1. Trang chủ
  2. » Luận Văn - Báo Cáo

Áp dụng thống kê FermiDirac biến dạng q và phương pháp thống kê mômen trong nghiên cứu một số tính chất nhiệt động, tính chất từ của kim loại và màng mỏng kim loạ

165 521 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 165
Dung lượng 7,54 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI DƯƠNG ĐẠI PHƯƠNG ÁP DỤNG THỐNG KÊ FERMI-DIRAC BIẾN DẠNG q VÀ PHƯƠNG PHÁP THỐNG KÊ MÔMEN TRONG NGHIÊN CỨU MỘT SỐ TÍNH CHẤT NHIỆT ĐỘNG, TÍNH CHẤT TỪ CỦA KIM LOẠI VÀ MÀNG MỎNG KIM LOẠI LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội - 2016 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI DƯƠNG ĐẠI PHƯƠNG ÁP DỤNG THỐNG KÊ FERMI-DIRAC BIẾN DẠNG q VÀ PHƯƠNG PHÁP THỐNG KÊ MÔMEN TRONG NGHIÊN CỨU MỘT SỐ TÍNH CHẤT NHIỆT ĐỘNG, TÍNH CHẤT TỪ CỦA KIM LOẠI VÀ MÀNG MỎNG KIM LOẠI Chuyên ngành: Vật lý lý thuyết Vật lý toán Mã số : 62.44.01.03 LUẬN ÁN TIẾN SĨ VẬT LÝ Người hướng dẫn khoa học: GS TS Vũ Văn Hùng PGS TS Lưu Thị Kim Thanh Hà Nội - 2016 LỜI CAM ĐOAN Tôi xin cam đoan luận án “Áp dụng thống kê Fermi-Dirac biến dạng q phương pháp thống kê mômen nghiên cứu số tính chất nhiệt động, tính chất từ kim loại màng mỏng kim loại” công trình nghiên cứu riêng Các số liệu trình bày luận án trung thực, đồng tác giả cho phép sử dụng chưa công bố công trình khác Hà Nội, ngày tháng năm 2016 Tác giả luận án Dương Đại Phương LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc trân trọng cảm ơn đến cá nhân tập thể sau GS TS Vũ Văn Hùng PGS TS Lưu Thị Kim Thanh - thầy giáo cô giáo trực tiếp hướng dẫn suốt thời gian qua, tận tình dạy, hướng dẫn giúp đỡ nhiều học tập nghiên cứu trình thực luận án; Các thầy, cô giáo Khoa Vật lý Phòng Sau đại học, Trường Đại học Sư phạm Hà Nội, đặc biệt thầy cô giáo Bộ môn Vật lý lý thuyết giúp đỡ, cung cấp kiến thức quý báu tạo điều kiện thuận lợi để học tập hoàn thành luận án; Các thầy, cô giáo Khoa Cơ bản, Trường Sĩ quan Tăng thiết giáp, Binh chủng Tăng thiết giáp, đặc biệt thầy cô giáo Bộ môn Lý - Hóa động viên, giúp đỡ tạo điều kiện thuận lợi để chuyên tâm nghiên cứu; Phòng Quản lý học viên, Đoàn 871, Tổng cục Chính trị, Bộ Quốc phòng tạo điều kiện giúp đỡ suốt thời gian học tập; Những người thân gia đình, bạn bè thân thiết động viên, giúp đỡ, ủng hộ, chia sẻ khó khăn tạo điều kiện để hoàn thành luận án Hà Nội, ngày tháng năm 2016 Tác giả luận án Dương Đại Phương MỤC LỤC Trang Lời cam đoan i Lời cảm ơn ii Mục lục iii Danh mục từ viết tắt v Danh mục bảng biểu vii Danh mục đồ thị, hình vẽ x MỞ ĐẦU xiv CHƯƠNG 1: TỔNG QUAN VỀ ĐỐI TƯỢNG NGHIÊN CỨU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 1.1 Tổng quan nghiên cứu tính chất nhiệt động tính chất từ kim loại màng mỏng kim loại 1.2 Tổng quan phương pháp lý thuyết thực nghiệm nghiên cứu tính chất nhiệt động tính chất từ kim loại màng mỏng kim loại 15 1.3 Phương pháp đại số biến dạng 18 1.4 Phương pháp thống kê mômen 22 Kết luận chương 30 CHƯƠNG 2: THỐNG KÊ FERMI-DIRAC BIẾN DẠNG q VÀ ỨNG DỤNG 32 2.1 Thống kê Fermi – Dirac thống kê Fermi – Dirac biến dạng q 32 2.2 Thống kê Fermi – Dirac biến dạng q nghiên cứu nhiệt dung độ cảm thuận từ khí điện tử tự kim loại 39 Kết luận chương 49 CHƯƠNG 3: PHƯƠNG PHÁP THỐNG KÊ MÔMEN TRONG NGHIÊN CỨU TÍNH CHẤT NHIỆT ĐỘNG CỦA MÀNG MỎNG KIM LOẠI VỚI CÁC CẤU TRÚC LPTD VÀ LPTK 50 3.1 Phương pháp thống kê mômen nghiên cứu tính chất nhiệt động màng mỏng kim loại với cấu trúc LPTD LPTK áp suất không 3.2 Phương pháp thống kê mômen nghiên cứu tính chất nhiệt 51 động màng mỏng kim loại với cấu trúc LPTD LPTK tác dụng áp suất 76 Kết luận chương 81 CHƯƠNG 4: KẾT QUẢ TÍNH SỐ VÀ THẢO LUẬN 82 4.1 Nhiệt dung độ cảm thuận từ khí điện tử tự kim loại 82 4.2 Khoảng lân cận gần đại lượng nhiệt động MMKL với cấu trúc LPTD LPTK áp suất không 4.3 Khoảng lân cận gần đại lượng nhiệt động MMKL 93 với cấu trúc LPTD LPTK tác dụng áp suất Kết luận chương 121 KẾT LUẬN 133 TÀI LIỆU THAM KHẢO 136 132 DANH MỤC TỪ VIẾT TẮT STT Diễn giải Viết tắt Thống kê mômen TKMM Thống kê Fermi-Dirac TKFD Kim loại kiềm KLK Kim loại chuyển tiếp KLCT Màng mỏng kim loại MMKL Lập phương tâm diện LPTD (FCC) Lập phương tâm khối LPTK (BCC) Lục giác xếp chặt LGXC (HCP) Phương pháp thống kê mômen 10 Thực nghiệm 11 Tính chất nhiệt động TCNĐ 12 Đại lượng nhiệt động ĐLNĐ 13 Lí thuyết phiếm hàm mật độ DFT 14 Động lực học phân tử MD 15 Phương pháp từ nguyên lí 16 Phương pháp epitaxi chùm phân tử MBE 17 Trường phonon tự hợp SCPF 18 Nhà xuất NXB 19 Giáo dục Việt Nam GDVN 20 Đại học Sư phạm ĐHSP 21 Đại học Quốc gia ĐHQG 22 Khoa học kỹ thuật KHKT 23 Đại học Bách khoa ĐHBK 24 25 Khoa học tự nhiên công nghệ quốc gia International Symposium on Frontiers in Materials Science PPTKMM (SMM) TN (EXPT) AB INITIO KHTN & CNQG ISFMS DANH MỤC BẢNG BIỂU Trang Bảng 3.1 Các giá trị thực nghiệm thông số m, n, D, r0 MMKL Al, Cu, Au, Ag với cấu trúc LPTD 67 Bảng 3.2 Các giá trị thực nghiệm thông số m, n, D, r0 MMKL Fe, W, Nb, Ta với cấu trúc LPTK 67 Bảng 4.1 Các giá trị thực nghiệm mức lượng Fermi số nhiệt điện tử kim loại 82 Bảng 4.2 Các giá trị tính toán số nhiệt