Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 01 MỞ ĐẦU VỀ NGUYÊN HÀM Thầy Đặng Việt Hùng – Moon.vn VIDEO BÀI GIẢNG LỜI GIẢI CHI TIẾT CÁC BÀI TẬP có website MOON.VN I NHẮC LẠI KHÁI NIỆM VỀ VI PHÂN CỦA HÀM SỐ Vi phân hàm số y = f(x) kí hiệu dy cho công thức dy = df ( x ) = y ' dx = f '( x )dx Ví dụ: d(x2 – 2x + 2) = (x2 – 2x + 2)′dx = (2x – 2)dx d(sinx + 2cosx) = (sinx + 2cosx)′dx = (cosx – 2sinx)dx Chú ý: Từ công thức vi phân ta dễ dàng thu số kết sau d ( x ) = 2dx ⇒ dx = d ( x ) d ( 3x ) = 3dx ⇒ dx = d ( 3x ) x 1 xdx = d = d x = d x ± a = − d a − x 2 ( ) ( ) ( ) x3 1 x dx = d = d x3 = d x3 ± a = − d a − x3 3 dx d ( ax + b ) dx = = d ( ln ax + b ) → = d ( ln x ) ax + b a ax + b a x 1 sin ( ax + b ) dx = sin ( ax + b ) d ( ax + b ) = − d ( cos ( ax + b ) ) → sin xdx = − d ( cos2 x ) a a 1 cos ( ax + b ) dx = cos ( ax + b ) d ( ax + b ) = d ( sin ( ax + b ) ) → cos xdx = d ( sin x ) a a 1 eax +b dx = e ax +b d ( ax + b ) = d e ax +b → e2 x dx = d e x a a dx d ( ax + b ) dx = = d tan ( ax + b ) → = d ( tan x ) 2 cos ( ax + b ) a cos ( ax + b ) a cos x ( ) ( ) ( dx sin ( ax + b ) = ( ) ) ( ) d ( ax + b ) dx = − d cot ( ax + b ) → = − d ( cot x ) a sin ( ax + b ) a sin x II KHÁI NIỆM VỀ NGUYÊN HÀM Cho hàm số f(x) liên tục khoảng (a; b) Hàm F(x) gọi nguyên hàm hàm số f(x) F’(x) = f(x) viết ∫ f ( x)dx Từ ta có : ∫ f ( x)dx = F ( x) Nhận xét: Với C số ta có (F(x) + C)’ = F’(x) nên tổng quát hóa ta viết ∫ f ( x)dx = F ( x) + C , F(x) + C gọi họ nguyên hàm hàm số f(x) Với giá trị cụ thể C ta nguyên hàm hàm số cho Ví dụ: Hàm số f(x) = 2x có nguyên hàm F(x) = x2 + C, (x2 + C)’ = 2x Hàm số f(x) = sinx có nguyên hàm F(x) = –cosx + C, (–cosx + C)’ = sinx III CÁC TÍNH CHẤT CƠ BẢN CỦA NGUYÊN HÀM Cho hàm số f(x) g(x) liên tục tồn nguyên hàm tương ứng F(x) G(x), ta có tính chất sau: a) Tính chất 1: ( ∫ f ( x)dx )′ = f ( x) Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 Chứng minh: Do F(x) nguyên hàm hàm số f(x) nên hiển nhiên ta có ( ∫ f ( x)dx )′ = ( F ( x) )′ = f ( x) ⇒ đpcm ( ∫ [ f ( x) + g ( x)] dx ) = ∫ f ( x)dx + ∫ g ( x)dx b) Tính chất 2: Chứng minh: Theo tính chất ta có, ( ∫ f ( x)dx + ∫ g ( x)dx )′ = ( ∫ f ( x)dx )′ + ( ∫ g ( x)dx )′ = f ( x) + g ( x) Theo định nghĩa nguyên hàm vế phải nguyên hàm f(x) + g(x) ( ∫ [ f ( x) + g ( x)] dx ) = ∫ f ( x)dx + ∫ g ( x)dx c) Tính chất 3: ( ∫ k f ( x)dx ) = k ∫ f ( x)dx, ∀k ≠ Từ ta có Chứng minh: ( ) ′ Tương tự tính chất 2, ta xét k ∫ f ( x)dx = k f ( x) → ∫ k f ( x)dx = k ∫ f ( x)dx ⇒ đpcm ∫ f ( x)dx = ∫ f (t )dt = ∫ f (u )du d) Tính chất 4: