D, - 8x3 – x

9, Đạo hàm của hàm số   3 3

os sin

x

fc xx tại

6

x

 bằng

10, Hình hộp chữ nhật có ba kính thước là a, b, c thì độ dài một đường chéo của nó bằng

Bài 2 ( 3,5 điểm)

1, Cho cấp số nhân (un) có 1 5

51 102

  

a, Tìm số hạng đầu và công bội của cấp số nhân; b, Hỏi tổng của bao nhiêu số hạng đầu tiên bằng 3069?

2, Tính các giới hạn sau:

2

2

x

Bài 3 ( 1,5 điểm) Cho hình chop SABCD có đáy ABCD là hình chữ nhật Tam giác SAB cân tại S và mặt phẳng

(SAB) vuông goác với mặt phẳng (ABCD) Gọi I là trung điểm đoạn AB Chứng minh rằng mặt phẳng (SID) vuông góc với mặt phẳng (ABCD) và AD vuông góc với SB

II Phần dành riêng cho học sinh học chương trình chuẩn:

Bài 4 ( 1 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số   2

2x 3

x

fx   tại điểm có hoành độ bằng -1

Bài 5 (1,5 điểm) Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB = a, SA vuông góc với mặt

phẳng (ABC) và SA = a Tính khoảng cách từ A đến mặt phẳng (SBC)

III Phần dành riêng cho học sinh học chương trình nâng cao:

Bài 4 ( 1,5 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số f( )xx2 2x 3  tại điểm có tung độ bằng 3

Bài 5 ( 1điểm) Cho hình chop SABC có đáy ABC là tam giác vuông cân tại B, AB = a, SA vuông góc với mặt

phẳng (ABC) và SA = a Tính góc hợp bởi SB với mặt phẳng (SAC)

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ II

MÔN: TOÁN LỚP 11

Thời gian làm bài: 90 phút

A PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (8 điểm):

Câu I (2 điểm ) Hãy lựa chọn phương án đúng trong các trường hợp sau:

Trang 7

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

1, Cho hàm số f x    2 x  2 Giá trị f   1  f ' 1   là:

2, Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, đường thẳng SA vuông góc với đáy và SA = a Gọi góc giữa đường thẳng SC và mp(SAB) bằng  Khi đó tan bằng:

1

2

3, Giới hạn  2 2 

limn n  1 n 3 bằng:

4, Cho hàm số  

1 1

x

f x

x

  với x  0 Phải bổ sung thêm giá trị f   0 bằng bao nhiêu thì hàm số đã cho liên tục trên R:

Câu II (3 điểm)

2

2

x

 2) Tính đạo hàm của các hàm số: y  1  c os 22 x

Câu III (2 điểm)

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D Biết AB = 2a, AD = DC = SA = a

và SA vuông góc với đáy

1) Chứng minh rằng mp(SAD) mp(SDC) và mp SAC    mp SCB  

2) Gọi mp(P) là mặt phẳng chứa SD và vuông góc với mp(SAC) Xác định thiết diện của hình chóp S.ABCD cắt bởi mp(P) Tính diện tích thiết diện đó

Câu IV (1 điểm) Cho dãy số   Un xác định như sau:   2

n

n

 Chứng minh rằng: 1 2 2010 1005

1006

UU  U

B PHẦN RIÊNG (2 điểm):

1 Phần dành riêng cho thí sinh học chương trình chuẩn

Câu Va (1 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số   3 2

f xxx  biết tiếp tuyến đó vuông góc với đường thẳng d: 1 2

3

yx Câu VIa (1 điểm) Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và cạnh đáy đều bằng a M là trung điểm của cạnh SC Tính góc giữa hai mặt phẳng (MBD) và (ABCD)

2 Phần dành riêng cho thí sinh học chương trình nâng cao

Câu Vb(1 điểm) Cho M là một điểm có hoành độ x = -1 và nằm trên đường cong (Cm): 1 3 2 1

m

yxx  ( Với

m là tham số) Tìm m để tiếp tuyến với đường cong (Cm) tại điểm M song song với đường thẳng (d): 5x – y = 0

Câu VIb (1 điểm) Cho tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng chứa hình vuông ABCD, gọi

H là hình chiếu của S lên mp(ABCD) Biết SA = SB, AB = a và góc giữa SC và mp(ABCD) bằng 30o Tính độ dài đoạn SH

- Hết -

Trang 8

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

SỞ GD- ĐT BẮC GIANG

(ĐỀ CHÍNH THỨC)

ĐỀ KIỂM TRA HỌC KÌ II NĂM HỌC 2010-2011

MÔN TOÁN LỚP 11

Thời gian làm bài : 90 phút (không kể thời gian phát đề)

A PHẦN CHUNG CHO TẤT CẢ HỌC SINH (8 điểm)

Câu I (3 điểm)

1 Tính các giới hạn sau:

2

a) lim (n 1)(1 3n)

 

  ; x 2

b) lim

x 2



2 Xét tính liên tục của hàm số sau tại x2:

2

2x 3x 2 2x 4

f (x)

5 2

khi x 2 khi x=2

 



Câu II (1 điểm) Tính đạo hàm của hàm số f (x)  (x  2) x2  1 c os 2xtại x  0.