điện tử tham số bán thực nghiệm q điện tử kim loại theo lý thuyết biến dạng 82 Bảng 4.3 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo tính toán lý thuyết thực nghiệm K 84 Bảng 4.4 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo tính toán lý thuyết thực nghiệm Na 84 Bảng 4.5 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo tính toán lý thuyết thực nghiệm Rb 84 Bảng 4.6 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo tính toán lý thuyết thực nghiệm Cs 85 Bảng 4.7 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo tính toán lý thuyết thực nghiệm Ag 85 Bảng 4.8 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo tính toán lý thuyết thực nghiệm Au Bảng 4.9 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo 85 tính toán lý thuyết thực nghiệm Cu Bảng 4.10 Sự phụ thuộc nhiệt độ nhiệt dung khí điện tử tự theo 86 tính toán lý thuyết thực nghiệm Cd 86 Bảng 4.11 Độ cảm thuận từ khí điện tử tự kim loại theo thực nghiệm [108, 112-115] lý thuyết biến dạng Bảng 4.12 Sự phụ thuộc nhiệt độ đại lượng nhiệt động 91 màng mỏng Al áp suất P = Bảng 4.13 Sự phụ thuộc nhiệt độ đại lượng nhiệt động 93 màng mỏng Cu áp suất P = 94 Bảng 4.14 Sự phụ thuộc nhiệt độ đại lượng nhiệt động màng mỏng Au áp suất P = 95 Bảng 4.15 Sự phụ thuộc nhiệt độ đại lượng nhiệt động màng mỏng Ag áp suất P = 97 Bảng 4.16 Sự phụ thuộc nhiệt độ đại lượng nhiệt động màng mỏng Fe áp suất P = 98 Bảng 4.17 Sự phụ thuộc nhiệt độ đại lượng nhiệt động màng mỏng W áp suất P = 99 Bảng 4.18 Sự phụ thuộc nhiệt độ đại lượng nhiệt động màng mỏng Nb áp suất P = 100 Bảng 4.19 Sự phụ thuộc nhiệt độ đại lượng nhiệt động màng mỏng Ta áp suất P = Bảng 4.20 Sự phụ thuộc bề dày đại lượng nhiệt động 102 màng mỏng Al nhiệt độ 300K áp suất P = Bảng 4.21 Sự phụ thuộc bề dày đại lượng nhiệt động 103 màng mỏng Al nhiệt độ 300K áp suất P = Bảng 4.22 Sự phụ thuộc bề dày đại lượng nhiệt động 103 104 màng mỏng Au nhiệt độ 300K áp suất P = Bảng 4.23 Sự phụ thuộc bề dày đại lượng nhiệt động màng mỏng Ag nhiệt độ 300K áp suất P = Bảng 4.24 Sự phụ thuộc bề dày đại lượng nhiệt động 104 màng mỏng Fe nhiệt độ 300K áp suất P = Bảng 4.25 Sự phụ thuộc bề dày đại lượng nhiệt động 105 màng mỏng W nhiệt độ 300K áp suất P = Bảng 4.26 Sự phụ thuộc bề dày đại lượng nhiệt động 105 màng mỏng Nb nhiệt độ 300K áp suất P = Bảng 4.27 Sự phụ thuộc bề dày đại lượng nhiệt động 106 màng mỏng Ta nhiệt độ 300K áp suất P = Bảng 4.28 Sự phụ thuộc áp suất đại lượng nhiệt động 106 màng mỏng Al nhiệt độ 300K bề dày khác Bảng 4.29 Sự phụ thuộc áp suất đại lượng nhiệt động 122 màng mỏng Cu nhiệt độ 300K bề dày khác Bảng 4.30 Sự phụ thuộc áp suất đại lượng nhiệt động 122 màng mỏng Au nhiệt độ 300K bề dày khác Bảng 4.31 Sự phụ thuộc áp suất đại lượng nhiệt động 123 màng mỏng Ag nhiệt độ 300K bề dày khác Bảng 4.32 Sự phụ thuộc áp suất đại lượng nhiệt động 123 màng mỏng Fe nhiệt độ 300K bề dày khác Bảng 4.33 Sự phụ thuộc áp suất đại lượng nhiệt động 124 màng mỏng W nhiệt độ 300K bề dày khác Bảng 4.34 Sự phụ thuộc áp suất đại lượng nhiệt động 124 màng mỏng Nb nhiệt độ 300K bề dày khác Bảng 4.35 Sự phụ thuộc áp suất đại lượng nhiệt động 125 màng mỏng Ta nhiệt độ 300K bề dày khác 125 132 Kết luận chương Trong chương 4, trình bày bốn vấn đề chủ yếu Thứ nhất, tính số nhiệt dung độ cảm thuận từ khí điện tử tự kim loại cho số KLK KLCT Các kết tính toán thu cho phù hợp dáng điệu giá trị với số liệu TN kết tính toán khác Thứ hai, tính số khoảng lân cận gần MMKL với cấu trúc LPTD LPTK áp suất không áp suất khác không xem xét phụ thuộc nhiệt độ bề dày khoảng lân cận gần MMKL áp suất không áp suất khác không Kết thu khoảng lân cận gần màng mỏng sử dụng để tính ĐLNĐ Thứ ba, áp dụng tính số ĐLNĐ phụ thuộc vào nhiệt độ, áp suất bề dày MMKL với cấu trúc LPTD LPTK Các kết tính toán thu cho phù hợp dáng điệu giá trị với số liệu thực nghiệm kết tính toán khác Thứ tư, kết tính số thu cho thấy bề dày màng mỏng tăng lên khoảng 20nm đến 70nm tùy vào ĐLNĐ tính chất màng mỏng trở tính chất vật liệu khối 133 KẾT LUẬN Luận án sử dụng thống kê Fermi-Dirac biến dạng q để nghiên cứu nhiệt dung, độ cảm thuận từ khí điện tử tự kim loại nhiệt độ thấp PPTKMM học thống kê để nghiên cứu TCNĐ MMKL với cấu trúc LPTD LPTK Các kết thu luận án sau Bằng cách áp dụng thống kê Fermi-Dirac biến dạng q, tìm biểu thức giải tích nhiệt dung độ cảm thuận từ khí điện tử tự kim loại nhiệt độ thấp Các đại lượng phụ thuộc vào tham số q Các kết chứng tỏ nhiệt độ thấp, nhiệt dung khí điện tử tự kim loại tỉ lệ bậc với nhiệt độ tuyệt đối độ cảm thuận từ khí điện tử tự kim loại phụ thuộc yếu vào nhiệt độ Bằng cách sử dụng giá trị tham số bán thực nghiệm q cho nhóm KLK KLCT, tính số nhiệt dung độ cảm thuận từ khí điện tử tự kim loại kết tính số cho phù hợp với kết thực nghiệm Xây dựng biểu thức giải tích ĐLNĐ lượng tự Helmholtz, độ dịch chuyển trung bình hạt khỏi vị trí cân bằng, khoảng lân cận gần trung bình hai hạt, hệ số nén đẳng nhiệt, hệ số dãn nở nhiệt , nhiệt dung đẳng tích đẳng áp, môđun đàn hồi đẳng nhiệt, Các biểu thức tính đến đóng góp hiệu ứng phi điều