Tính chất gọi tính bất biến nguyên hàm, tức nguyên hàm hàm số phụ thuộc vào hàm, mà không phụ thuộc vào biến IV CÁC CÔNG THỨC NGUYÊN HÀM Công thức 1: ∫ dx = x + C Chứng minh: Thật vậy, ( x + C )′ = ⇒ ∫ dx = x + C Chú ý: Mở rộng với hàm số hợp u = u ( x) , ta ∫ du = u + C Công thức 2: ∫ x n dx = x n +1 +C n +1 Chứng minh: x n +1 ′ x n +1 + C = x n ⇒ ∫ x n dx = +C Thật vậy, n +1 n +1 Chú ý: +) Mở rộng với hàm số hợp u = u ( x) , ta ∫ u n du = u n +1 +C n +1 dx dx du +) Với n = − ⇒ ∫ = 2∫ = x + C ← →∫ =2 u +C x x u dx du +) Với n = −2 ⇒ ∫ = − + C ← →∫ = − + C x x u u Ví dụ: x3 a) ∫ x dx = + C x5 b) ∫ ( x + x ) dx = ∫ x dx + ∫ xdx = + x + C c) ∫ − x − x2 x3 x2 x x2 x2 dx = ∫ dx − ∫ xdx = ∫ x dx − = − + C = 33 x − + C x x 2 ( x + 1) + C u n du d) I = ∫ ( x + 1) dx = ∫ ( x + 1) d ( x + 1) →I = 5 Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG e) I = ∫ (1 − 3x ) f) I = ∫ Facebook: LyHung95 (1 − 3x ) + C 2010 u n du dx = − ∫ (1 − x ) d (1 − x ) →I = − 2011 du d ( x + 1) u 1 = ∫ → I = − +C =− +C 2 ( x + 1) 2x + ( x + 1) 2011 2010 dx ( x + 1) g) I = ∫ x + 5dx = Công thức 3: ∫ 3 1 +C = +C x + d x + ⇒ I = x + x + 5 5 ( ) ( ) ( ) 4∫ dx = ln x + C x Chứng minh: dx Thật vậy, ( ln x + C )′ = ⇒ ∫ = ln x + C x x Chú ý: + Mở rộng với hàm số hợp u = u ( x) , ta du ∫u = ln u + C dx = ln x + k + C d ( ax + b ) dx ∫ 2x + k + ∫ = = ln ax + b + C → ax + b a ∫ ax + b a dx = − ln k − x + C ∫ k − x Ví dụ: 1 dx x a) ∫ x3 + + dx = ∫ x3 dx + ∫ dx + ∫ = + x + ln x + C x x x x du dx d ( 3x + ) u = ∫ → I = ln 3x + + C 3x + 3x + 2x2 + x + 3 dx d ( x + 1) c) ∫ dx = ∫ x + = x2 + ∫ = x + ln x + + C dx = ∫ xdx + 3∫ 2x + 2x + 2x + 2x + b) I = ∫ Công thức 4: ∫ sinxdx = − cos x + C Chứng minh: Thật vậy, ( − cos x + C )′ = sin x ⇒ ∫ sinxdx = − cos x + C Chú ý: + Mở rộng với hàm số hợp u = u ( x) , ta ∫ sinudu = − cos u + C + ∫ sin ( ax + b ) dx = 1 sin ( ax + b ) d ( ax + b ) = − cos ( ax + b ) + C → ∫ sin xdx = − cos2 x + C ∫ a a Ví dụ: dx d ( x − 1) a) ∫ x x + s inx + = ∫ x dx − cos x + ∫ = dx = ∫ x xdx + ∫ sinxdx + ∫ 2x −1 2x −1 2x −1 2x = − cos x + ln x − + C dx d ( x − 3) = ∫ sin xd ( x ) + ∫ = − cos2 x + ln x − + C b) ∫ sin x + dx = ∫ sin xdx +3∫ 4x − 4x − 4x − x c) ∫ sin + sinx + sin x dx 1 x x Ta có d = dx ⇒ dx = 2d ; d ( x ) = 2dx ⇒ dx = d ( x ) ; d ( 3x ) = 3dx ⇒ dx = d ( 3x ) 2 2 T : x x x x ∫ sin + sinx + sin 3x dx = ∫ sin dx + ∫ sin xdx + ∫ sin 3xdx = 2∫ sin d + ∫ sin xd ( x ) + ∫ sin 3xd ( 3x ) Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 x 1 = −2cos − cos2 x − cos3x + C 2 Công thức 5: ∫ cos xdx = sin x + C Chứng minh: Thật vậy, ( sinx + C )′ = cos x ⇒ ∫ cosxdx = sinx + C Chú ý: + Mở rộng với hàm số hợp u = u ( x) , ta ∫ cosudu = sin u + C + ∫ cos ( ax + b ) dx = 1 cos ( ax + b ) d ( ax + b ) = sin ( ax + b ) + C → ∫ cos2 xdx = sin x + C ∫ a a Ví dụ: 4x − a) ∫ cos x − sin x + dx = ∫ cos xdx − ∫ sin xdx + ∫ − dx = sinx + cos x + x − 5ln x + + C x +1 x +1 x2 b) ∫ ( cos x + sin x − x ) dx = ∫ cos2 xdx + ∫ sinxdx − ∫ xdx = sin x − cos x − + C 2 − cos2 x 1 1 1 c) ∫ sin xdx = ∫ dx = ∫ − cos2 x dx = x − ∫ cos2 xd ( x ) = x − sin x + C 2 4 2 Công thức 6: ∫ dx = tan x + C cos x Chứng minh: Thật vậy, ( tan x + C )′ = dx ⇒∫ = tan x + C cos x cos x Chú ý: +) Mở rộng với hàm số hợp u = u ( x) , ta +) dx d ( ax + b ) du ∫ cos u = tan u + C dx = tan x + C 2x ∫ cos ( ax + b ) = a ∫ cos ( ax + b ) = a tan ( ax + b ) + C → ∫ cos 2 Ví dụ: dx a) ∫ + cos x − sin x dx = ∫ + ∫ cos xdx − ∫ sin xdx = tan x + sin x + cos x + C 2 cos x cos x dx dx d ( x − 1) d (5 − 4x) b) I = ∫ + + 2∫ = ∫ − ∫ dx = ∫ 2 cos ( x − 1) − x cos ( x − 1) − 4x cos ( x − 1) − x du 1 tan ( x − 1) − ln − x + C 2 du dx d (3 − 2x ) cos u c) I = ∫ =− ∫ → I = − tan ( − x ) + C 2 cos ( − x ) cos ( − x ) →= cos2 u Công thức 7: ∫ dx = − cot x + C sin x Chứng minh: Thật vậy, ( − cot x + C )′ = dx ⇒ ∫ = − cot x + C sin x sin x Chú ý: +) Mở rộng với hàm số hợp u = u ( x) , ta +) dx d ( ax + b ) du ∫ sin u = − cot u + C dx = − cot x + C 2x ∫ sin ( ax + b ) = a ∫ sin ( ax + b ) = − a cot ( ax + b ) + C → ∫ sin 2 Ví dụ: Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 dx x6 a) ∫ cos x − + x5 dx = ∫ cos xdx − ∫ + ∫ x dx = sin x + cot x + + C sin x sin x du dx d (1 − x ) 1 sin u b) I = ∫ =− ∫ → I = − − cot (1 − x ) + C = cot (1 − 3x ) + C sin (1 − 3x ) sin (1 − x ) 3 x d du dx x sin u c) I = ∫ = ∫ → I = −2 cot + C x x 2 sin sin 2 2 Công thức 8: ∫ e x dx = e x + C Chứng minh: Thật vậy, ( e x + C )′ = e x ⇒ ∫ e x dx = e x + C Chú ý: +) Mở rộng với hàm số hợp u = u ( x) , ta ∫ eu du = eu + C x+ k e dx = e x + k + C ∫ 1 → +) ∫ e ax + b dx = ∫ e ax + b d ( ax + b ) = e ax + b + C a a e k − x dx = − e k − x + C ∫ Ví dụ: dx 1 d ( 3x ) a) ∫ e −2 x +1 − + dx = ∫ e −2 x +1dx − ∫ + ∫ dx = − ∫ e −2 x +1d ( −2 x + 1) − ∫ + 4.2 x sin 3x sin x sin x x x 1 = − e −2 x +1 + cot 3x + x + C b) ∫ ( 4e x+2 + cos (1 − 3x ) ) dx = ∫ e3 x + dx + ∫ cos (1 − x ) dx = 3x+2 e d ( 3x + ) − ∫ cos (1 − x ) d (1 − x ) ∫ 3 = e3 x + − sin (1 − x ) + C 3 Công thức 9: ∫ a x dx = ax +C ln a Chứng minh: ax ′ a x ln a ax Thật vậy, +C = = a x ⇒ ∫ a x dx = +C ln a ln a ln a Chú ý: +) Mở rộng với hàm số hợp u = u ( x) , ta ∫ a u du = a u + C +) ∫ a kx + m dx = kx + m a d ( kx + m ) = a kx + m + C ∫ k k Ví dụ: 3x 2x 23 x 32 x a u du d x + d x → I = + +C ( ) ∫ ( ) 3∫ 3ln 2ln 3 21− x x + − e x + ) dx = ∫ 21− x dx − ∫ 3e x + dx = − ∫ 21− x d (1 − x ) − ∫ e x + d ( x + 3) = − + e +C 2ln a) I = ∫ ( 23 x + 32 x ) dx = ∫ 23 x dx + ∫ 32 x dx = b) ∫ (2 1− x Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 Bảng nguyên hàm số hàm số thường gặp • ∫ 0dx = C • ∫ a x dx = • ∫ dx = x + C • ∫ xα dx = • x α +1 α +1 ax + C (0 < a ≠ 1) ln a • ∫ cos xdx = sin x + C + C, (α ≠ −1) • ∫ sin xdx = − cos x + C ∫ x dx = ln x + C • ∫ e x dx = e x + C • ∫ • ∫ cos2 x sin2 x dx = tan x + C dx = − cot x + C • ∫ cos(ax + b)dx = sin(ax + b) + C (a ≠ 0) a • ∫ eax + b dx = • ∫ sin(ax + b)dx = − cos(ax + b) + C (a ≠ 0) a • 1 ax + b e + C , (a ≠ 0) a ∫ ax + bdx = a ln ax + b + C LUYỆN TẬP TỔNG HỢP Ví dụ 1: [ĐVH] Chứng minh F(x) nguyên hàm hàm số f(x) biết F ( x) = (4 x − 5)e x a) x f ( x) = (4 x − 1)e F ( x) = tan x + x − b) f ( x) = tan x + tan x + x2 + F ( x) = ln x +3 c) −2 x f ( x) = ( x + 4)( x + 3) F ( x) = ln d) f ( x) = x2 − x + x2 + x + 2( x − 1) x4 + Ví dụ 2: [ĐVH] Tìm nguyên hàm sau 1 1) ∫ x – x + dx = x 2) ∫ 3) x4 + dx = x2 ∫ x −1 dx = x2 ( x − 1)2 4) ∫ dx = x2 5) ∫ ( ) x + x + x dx = 6) ∫ − dx = x x 7) ∫ 2sin x dx = Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 8) ∫ tan xdx = 9) ∫ cos xdx = 10) ∫ dx = sin x.cos x 11) ∫ cos x dx = sin x.cos x 12) ∫ 2sin x cos xdx = 13) ∫ e x ( e x – 1) dx = e− x 14) ∫ e x + dx = cos x 2x 15) ∫ e3 x +1 + dx = x −1 Ví dụ 3: [ĐVH] Tìm nguyên hàm F(x) hàm số f(x) thoả điều kiện cho trước: a) f ( x ) = x − x + 5; c) f ( x ) = e) f ( x ) = − 5x ; x x3 − x2 ; g) f ( x ) = sin x.cos x; i) f ( x ) = F (1) = b) f ( x ) = − cos x; F ( e) = d) f ( x ) = F (−2) = f) f ( x ) = x x + π F ' = 3 h) f ( x ) = x3 + 3x3 + 3x − ( x + 1)2 ; F (0) = x2 + ; x F (π) = F (1) = ; x 3x − x + x2 F (1) = −2 ; F (1) = x π π k) f ( x) = sin ; F = 2 BÀI TẬP LUYỆN TẬP Bài 1: [ĐVH] Cho hàm số g(x) Tìm nguyên hàm F(x) hàm số f(x) thoả điều kiện cho trước: a) g( x ) = x cos x + x ; f ( x ) = x sin x; π F =3 2 b) g( x ) = x sin x + x ; f ( x ) = x cos x; F (π) = c) g( x ) = x ln x + x ; f ( x ) = ln x; F (2) = −2 Bài 2: [ĐVH] Tìm điều kiện tham số để hàm số F(x) nguyên hàm hàm số f(x): F ( x ) = mx + (3m + 2) x − x + a) Tìm m f ( x ) = x + 10 x − F ( x ) = ln x − mx + b) Tìm m 2x + f (x) = x + 3x + Bài 3: [ĐVH] Tìm điều kiện tham số để hàm số F(x) nguyên hàm hàm số