Câu III (3 điểm)

Cho hình chóp S.ABC, có đáy ABC là tam giác đều cạnh bằng a, đường thẳng SA vuông góc với mặt phẳng (ABC) và SAa 3

1 Gọi M là trung điểm của cạnh BC Chứng minh BC(SAM)

2 Tính tang của góc tạo bởi hai mặt phẳng (SBC) và (ABC)

3 Tính khoảng cách từ điểm A đến mặt phẳng (SBC)

Câu IV(1 điểm)

Cho ba số thực a, b,c thỏa mãn hệ thức 2a 3b 6c    0 Chứng minh rằng phương trình

2

ax + bx + c = 0 luôn có ít nhất một nghiệm thuộc khoảng (0;1)

B PHẦN RIÊNG - PHẦN TỰ CHỌN (2 điểm)

Học sinh chỉ được làm một trong hai phần (phần I hoặc phần II)

I Dành cho học sinh học theo chương trình chuẩn:

Câu Va (1 điểm)

Cho cấp số nhân (a )n thỏa mãn 7 4

   

 Tìm số hạng đầu a1 và công bội q

Câu VIa (1 điểm) Cho hàm số yx33x21 có đồ thị là (C) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm I(1; 1)

II Dành cho học sinh học theo chương trình nâng cao:

Câu Vb (1 điểm) Cho cấp số cộng (a )n thỏa mãn a3a5 14 và tổng của 13 số hạng đầu của cấp số cộng bằng

129 Tìm số hạng đầu a1 và công sai d

Trang 9

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

Câu VIb (1 điểm) Cho hàm số

2

y

x 1

 

 có đồ thị là (C) Viết phương trình tiếp tuyến của đồ thị (C) tại

giao điểm của (C) với trục tung

ĐỀ THI HỌC KÌ 2 NĂM HỌC 2014-2015 TỈNH BẮC NINH

MÔN: TOÁN – LỚP 11 (Thời gian làm bài: 90 phút)

I PHẦN CHUNG (8 điểm)

Câu 1 (2,5 điểm) Tính các giới hạn sau đây

lim

.

1

x

x

x

 

Câu 2 (2,5 điểm)

1) Cho hàm số yx 2  Giải bất phương trình ' 0 x y 

2) Cho hàm số ( ) 2 3 khi 1

f x

Tìm a để ( ) f x liên tục trên .

Câu 3 (3,0 điểm) Cho hình chóp S ABCDSA  ( ABCD SA ),  a , đáy ABCD là hình thang vuông tại AB với ABBCa AD ,  2 a

1) Chứng minh SABC , ( SAC )  ( SCD )

2) Tính khoảng cách từ A tới ( SCD ).

3) Tính góc giữa hai mặt phẳng ( SBC và ( ) SCD ).

II PHẦN RIÊNG (2 điểm)

A Theo chương trình Chuẩn

Câu 4a (1,5 điểm) Cho hàm số 3 2

3 1 ( ).

yxxC Viết phương trình tiếp tuyến của đồ thị (C)

tại điểm có tung độ bằng 5

Câu 5a (0,5 điểm) Tính giới hạn

3

lim

4

x

B Theo chương trình Nâng cao

Câu 4b (1,5 điểm) Cho hàm số y  3 sin 2 x  cos 2 x  4 x Giải phương trình ' y  0

Câu 5b (0,5 điểm) Tìm số nguyên dương n thỏa mãn

3 nCn  2.2.3nC n  3.2 3 nCn   (2 n  1).2 nC n n  4031.

============= HẾT ============

Trang 10

https://www.facebook.com/thayminh.edu Bồi dưỡng- luyện thi ĐH Toán khối 10.11.12 chất lượng cao

II PHẦN RIÊNG (3,0 điểm) Học sinh chỉ được làm một trong hai phần sau (phần 1 hoặc phần 2)

Phần 1 : Theo chương trình Chuẩn

Câu 6a (1,0 điểm): Cho hàm số f(x) = x3 + 2x 2 – 1 có đồ thị (C) Viết phương trình tiếp tuyến của (C) tại điểm M có hoành độ x = -1

Câu 7a (1,0 điểm): Chứng minh rằng phương trình 4x4 + 2x 2 – x – 3 = 0 có ít nhất hai nghiệm phân biệt trên khoảng (-1; 1)

Câu 8a (1,0 điểm): Cho hình chóp S.ABC có ABC là tam giác vuông cân tại A, AB = a, SA vuông góc với mặt phẳng (ABC) và SA = a√2 Gọi M là trung

điểm của BC Dựng và tính độ dài đoạn vuông góc chung của hai đường thẳng SM và AC theo a

Phần 2 : Theo chương trình Nâng cao

Câu 6b (1,0 điểm): Cho hàm số f(x) = x3 + 3x + 1 có đồ thị (C) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung

Câu 7b (1,0 điểm): Chứng minh dãy số (un ) với u n = 3n + 1 / n + 2 tăng và bị chặn

Câu 8b (1,0 điểm): Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, góc ABC = 600 Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy Gọi M là trung điểm của AD Dựng và tính độ dài đoạn vuông góc chung của đường thẳng AC và SM theo a

MỌI CHI TIẾT LIÊN HỆ THẦY MINH

LỚP LUYỆN THI ĐẠI HỌC VÀ BỒI DƯỠNG MÔN TOÁN KHỐI 9.10.11.12

Đ/C: BÌNH NGHĨA- BÌNH LỤC- HÀ NAM ĐT 0169.535.0169

https://www.facebook.com/thayminh.edu

https://www.facebook.com/groups/hocsinhthayMinh/

https://www.facebook.com/hanam.edu/

ĐĂNG KÝ

LỚP ÔN THI CẤP TỐC KHAI GIẢNG VÀO THÁNG 5

CÁC LỚP 10 LÊN 11, 11 LÊN 12 HỌC HÈ KHAI GIẢNG THÁNG 6

Ngày đăng: 14/04/2016, 21:29

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w