hoà dao động mạng, hiệu ứng bề mặt, hiệu ứng kích thước ảnh hưởng nhiệt độ áp suất Sử dụng tương tác Lennard – Jones để tính số cho biểu thức thu ĐLNĐ Kết cho thấy khoảng lân cận gần ĐLNĐ phụ thuộc vào nhiệt độ, áp suất bề dày màng mỏng Các kết thu cho phù hợp với thực nghiệm kết nghiên cứu tác giả khác Khi bề dày màng mỏng tăng đến khoảng từ 20nm đến 70nm tùy vào ĐLNĐ tính chất màng mỏng trở tính chất vật liệu khối 134 Các công thức giải tích ĐLNĐ thu luận án không áp dụng cho MMKL với cấu trúc LPTD LPTK mà làm sở lý thuyết để nghiên cứu tính chất đàn hồi MMKL với cấu trúc LPTD, LPTK, nghiên cứu TCNĐ đàn hồi MMKL với cấu trúc LGXC, nghiên cứu TCNĐ đàn hồi MMKL có chân đế với cấu trúc LPTD, LPTK, LGXC, nghiên cứu TCNĐ đàn hồi màng mỏng bán dẫn với cấu trúc kiểu kim cương sunfua kẽm, … Sự thành công luận án góp phần hoàn thiện phát triển việc áp dụng PPTKMM để nghiên cứu tính chất vật liệu tinh thể Chúng tiếp tục mở rộng lý thuyết để nghiên cứu tính chất đàn hồi, TCNĐ màng mỏng có chân đế màng mỏng bán dẫn thời gian tới 135 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA TÁC GIẢ CÓ LIÊN QUAN ĐẾN NỘI DUNG LUẬN ÁN Duong Dai Phuong, Vu Van Hung and Nguyen Thi Hoa (2013), Coefficients of thermal expansion of thin metal films investigated using the statistical moment method, HNUE Journal of Science 58 (7), pp 109–116 Vu Van Hung, Duong Dai Phuong and Luu Thi Kim Thanh (2013), Investigation of the specific heat at constant volume of free electrons in metals using q-deformed Fermi-Dirac statistics, HNUE Journal of Science 58 (7), pp.117124 Vu Van Hung, Duong Dai Phuong and Nguyen Thi Hoa (2013), Investigation of thermodynamic properties of metal thin film by statistical moment method, Com Phys 23 (4), pp 301–311 Vu Van Hung, Duong Dai Phuong and Nguyen Thi Hoa (2014), Thermodynamic properties of free standing thin metal films: Temperature and pressure dependences, Com Phys 24 (2), pp 177–191 Duong Dai Phuong, Vu Van Hung, Nguyen Thi Hoa and Le Thi Thanh Huong (2014), Lattice constant of thin metal films investigated by statistical moment method, HNUE Journal of Science, 59 (7), pp 3–11 Vu Van Hung, Duong Dai Phuong, Nguyen Thi Hoa and Ho Khac Hieu (2015), Theoretical investigation of the thermodynamic properties of metallic thin films, Thin Solid Films 583, pp 7–12 Duong Dai Phuong, Nguyen Thi Loan, Luu Thi Kim Thanh, Vu Van Hung and Ngo Gia Vinh (2015), Investigation of the paramagnetic susceptibility of free electrons in metals using q-deformed Fermi-Dirac statistics, Journal of science of HPU N02 35, pp 28–38 136 Duong Dai Phuong, Vu Van Hung and Ho Khac Hieu (2015), Mechanical properties of metallic thin films: Theoretical approach, Modern Physics Letters B (Submitted) TÀI LIỆU THAM KHẢO I Tiếng Việt [1] Lê Công Dưỡng, Nghiêm Hùng, Nguyễn Văn Chi, Nguyễn Trọng Báo, Đỗ Minh Nghiệp (1986), Kim loại học, NXB ĐHBK Hà Nội [2] Nguyễn Quang Báu, Bùi Bằng Đoan, Nguyễn Văn Hùng (2004), Vật lí thống kê, NXB ĐHQG Hà Nội, Hà Nội [3] Nguyễn Thế Khôi, Nguyễn Hữu Mình (1992), Vật lí chất rắn, NXB GD, Hà Nội [4] Đào Khắc An (2009), Công nghệ micro nano điện tử, NXB GD, Hà Nội [5] Nguyễn Năng Định (2005), Vật lý kỹ thuật màng mỏng, NXB ĐHQG Hà Nội, Hà Nội [6] Vũ Văn Hùng (2006), Vật lí thống kê, NXB ĐHSP, Hà Nội [7] Vũ Văn Hùng (2009), Phương pháp thống kê mômen nghiên cứu tính chất nhiệt động đàn hồi tinh thể, NXB ĐHSP, Hà Nội [8] Nguyễn Văn Hiệu (2000), Phương pháp lí thuyết trường lượng tử vật lý chất rắn vật lí thống kê, NXB ĐHQG Hà Nội [9] Đặng Văn Soa (2005), Đối xứng chuẩn mô hình thống điện yếu, NXB ĐHSP, Hà Nội [10] Đào Vọng Đức (1998), Các giảng đối xứng cao hạt bản, Đọc lớp cao học nghiên cứu sinh Trung tâm Vật lý lý thuyết, Viện Vật lý, Hà Nội [11] Nguyễn Phú Thùy (1996), Từ học siêu dẫn, NXB ĐHQG Hà Nội, Hà Nội [12] Thân Đức Hiền, Lưu Tuấn Tài (2008), Từ học vật liệu từ, NXB KHKT, Hà Nội 137 [13] Nguyễn Quang Học, Vũ Văn Hùng (2013), Giáo trình vật lí thống kê nhiệt động lực học, tập 1, NXB ĐHSP, Hà Nội [14] Phạm Quý Tư (1998), Nhiệt động lực học, NXB ĐHQG Hà Nội, Hà Nội [15] Vũ Văn Hùng (1990), Phương pháp mômen việc nghiên cứu tính chất nhiệt động tinh thể lập phương tâm diện lập phương tâm khối, Luận án Phó tiến sĩ khoa học Toán lý, Trường Đại học Tổng hợp Hà Nội, Hà Nội [16] Nguyễn Thanh Hải (1998), Nghiên cứu tính chất nhiệt động môđun đàn hồi kim loại có khuyết tật, Luận án Tiến sĩ Vật lý, Trường Đại học Sư phạm Hà Nội, Hà Nội [17] Nguyễn Thị Hòa (2007), Nghiên cứu biến dạng đàn hồi phi tuyến trình truyền sóng đàn hồi kim loại, hợp kim phương pháp mô men, Luận án Tiến sĩ Vật lý, Trường Đại học Sư phạm Hà Nội, Hà Nội [18] Nguyễn Quang Học (1994), Nghiên cứu tính chất nhiệt động tinh thể lạnh phân tử tinh thể kim loại, Luận án Phó Tiến sĩ Toán lí, Trường ĐHSP Hà Nội, Hà Nội [19] Phạm Thị Minh Hạnh (2007), Nghiên cứu tính chất nhiệt động môđun đàn hồi tinh thể hợp chất bán dẫn phương pháp mômen, Luận án Tiến sĩ Vật lý, Trường Đại học Sư phạm Hà Nội, Hà Nội [20] Lưu Thị Kim Thanh (2000), Một số vấn đề đối xứng lượng tử