f(x): Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG F ( x ) = (ax + bx + c) x − x a) Tìm a, b, c f ( x ) = ( x − 2) x − x Facebook: LyHung95 F ( x ) = (ax + bx + c)e x b) Tìm a, b, c x f ( x ) = ( x − 3)e Bài 4: [ĐVH] Tìm điều kiện tham số để hàm số F(x) nguyên hàm hàm số f(x): F ( x ) = (ax + bx + c)e−2 x a) Tìm a, b, c −2 x f ( x ) = −(2 x − 8x + 7)e F ( x ) = (ax + bx + c)e − x b) Tìm a, b, c −x f ( x ) = ( x − x + 2)e Bài 5: [ĐVH] Tìm điều kiện tham số để hàm số F(x) nguyên hàm hàm số f(x): b c a) F ( x ) = (a + 1)sin x + sin x + sin x Tìm a, b, c f ( x ) = cos x F ( x ) = (ax + bx + c) x − b) Tìm a, b, c 20 x − 30 x + f ( x ) = 2x − Bài 6: [ĐVH] Tính nguyên hàm sau: 1) I1 = ∫(x ) + x dx 2) I = − 3 x dx x x − x + dx 4) I = x x ∫ ∫( ∫ 3) I = 5) I = ∫ x + dx x 6) I = ∫ ) x − x3 + x3 dx x4 + dx x2 Bài 7: [ĐVH] Tính nguyên hàm sau: 7) I = ∫ ( ) x −1 dx x x + x3 − x + 10) I10 = ∫ dx x2 8) I = ∫ ( x − 1) dx 11) I11 = ∫ 9) I = ∫ x2 − x x − x dx x (x 16) I16 = ∫ ( x − 24 x )( x − x ) dx 14) I14 = ∫ x + dx x 17) I17 = dx (2 x − 3)5 ∫ + 4) dx x2 12) I12 = ∫ − dx x x Bài 8: [ĐVH] Tính nguyên hàm sau: 13) I13 = ∫ x − dx x ( x − 3x 15) I15 = ∫ 18) I18 = ∫ ( x − 3) x x +1 ) dx dx Bài 9: [ĐVH] Tính nguyên hàm sau: x x π 19) I19 = sin + dx 20) I 20 = sin x + sin dx 3 2 7 π x +1 x 22) I 22 = sin 3x + − sin dx 23) I 23 = ∫ cos dx 4 ∫ ∫ ∫ x 21) I 21 = ∫ sin + x dx x 24) I 24 = ∫ sin dx Bài 10: [ĐVH] Tính nguyên hàm sau: 26) I 26 = ∫ dx cos x 29) I 29 = ∫ tan x dx 27) I 27 = ∫ dx cos ( x − 1) 30) I 30 = ∫ cot x dx 28) I 28 = ∫ ( tan x + x ) dx 31) I 31 = ∫ dx sin ( x + 3) Bài 11: [ĐVH] Tính nguyên hàm sau: 32) I 32 = ∫ dx − cos x 35) I 35 = ∫ sin x − dx − 5x 33) I 33 = ∫ x + + cot x dx x x+2 36) I 36 = ∫ dx x−3 34) I 34 = ∫ x + dx 3x + 2x −1 37) I 37 = ∫ dx 4x + Bài 12: [ĐVH] Tính nguyên hàm sau: Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016! Khóa học Luyện thi THPT Quốc Gia 2016 – Thầy ĐẶNG VIỆT HÙNG x dx − 5x 3x + x + x + 41) I 41 = ∫ dx x+2 38) I 38 = ∫ x + x + 11 dx x+3 x3 + x − 42) I 42 = ∫ dx 2x + 39) I 39 = ∫ Bài 13: [ĐVH] Tính nguyên hàm sau: 44) I 44 = ∫ e −2 x + dx 45) I 45 = ∫ cos(1 − x) + e3 x −1 dx 47) I 47 = ∫ e− x + dx sin (3 x + 1) e− x 48) I 48 = ∫ e x + dx cos x Facebook: LyHung95 2x2 − x + dx x −1 x2 + 6x + 43) I 43 = ∫ dx 2x + 40) I 40 = ∫ 46) I 46 = ∫ x.e − x +1dx 49) I 49 = ∫ ( 21− x − e x + ) dx Bài 14: [ĐVH] Tính nguyên hàm sau: 50) I 50 = ∫ dx 2x 51) I 51 = ∫ 2x dx 7x ∫ 52) I 52 = 32 x +1 dx Chương trình Luyện thi PRO–S PRO–E: Giải pháp tối ưu cho kì thi THPT Quốc Gia 2016!