vật lý vi mô, Luận án tiến sĩ vật lý, Trung tâm KHTN & CNQG Hà Nội, Hà Nội II Tiếng Anh [21] Bonderover E and Wagner S (2004), A woven inverter circuit for etextile applications, JEEE Elektron Dev Lett., 25:295 [22] Nakao S., et al (2006), Mechanical properties of micronsizes SCS film in a high temperature enviroment, J Micromech Microeng, 16:715 [23] Wang N., et al (2008), Nonhomogeneous surface premelting of Au nanoparticles, Nanotechnology, 19:575 [24] Liang L H., et al (2002), Size-dependent elastic modulus of Cu and Au thin films, Solid State Communications, 121 (8), pp 453–455 138 [25] Chen S., Liu L., Wang T (2005), Investigation of the mechanical properties of thin films by nanoindentation considering the effects of thickness and different coating-substrate combinations, Surface & Coatings Technology 191, pp 2532 [26] Kanagaraj S., Pattanayak S (2003), Measurement of the thermal expansion of metal and FRPs, Cryogenics, 43 pp 399-424 [27] Laudon M., Carlson N N., Masquelier M P., Daw M S., and Windl W (2001), Multiscale modeling of stress-mediated diffusion in silicon: Ab initio to continuum, Applied Physics Letters, 78(2), pp 201-203 [28] Yeongseok Z., et al (2006), Investigation of coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction, Thin Solid Films, 513, pp 170-174 [29] Vocadlo L., Alfe D., Price G.D., and Gillan M.J (2004), Ab initio melting curve of copper by the phase coexistence approach, J Chem Phys., Vol 120, pp 2872-2878 [30] Belonoshko A.B., Ahuja R., Eriksson O., and Johansson B (2000), Quasi ab initio molecular dynamic study of Cu melting, Phys Rev, 61, pp.3838-3844 [31] Kolska Z., Riha J., Hnatowicz V., and Svorcik V (2010), Lattice parameter and expected density of Au nano-structures sputtered on glass, Materials Letters, 64, pp 1160-1162 [32] Liang L H and Li B (2006), Size-dependent thermal conductivity of nanoscale semiconducting systems, Physical Review B, 73 (15), p 153303 [33] Biswas A., et al (2006), Low cost, tailored polymer-metal nanocomposites for advanced electronic applications, Vac Technol Coat, 7:57 [34] Nicola L., Xiang Y., Vlassak J.J., Van der Giessen E., Needleman A (2006), Plastic deformation of freestanding thin films: Experiments and modeling, Journal of Mechanics and Physics of Solids, 54, pp 2089-2110 139 [35] Streitz F H., et al (1990), Elastic properties of thin fcc films, Physical Review B, 41, (17), pp 12285–12287 [36] Fang W., Chun-Yen L (2000), On the thermal expansion coefficients of thin films, Sensors and Actuators, 84, pp 310-314 [37] Fang W., Hsin-Chung T., Chun-Yen L (1999), Determining thermal expansion coefficients of thin films using micromachined cantilevers, Sensors and Actuators, 77, pp 21-27 [38] Wang C., Cheng B.L., Wang S.Y., Lu H.B., Zhou Y.L., Chen Z.H., Yang G.Z (2005), Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba 0.02Sr 98)TiO3 thin films grown on MgO substrate by pulsed laser deposition, Thin Solid Film, 485, pp 82-89 [39] Osamu Sugino and Roberto Car (1995), Ab initio molecular dynamics study of First-Order phase transitions: Melting of Silicon., Phys Rev Lett., Vol 72, No 10 pp 1823-1826 [40] Jiang X., et al (1989), The study of mechanical properties of aC:H films by Brillouin scattering and ultralow load indentation, J Appl Phys., 66, pp 47294735 [41] Jiang X., et al (1990), Mechanical properties of aSi:H films studied by Brillouin scattering and nanoindenter, J Appl Phys., 67, pp 6772-6778 [42] Haibo H., Spaepen F (2000), Tensile testing of free-standing Cu, Ag, and Al thin films and Ag/Cu multilayers, Acta mater, 48, pp 3261-3269 [43] Yan-Feng Z., Tang Z., Tie-Zhu H., Xu-Cun M., Jin-Feng J., Qui-Kun X., Kun Xun and Si-Cheng W (2007), “ Oscillatory thermal expansion of Pb thin films modulated by quantum size effects”, American Institute of Physic, applied physics letters, 90, p 093120 [44] Terletsky P Ya., and Tang N (1967), General fluctuation theorems of quantum statistics, Ann der Phys 474 (5-6), pp 299-311 140 [45] Knepper R and Baker S.P (2007), Coefficient of thermal expansion and biaxial elastic modulus of β phase tantalum thin films, Appl Phys Lett., 90, p 181908 [46] Vaz A.R., Salvadori M.C., Cattani M (2004), Young Modulus measurement of nanostructured metallic thin films, Journal of Metastable and Nanocrystalline Matcrials Vols, 20-21, pp 758-762 [47] Plakida N M., Siklós T (1978), Lattice dynamics and stability of anharmonic crystals, Acta Physica Academiae Scientiarum Hungaricae, Vol 45, pp 37-74 [48] Tyablikov S.V., Konvent G (1968), On the spin-phonon interaction in ferromagnetic crystals, Phys Lett., 27A, p 130 [49] Kirnitz D A., (1963), Polevye metody teorii mnogik chastitz, Gosatomizdat, Moskva [50] Nguyen Tang and Vu Van Hung (1998), Investigation of the Thermodynamic Properties of Anharmonic Crystals by the Momentum Method I General Results for Face-Centred Cubic Crystals, Phys Stat Sol (b), B149 (2) pp.511-519 [51] Masuda-Jindo K., Hung V.V., and Tam P.D (2003), Thermodynamic quantities of metals investigated by an analytic statistical moment method, Phys.Rev, B67, p 094301 [52] Vu Van Hung and Masuda- Jindo K (2000), Application of Statistical Moment Method to Thermodynamic Properties of Metals at High Pressures, Phys Soc.Jpn, 69, p 2067 [53] Kraft O., Nix W.D (1998), Measurement of the lattice thermal expansion coefficients of thin metal films on substrates, Journal of Applied Physics, 83 (6), pp 3035-3038 [54] Efremov M Y., Olson E A., Zhang M., Lai S L., Schiettekatte F., Zhang Z S., and Allen L H (2004), Thin-film differential scanning nanocalorimetry: heat capacity analysis, Thermochimica Acta, 412, pp 13-23 [55] Singh N., and Singh S.P (1990), Phonon spectra and isothermal elastic constants for f-shell metals: A dynamical treatment, Phys Rev B42, pp.1652 141 [56] Kohn W., and Sham L J (1965), Self-Consistent Equations Including Exchange and Correlation Effects, Phys Rev A, 140, p 1133 [57] Macrander A.T (1978), Density of solid krypton at melting and isochoric equation of state of solid krypton and solid argon, Phys Stat Sol (a), Vol 48, pp 571-579 [58] Gray D.E., American Institute of Physics Handbook (1972), 3rd Edition Mcgraw-Hill, Tx [59] Gerald G., Robert E Prud’homme (2007), Thickness Dependence of FreeStanding Thin Films, Journal of Polymer Science: Part B: Polymer Physics, Vol 45, pp 10-17 [60] Singh M et al (2012), Nanoscience and Nanotechnology, (6), pp 20–207 [61] Weiss B., Groger V., Khatibi G., Kotas A., Zimprich P., Stickler R., Zagar B (2002), Characterization of mechanical and thermal properties of thin Cu foils and wires, Sensors and Actuators, A 99, pp 172-182 [62] Kuru Y., Wohlschlogel M., Welzel U., Mittemeijer E.J (2008), Coefficients of thermal expansion of thin metal films investigated by non-ambient X-ray diffraction stress analysis, Surface & Coating Technology, 202, pp 2306-2309 [63] Kim C., Robinson I.K., Jaemin Myoung, Kyuhwan S., Myung-Cheol Yoo, Kyekyoon Kim (1996), Critical thickness of GaN thin films on sapphire (0001), Appl Phys Lett., 69 (16) [64] Cornella G et al (1998), Determination of temperature dependent unstressed lattice spacings crystalline thin films on substrates, MRS online proc Lib., Vol 505, pp 527-532 [65] Fuks D., Dorfman S., Zhukovskii F., Kotomin A., Marshall Stoneham A., (2001), Theory of the growth mode for a thin metallic film on an insulating substrate, Surface Science, 499, pp 24-40 [66] Magomedov M., (2006), The calculation of the parameters of the mie-lennardjones potential, High Temperature, 44 (4), pp.513-529 [67] Billings B H., et al (1963), Americal Institute of Physics Handbook (McGrawHill Book company, New York 142 [68] Leibfried G and Ludwig W (1961), Theory of Anharmonic Effects in Crystals, Academic Press, New Theory of Anharmonic Effects in Crystals, Academic Press, New York/London [69] Vu Van Hung, Duong Dai Phuong, Nguyen Thi Hoa and Ho Khac Hieu (2015), Theoretical investigation of the thermodynamic properties of metallic thin films, Thin Solid Films, 583, pp 7–12 [70] Nguyen Tang, Izv Vuzov, Fizika (1981), 6, p 38 [71] Nguyen Tang and Vu Van Hung (1990), Investigation of the Thermo-dynamic Properties of Anharmonic Crystals by the Moment Method: III Thermodynamic Properties of the crystals at Various Pressures, Phys Stat Sol (b), 162(2), pp 371-377 [72] Nguyen Tang and Vu Van Hung (1990), Investigation of the Thermodynamic Properties of Anharmonic Crystals by the Moment Method: II Comparison of Calculations with Experiments for Inert Gas Crystals, Phys Stat Sol (b), 161(1), pp 165-171 [73] V V Hung, N T Hai and N Q Bau (1997), Investigation of the Thermodynamic Properties of Anharmonic Crystals with Defects by the Moment Method, J Phys Soc Jpn., 66, pp 3494-3498 [74] Vu Van Hung, Duong Dai Phuong and Nguyen Thi Hoa (2013), Investigation of thermodynamic properties of metal thin film by statistical moment method, Com Phys., 23 (4), pp 301–311 [75] Vu Van Hung, Duong Dai Phuong and Nguyen Thi Hoa (2014), Thermodynamic properties of free standing thin metal films: Temperature and pressure dependences, Com Phys., 24 (2), pp 177–191 [76] Chaichian M., Kulish P P (1990), Quantum superalgebras, q-oscillators and application, Preprint CE RN-TH 5969/90 [77] Daskaloyannics C (1992), Generalized deformed oscillator corresponding to the modified Poschl-Teller energy spectrum, J Phys A: Math Gen., 25, pp 22672272 143 [78] Biedenharn L C., Dam H V (1965), Quantum Theory of Angular Momentum, NewYork, Academic [79] Feynman R P., Hibbs A R (1965), Quantum Mechanics and Path Intergrals, New York [80] Floreanini R., Spiridonov V P., Vinet L (1990),Bosonic realization of the quantum superalgebra OSPq(l, 2n), Preprint UCNA/90/TEP/12 [81] H H Bang, H N Long (1990), The renormalizability and their asymptotically behavior of extended wesszumino models, Czech J Phys., 40, pp 605-612 [82] Baxter R J (1992), Exactly Solved Models in Statistical Mechanic, Academic, London [83] Brodimas G., Jannussis and Mignani A (1992), Bose realization of a noncanonical Heisenberg algebra, J Phys A: Math Gen., 25, p 329-334 [84] Kumari M K (1992), On q- deformed para oscillators and para –q oscillators, Mod Phys Lett, A7 No 28, pp 2593 – 2600 [85] Chaichian M., Gonzalez Felipet R and Montonen C (1993), Statistics of qoscillators, quons and relations to fractional statistics, J Phys A: Math Gen., 26, pp 4017-4034 [86] Chakrbarti R and Jagarnathan R (1992), On the number operators of single mode q - oscillators, J Phys A: Math.Gen., 25, pp 6393-6398 [87] Caracciolo R and Monteiro M A (1993), Anyonic realization of SUq(N) quantum algebra, Phys Lett., B308, p.p 58-64 [88] Kittel C (1996), Introduction to Solid State Physics, seventh edition, (John Wiley and Sons, New York) [89] Demidov E E., Manin Yu I., Mukhin E D., Zhdanovich E V., (1990), Nonstandard quantum deformation of GL(n) and consistent solution of the Yang-Bexter equations, Print RIMS – 101, Kyoto [90] Kuchta R and Tahada K (1992), On a generalized boson realization of fermions, Eusophys Lett., 25 No 5, pp 319-322 144 [91] Manko V I., et al (1993), Physical nonlinear aspects of classical and quantum qoscillators, Mod Phys A 8, p 3577 [92] Kittel C (2005), Introduction to Solid State Physics, eighth edition, (John Wiley and Sons, Inc) [93] D V Duc (1994), Generalized q-deformed oscillators and their statistics, PreprintENSLAPP – A – 494/94, Annecy France [94] Jing S (1993), The Jordan – Schwinger realization of two-parameter quantum group Slqs(2), Mod Phys Lett., A No.6, pp 543-548 [95] Cho K.H., Rim C., Soh D.S and Park S.U (1994), q – deformed oscillators associated with the Calogero mode and its q- coherent state, J.Phys A: Mat Gen 27, pp 2811 – 2822 [96] Biedenhar L.C (1989), The quantum group SUq (2) and a q – analoque of the Boson operators, J Phys A: Math Gen 22, p 1873 [97] Aizawa N and Sato H (1991), q – deformation of the virasoro algebra with Antralextension, Phys Lett B 256, No 2, p 185 [98] Celenini E., Palev T D., Tarlini M (1990), The quantum superalgebra Bq(0/1) and q-deformed creation and annihilation operatora, Mod Phys Let., B5, pp 187-193 [99] D V Duc, L T K Thanh (1997), On the q- deformed multimode oscillators, Comm Phys No 1.2, pp 10-14 [100] Sun Y., Zhang J and Guidry M (1995), ∆I=4 bifurcation without explicit fourth fold symmetry, Phys Rev Lett., 75 No 19, pp 3398-3401 [101] Bonatsos D., Daskaloyannis C and et al (1996), ∆I=4 and ∆I=8 bifurcations in rotational bands of diatomic molecules, Phys Rev A 54, No 4, pp 25332536 [102] Zhang D (1993), Quantum deformation of KDV Hierarchiew and their infinitely many conservation Laws, J Phys A: Math Gen., 26, pp 23892408 145 [103] H H Bang (1996), The para-bose realization of para-fermions, Mod Phys Lett., A11 No 24, pp 1971-1975 [104] H H Bang and M A Mansur Chowshury (1997), Generalized deformed para-bose algebra with complex structure function, Phys Acta., 10, pp 703709 [105] Drifeld V G (1998), Quantum Groups, Procesdings of the international Congress of Mathematician, Berkely, CA, USA, p 798 [106] Chartuvedi S., Srinivasan V (1991), Para-bose oscillators as deformed bose oscillator, Phys Rev., A44, pp 8024-8026 [107] Kibler M., Negadi T (1991), On quantum groups and their potential use in mathematical chemistry, Preprint LYCEN, p 9121 [108] Handbook of Chemistry and Physics, 85th Edition (2004-2005), CRC Press [109] Shabanov S V (1993), Quantum and classical mechanics and q deformed systems, J Phys A: Math Gen., 26, pp 2583-2606 [110] Y J Ng (1990), Comment on the q-analogues of the harmonic oscillator, J Phys A: Math Gen., 23, pp 1023-1027 [111] NIST Web site: http://physics.nist.gov/cuu/Constants/index.html [112] Landolt-B.rnstein (1986), Numerical Data and Functional Relationships in Science and Technology, New Series, II/16, Diamagnetic Susceptibilit, Springer-Verlag, Heidelberg [113] Landolt-B.rnstein (1986-1992), Numerical Data and Functional Relationships in Science and Technology, New Series, III/19, Subvolumes a to i2, Magnetic Properties of Metals, Springer-Verlag, Heidelberg [114] Landolt-B.rnstein (1966-1984), Numerical Data and Functional Relationships in Science and Technology, New Series, II/2, II/8, II/10, II/11,and II/12a, Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Heidelberg [115] Tables de Constantes et Donnes Paramagnetique, Masson, Paris (7) Numerique (1957), Relaxation 146 [116] Kittel C (1999), Einfuhrung in die Festkorper Physics, Abb.6.3 Abb.6.4; Abb.6.8; Abb.6.9 [117] Biswas S.N and Das A (1988), Thermo field dynamics and para statistical Mechanics, Mod Phys Lett, A3, (6), pp 549–559 [118] Brodimas G., Jannussis A., Sourlas D., Zisis V and Poulopoulos P (1981), para – Bose operators, lettereal Nuovo cimento, 31, (5), pp 177–182 [119] A J Macfarlane (1989), On q-analogues of the quantum harmonic oscillators and the quantum group SU(2)q, J Phys A: Math Gen., 22, pp 4581-4588 [120] Biedenharn L.C., M Tarlim (1992), On q-tenser operators for quantum groups, Phys Lett., A167, pp 363–366 [121] Lukierski J., Nowicki A and Ruegg H (1992), New quantum Poincare algebra and q-deformed field theory, Phys Lett., B293, pp 344–352 [...]... thuyết đại số biến dạng q để nghiên cứu nhiệt dung và độ cảm thuận từ của khí điện tử tự do trong kim loại ở nhiệt độ thấp và áp dụng lý thuyết thống kê mômen để nghiên cứu tính chất nhiệt động của màng mỏng kim loại Đề tài luận án là Áp dụng thống kê Fermi-Dirac biến dạng q và phương pháp thống kê mômen trong nghiên cứu một số tính chất nhiệt động, tính chất từ của kim loại và màng mỏng kim loại ” 2... tính chất nhiệt động và tính chất từ của kim loại và màng mỏng kim loại 1.1.1 Nhiệt dung và tính chất từ của khí điện tử tự do trong kim loại 1.1.1.1 Nhiệt dung của khí điện tử tự do trong kim loại Kim loại là một vật rắn có tính dẫn điện tốt Độ dẫn điện riêng của kim loại vào khoảng từ 106 đến 108 Ω −1m −1 vì trong kim loại có chứa rất nhiều điện tử tự do Nếu mỗi nguyên tử cho một điện tử thì trong. .. chế tạo và vai trò của nghiên cứu màng mỏng trong khoa học và công nghệ Tiếp theo, chúng tôi trình bày các phương pháp lý thuyết và thực nghiệm trong nghiên cứu tính chất nhiệt động và tính chất từ của kim loại và MMKL trong đó giới thiệu hai phương pháp nghiên cứu chính được sử dụng trong luận án là phương pháp đại số biến dạng và PPTKMM Chương 2 trình bày thống kê Fermi-Dirac, lý thuyết q số với dao... nhỏ so với quãng 7 đường tự do trung bình của điện tử hoặc các chiều dài tương tác thì tính chất của màng mỏng hoàn toàn thay đổi so với tính chất của vật liệu khối Dựa trên tính chất của màng, người ta phân loại màng mỏng thành 6 loại cơ bản là màng mỏng quang, màng mỏng điện, màng mỏng từ, màng mỏng hóa, màng mỏng nhiệt và màng mỏng cơ Ví dụ như tính chất hóa học của màng mỏng được sử dụng trong các... hóa Tính chất quang của màng mỏng quyết định chất lượng các lớp phủ quang học Tính chất điện của màng mỏng được sử dụng trong các thiết bị điện tử Tính chất nhiệt của màng mỏng không được nghiên cứu nhiều như tính chất quang và tính chất điện nhưng hiện nay nó đã được quan tâm hơn Tính chất cơ nhiệt của màng mỏng gắn kết chặt chẽ với sự phát triển quy mô của các thiết bị quang và điện tử Các tính chất. .. phụ thuộc vào nhiệt độ nên độ cảm thuận từ của điện tử dẫn cũng hầu như không phụ thuộc vào nhiệt độ Trong luận án này, chúng tôi đề xuất phương pháp áp dụng TKFD biến dạng để nghiên cứu nhiệt dung và độ cảm thuận từ của khí điện tử tự do trong kim loại ở nhiệt độ thấp Phương pháp nghiên cứu thứ hai của chúng tôi trong luận án này là PPTKMM không thể áp dụng để nghiên cứu TCNĐ, tính chất từ của khí điện... tự do trong kim loại Các kết quả nghiên cứu nhiệt dung và độ cảm thuận từ của khí điện tử tự do trong kim loại bằng lý thuyết biến dạng q sẽ được trình bày trong Chương 2 và Chương 4 1.1.2 Tính chất nhiệt động của màng mỏng kim loại 1.1.2.1 Định nghĩa và tính chất màng mỏng Khoa học và công nghệ màng mỏng là lĩnh vực được các nhà khoa học đặc biệt quan tâm trong thời gian gần đây do có những ứng dụng. .. fermion biến dạng q và thống kê Fermi-Dirac biến dạng q Trong chương này, chúng tôi áp dụng thống kê Fermi-Dirac biến dạng q để rút ra biểu thức giải tích của nhiệt dung và độ cảm thuận từ đối với khí điện tử tự do trong kim loại ở nhiệt độ thấp Chương 3 trình bày nội dung cơ bản của lý thuyết TKMM trong nghiên ix 1 CHƯƠNG 1 TỔNG QUAN VỀ ĐỐI TƯỢNG NGHIÊN CỨU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 1.1 Tổng quan về tính. .. tượng và phạm vi nghiên cứu Luận án nhằm hai mục đích chính Thứ nhất là áp dụng thống kê FermiDirac (TKFD) biến dạng q để nghiên cứu nhiệt dung và độ cảm thuận từ của khí điện tử tự do trong kim loại ở nhiệt độ thấp Cụ thể là áp dụng thống kê này để vi xây dựng biểu thức giải tích của nhiệt dung và độ cảm thuận từ phụ thuộc vào tham số biến dạng q đối với khí điện tử tự do trong kim loại Các kết quả... tôi áp dụng hai phương pháp nghiên cứu chính là phương pháp đại số biến dạng và PPTKMM Phương pháp đại số biến dạng được áp dụng để rút ra biểu thức giải tích của nhiệt dung và độ cảm thuận từ đối với khí điện tử tự do trong kim loại ở nhiệt độ thấp PPTKMM được áp dụng để thu được biểu thức giải tích cho các ĐLNĐ như năng lượng tự do Helmholtz, hệ số dãn nở nhiệt, các hệ số nén đẳng nhiệt và đoạn nhiệt, ... luận án Áp dụng thống kê Fermi-Dirac biến dạng q phương pháp thống kê mômen nghiên cứu số tính chất nhiệt động, tính chất từ kim loại màng mỏng kim loại công trình nghiên cứu riêng Các số liệu... PHƯƠNG PHÁP NGHIÊN CỨU 1.1 Tổng quan nghiên cứu tính chất nhiệt động tính chất từ kim loại màng mỏng kim loại 1.2 Tổng quan phương pháp lý thuyết thực nghiệm nghiên cứu tính chất nhiệt động tính. .. PHƯƠNG PHÁP THỐNG KÊ MÔMEN TRONG NGHIÊN CỨU TÍNH CHẤT NHIỆT ĐỘNG CỦA MÀNG MỎNG KIM LOẠI VỚI CÁC CẤU TRÚC LPTD VÀ LPTK 50 3.1 Phương pháp thống kê mômen nghiên cứu tính chất nhiệt động màng mỏng kim

Ngày đăng: 03/03/2016, 11:10

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Lê Công Dưỡng, Nghiêm Hùng, Nguyễn Văn Chi, Nguyễn Trọng Báo, Đỗ Minh Nghiệp (1986), Kim loại học, NXB ĐHBK Hà Nội Sách, tạp chí
Tiêu đề: Kim loại học
Tác giả: Lê Công Dưỡng, Nghiêm Hùng, Nguyễn Văn Chi, Nguyễn Trọng Báo, Đỗ Minh Nghiệp
Nhà XB: NXB ĐHBK Hà Nội
Năm: 1986
[2] Nguyễn Quang Báu, Bùi Bằng Đoan, Nguyễn Văn Hùng (2004), Vật lí thống kê, NXB ĐHQG Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Vật lí thống kê
Tác giả: Nguyễn Quang Báu, Bùi Bằng Đoan, Nguyễn Văn Hùng
Nhà XB: NXB ĐHQG Hà Nội
Năm: 2004
[3] Nguyễn Thế Khôi, Nguyễn Hữu Mình (1992), Vật lí chất rắn, NXB GD, Hà Nội Sách, tạp chí
Tiêu đề: Vật lí chất rắn
Tác giả: Nguyễn Thế Khôi, Nguyễn Hữu Mình
Nhà XB: NXB GD
Năm: 1992
[4] Đào Khắc An (2009), Công nghệ micro và nano điện tử, NXB GD, Hà Nội Sách, tạp chí
Tiêu đề: Công nghệ micro và nano điện tử
Tác giả: Đào Khắc An
Nhà XB: NXB GD
Năm: 2009
[5] Nguyễn Năng Định (2005), Vật lý và kỹ thuật màng mỏng, NXB ĐHQG Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Vật lý và kỹ thuật màng mỏng
Tác giả: Nguyễn Năng Định
Nhà XB: NXB ĐHQG Hà Nội
Năm: 2005
[7] Vũ Văn Hùng (2009), Phương pháp thống kê mômen trong nghiên cứu tính chất nhiệt động và đàn hồi của tinh thể, NXB ĐHSP, Hà Nội Sách, tạp chí
Tiêu đề: Phương pháp thống kê mômen trong nghiên cứu tính chấtnhiệt động và đàn hồi của tinh thể
Tác giả: Vũ Văn Hùng
Nhà XB: NXB ĐHSP
Năm: 2009
[8] Nguyễn Văn Hiệu (2000), Phương pháp lí thuyết trường lượng tử trong vật lý chất rắn và vật lí thống kê, NXB ĐHQG Hà Nội Sách, tạp chí
Tiêu đề: Phương pháp lí thuyết trường lượng tử trong vật lýchất rắn và vật lí thống kê
Tác giả: Nguyễn Văn Hiệu
Nhà XB: NXB ĐHQG Hà Nội
Năm: 2000
[9] Đặng Văn Soa (2005), Đối xứng chuẩn và mô hình thống nhất điện yếu, NXB ĐHSP, Hà Nội Sách, tạp chí
Tiêu đề: Đối xứng chuẩn và mô hình thống nhất điện yếu
Tác giả: Đặng Văn Soa
Nhà XB: NXBĐHSP
Năm: 2005
[10] Đào Vọng Đức (1998), Các bài giảng về các đối xứng cao của hạt cơ bản , Đọc tại lớp cao học và nghiên cứu sinh của Trung tâm Vật lý lý thuyết, Viện Vật lý, Hà Nội Sách, tạp chí
Tiêu đề: Các bài giảng về các đối xứng cao của hạt cơ bản
Tác giả: Đào Vọng Đức
Năm: 1998
[11] Nguyễn Phú Thùy (1996), Từ học và siêu dẫn, NXB ĐHQG Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Từ học và siêu dẫn
Tác giả: Nguyễn Phú Thùy
Nhà XB: NXB ĐHQG Hà Nội
Năm: 1996
[12] Thân Đức Hiền, Lưu Tuấn Tài (2008), Từ học và vật liệu từ, NXB KHKT, Hà Nội Sách, tạp chí
Tiêu đề: Từ học và vật liệu từ
Tác giả: Thân Đức Hiền, Lưu Tuấn Tài
Nhà XB: NXB KHKT
Năm: 2008
[13] Nguyễn Quang Học, Vũ Văn Hùng (2013), Giáo trình vật lí thống kê và nhiệt động lực học, tập 1, NXB ĐHSP, Hà Nội Sách, tạp chí
Tiêu đề: Giáo trình vật lí thống kê và nhiệtđộng lực học, tập 1
Tác giả: Nguyễn Quang Học, Vũ Văn Hùng
Nhà XB: NXB ĐHSP
Năm: 2013
[15] Vũ Văn Hùng (1990), Phương pháp mômen trong việc nghiên cứu tính chất nhiệt động của tinh thể lập phương tâm diện và lập phương tâm khối, Luận án Phó tiến sĩ khoa học Toán lý, Trường Đại học Tổng hợp Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Phương pháp mômen trong việc nghiên cứu tính chấtnhiệt động của tinh thể lập phương tâm diện và lập phương tâm khối
Tác giả: Vũ Văn Hùng
Năm: 1990
[16] Nguyễn Thanh Hải (1998), Nghiên cứu các tính chất nhiệt động và môđun đàn hồi của kim loại có khuyết tật, Luận án Tiến sĩ Vật lý, Trường Đại học Sư phạm Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Nghiên cứu các tính chất nhiệt động và môđun đànhồi của kim loại có khuyết tật
Tác giả: Nguyễn Thanh Hải
Năm: 1998
[17] Nguyễn Thị Hòa (2007), Nghiên cứu biến dạng đàn hồi phi tuyến và quá trình truyền sóng đàn hồi của kim loại, hợp kim bằng phương pháp mô men, Luận án Tiến sĩ Vật lý, Trường Đại học Sư phạm Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Nghiên cứu biến dạng đàn hồi phi tuyến và quá trìnhtruyền sóng đàn hồi của kim loại, hợp kim bằng phương pháp mô men
Tác giả: Nguyễn Thị Hòa
Năm: 2007
[18] Nguyễn Quang Học (1994), Nghiên cứu tính chất nhiệt động của tinh thể lạnh phân tử và tinh thể kim loại, Luận án Phó Tiến sĩ Toán lí, Trường ĐHSP Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Nghiên cứu tính chất nhiệt động của tinh thể lạnhphân tử và tinh thể kim loại
Tác giả: Nguyễn Quang Học
Năm: 1994
[19] Phạm Thị Minh Hạnh (2007), Nghiên cứu các tính chất nhiệt động và môđun đàn hồi của tinh thể và hợp chất bán dẫn bằng phương pháp mômen, Luận án Tiến sĩ Vật lý, Trường Đại học Sư phạm Hà Nội, Hà Nội Sách, tạp chí
Tiêu đề: Nghiên cứu các tính chất nhiệt động và môđunđàn hồi của tinh thể và hợp chất bán dẫn bằng phương pháp mômen
Tác giả: Phạm Thị Minh Hạnh
Năm: 2007
[21] Bonderover E. and Wagner S. (2004), A woven inverter circuit for e- textile applications, JEEE Elektron Dev Lett., 25:295 Sách, tạp chí
Tiêu đề: JEEE Elektron Dev Lett
Tác giả: Bonderover E. and Wagner S
Năm: 2004
[22] Nakao S., et al. (2006), Mechanical properties of micronsizes SCS film in a high temperature enviroment, J. Micromech Microeng, 16:715 Sách, tạp chí
Tiêu đề: J. Micromech Microeng
Tác giả: Nakao S., et al
Năm: 2006
[111] NIST Web site: http://physics.nist.gov/cuu/Constants/index.html Link

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w