1. Trang chủ
  2. » Giáo án - Bài giảng

Đáp án đề thi đại học môn toán khối A năm 2008

8 508 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 474,43 KB

Nội dung

Đáp án đề thi đại học môn toán khối A năm 2008 tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về t...

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) −x + Câu I (2,0 điểm) Cho hàm số y = 2x − 1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Chứng minh với m đường thẳng y = x + m cắt đồ thị (C) hai điểm phân biệt A B Gọi k1, k2 hệ số góc tiếp tuyến với (C) A B Tìm m để tổng k1 + k2 đạt giá trị lớn Câu II (2,0 điểm) + sin x + cos x = sin x sin x Giải phương trình + cot x 2 ⎪⎧5 x y − xy + y − 2( x + y ) = ( x, y ∈ \) Giải hệ phương trình ⎨ 2 ⎪⎩ xy ( x + y ) + = ( x + y ) π Câu III (1,0 điểm) Tính tích phân I = ∫ x sin x + ( x + 1) cos x dx x sin x + cos x Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vuông cân B, AB = BC = 2a; hai mặt phẳng (SAB) (SAC) vuông góc với mặt phẳng (ABC) Gọi M trung điểm AB; mặt phẳng qua SM song song với BC, cắt AC N Biết góc hai mặt phẳng (SBC) (ABC) 60o Tính thể tích khối chóp S.BCNM khoảng cách hai đường thẳng AB SN theo a Câu V (1,0 điểm) Cho x, y, z ba số thực thuộc đoạn [1; 4] x ≥ y, x ≥ z Tìm giá trị nhỏ x y z biểu thức P = + + y+z z+x 2x + y PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho đường thẳng ∆: x + y + = đường tròn (C ) : x + y − x − y = Gọi I tâm (C), M điểm thuộc ∆ Qua M kẻ tiếp tuyến MA MB đến (C) (A B tiếp điểm) Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích 10 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) mặt phẳng ( P) : x − y − z + = Tìm tọa độ điểm M thuộc (P) cho MA = MB = Câu VII.a (1,0 điểm) Tìm tất số phức z, biết: z = z + z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x2 y2 + = Tìm tọa độ điểm A B thuộc Trong mặt phẳng tọa độ Oxy, cho elip ( E ): (E), có hoành độ dương cho tam giác OAB cân O có diện tích lớn Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x + y + z − x − y − z = điểm A(4; 4; 0) Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) tam giác OAB Câu VII.b (1,0 điểm) Tính môđun số phức z, biết: (2 z − 1)(1 + i ) + ( z + 1)(1 − i ) = − 2i - Hết -Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 05 trang) ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm (1,0 điểm) ⎧1 ⎫ • Tập xác định: D = \ \ ⎨ ⎬ ⎩2⎭ • Sự biến thiên: Chiều biến thiên: y ' = −1 ( x −1) 0,25 < 0, ∀x ∈ D 1⎞ ⎛1 ⎞ ⎛ Hàm số nghịch biến khoảng ⎜ − ∞; ⎟ ⎜ ; + ∞ ⎟ 2⎠ ⎝2 ⎠ ⎝ 1 Giới hạn tiệm cận: lim y = lim y = − ; tiệm cận ngang: y = − x → −∞ x → +∞ 2 lim − y = − ∞, lim + y = + ∞; tiệm cận đứng: x = ⎛1⎞ ⎛1⎞ x →⎜ ⎟ x →⎜ ⎟ ⎝2⎠ Bảng biến thiên: ⎝2⎠ x −∞ y’ y − 0,25 − +∞ − 0,25 +∞ − −∞ y • Đồ thị: (C) O − 2 x 0,25 –1 (1,0 điểm) Hoành độ giao điểm d: y = x + m (C) nghiệm phương trình: x + m = −x +1 2x −1 ⇔ (x + m)(2x – 1) = – x + (do x = không nghiệm) ⇔ 2x + 2mx – m – = (*) ∆' = m2 + 2m + > 0, ∀m Suy d cắt (C) hai điểm phân biệt với m 0,25 0,25 Gọi x1 x2 nghiệm (*), ta có: k1 + k2 = – 4( x1 + x2 ) − x1 x2 − 4( x1 + x2 ) + 1 – = − (2 x1 − 1) (2 x2 − 1) (4 x1 x2 − 2( x1 + x2 ) + 1) Theo định lý Viet, suy ra: k1 + k2 = – 4m2 – 8m – = – 4(m + 1)2 – ≤ – Suy ra: k1 + k2 lớn – 2, m = – Trang 1/5 0,25 0,25 Câu II (2,0 điểm) Đáp án Điểm (1,0 điểm) Điều kiện: sin x ≠ (*) Phương trình cho tương đương với: (1 + sin2x + cos2x)sin2x = 2 sin2xcosx ⇔ + sin2x + cos2x = 2 cosx (do sinx ≠ 0) ⇔ cosx (cosx + sinx – • cosx = ⇔ x = ) = π + kπ, thỏa mãn (*) 0,25 0,25 0,25 π π ) = ⇔ x = + k2π, thỏa mãn (*) 4 π π Vậy, phương trình có nghiệm: x = + kπ; x = + k2π (k ∈ Z) • cosx + sinx = ⇔ sin(x + 0,25 (1,0 điểm) ⎧⎪5 x y − xy + y − 2( x + y ) = (1) ⎨ 2 (2) ⎪⎩ xy ( x + y ) + = ( x + y ) Ta có: (2) ⇔ (xy – 1)(x2 + y2 – 2) = ⇔ xy = x2 + y2 = • xy = 1; từ (1) suy ra: y4 – 2y2 + = ⇔ y = ± Suy ra: (x; y) = (1; 1) (x; y) = (–1; –1) • x2 + y2 = 2; từ (1) suy ra: 3y(x2 + y2) – 4xy2 + 2x2y – 2(x + y) = 2 ⇔ 6y – 4xy + 2x y – 2(x + y) = ⇔ (1 – xy)(2y – x) = ⇔ xy = (đã xét) x = 2y Với x = 2y, từ x2 + y2 = suy ra: ⎛ 10 10 ⎞ ⎛ 10 10 ⎞ (x; y) = ⎜⎜ ; ;− ⎟⎟ (x; y) = ⎜⎜ − ⎟ ⎠ 5 ⎟⎠ ⎝ ⎝ ⎛ 10 10 ⎞ ⎛ 10 10 ⎞ Vậy, hệ có nghiệm: (1; 1), (– 1; – 1), ⎜⎜ ; ;− ⎟⎟ , ⎜⎜ − ⎟ ⎠ ⎝ 5 ⎟⎠ ⎝ III (1,0 điểm) I = π π π 4 ( x sin x + cos x) + x cos x dx = ∫0 x sin x + cos x ∫ dx + x cos x ∫ x sin x + cos x dx 0,25 0,25 0,25 0,25 0,25 π π Ta có: ∫ dx = x 04 = π π ∫ IV (1,0 điểm) 0,25 π x cos x dx = x sin x + cos x d(x sin x + cos x) ∫0 x sin x + cos x = ( ln x sin x + cos x ) π ⎛ ⎛ π ⎞⎞ ⎛ ⎛ π ⎞⎞ π = ln ⎜⎜ ⎜ + 1⎟ ⎟⎟ Suy ra: I = + ln ⎜⎜ ⎜ + 1⎟ ⎟⎟ 4 ⎝ ⎠ ⎝ ⎠⎠ ⎝ ⎠ ⎝ (SAB) (SAC) vuông góc với (ABC) ⇒ SA ⊥ (ABC) S n góc (SBC) AB ⊥ BC ⇒ SB ⊥ BC ⇒ SBA n = 60o ⇒ SA = AB tan SBA n = 2a (ABC) ⇒ SBA Mặt phẳng qua SM song song với BC, cắt AC N H ⇒ MN //BC N trung điểm AC D N C A BC AB MN = = a, BM = = a M 2 B ( BC + MN ) BM 3a = ⋅ Thể tích: VS.BCNM = S BCNM ⋅ SA = a 3 ⋅ Diện tích: SBCNM = 2 Trang 2/5 0,25 0,25 0,25 0,25 Câu Đáp án Điểm Kẻ đường thẳng ∆ qua N, song song với AB Hạ AD ⊥ ∆ (D ∈ ∆) ⇒ AB // (SND) ⇒ d(AB, SN) = d(AB, (SND)) = d(A, (SND)) Hạ AH ⊥ SD (H ∈ SD) ⇒ AH ⊥ (SND) ⇒ d(A, (SND)) = AH Tam giác SAD vuông A, có: AH ⊥ SD AD = MN = a ⇒ d(AB, SN) = AH = V (1,0 điểm) SA AD = 2a 39 ⋅ 13 0,25 0,25 SA2 + AD 1 + ≥ (*), với a b dương, ab ≥ Trước hết ta chứng minh: + a + b + ab Thật vậy, (*) ⇔ (a + b + 2)(1 + ab ) ≥ 2(1 + a)(1 + b) ⇔ (a + b) ab + ab ≥ a + b + 2ab b )2 ≥ 0, với a b dương, ab ≥ Dấu xảy ra, khi: a = b ab = Áp dụng (*), với x y thuộc đoạn [1; 4] x ≥ y, ta có: x 1 P= + + ≥ + 3y 2x + 3y + z + x x 2+ 1+ y z x y 0,25 ⇔ ( ab – 1)( a – Dấu " = " xảy khi: x z x = = y y z 0,25 (1) x t2 + ⋅ = t, t ∈ [1; 2] Khi đó: P ≥ 2t + + t y Đặt − ⎡⎣t (4t − 3) + 3t (2t − 1) + 9) ⎤⎦ t2 < Xét hàm f(t) = + , t ∈ [1; 2]; f '(t ) = 2t + + t (2t + 3) (1 + t ) ⇒ f(t) ≥ f(2) = 0,25 34 x = ⇔ x = 4, y = (2) ; dấu " = " xảy khi: t = ⇔ y 33 34 Từ (1) (2) suy dấu " = " xảy khi: x = 4, y = z = 33 34 Vậy, giá trị nhỏ P ; x = 4, y = 1, z = 33 ⇒P≥ VI.a 0,25 (1,0 điểm) (2,0 điểm) A Đường tròn (C) có tâm I(2; 1), bán kính IA = n = MBI n = 90o MA = MB Tứ giác MAIB có MAI I ⇒ SMAIB = IA.MA B M ∆ 0,25 ⇒ MA = ⇒ IM = IA2 + MA2 = M ∈ ∆, có tọa độ dạng M(t; – t – 2) IM = ⇔ (t – 2)2 + (t + 3)2 = 25 ⇔ 2t2 + 2t – 12 = 0,25 ⇔ t = t = – Vậy, M(2; – 4) M(– 3; 1) 0,25 0,25 (1,0 điểm) ⎧2 x − y − z + = ⎪ Gọi M(x; y; z), ta có: M ∈ (P) MA = MB = ⇔ ⎨( x − 2) + y + ( z − 1) = ⎪ x + ( y + 2) + ( z − 3) = ⎩ Trang 3/5 0,25 Câu Đáp án Điểm ⎧2 x − y − z + = ⎪ ⇔ ⎨x + y − z + = ⎪( x − 2) + y + ( z − 1) = ⎩ 0,25 ⎧x = y − ⎪ ⇔ ⎨z = 3y ⎪7 y − 11y + = ⎩ 0,25 ⎛ 12 ⎞ ⎛ 12 ⎞ ; ⎟ Vậy có: M(0; 1; 3) M ⎜ − ; ; ⎟ ⎝ 7 7⎠ ⎝ 7 7⎠ ⇔ (x; y; z) = (0; 1; 3) ⎜ − ; VII.a Gọi z = a + bi (a, b ∈ R), ta có: z = z + z ⇔ (a + bi)2 = a2 + b2 + a – bi (1,0 điểm) 2 ⎧a − b = a + b + a ⇔ a – b + 2abi = a + b + a – bi ⇔ ⎨ ⎧a = − 2b ⎩b(2a + 1) = ⇔ ⎨ 0,25 ⎛ 1⎞ ⎟ (a; b) = ⎝ 2⎠ 1 1 Vậy, z = z = − + i z = − – i 2 2 ⇔ (a; b) = (0; 0) (a; b) = ⎜ − ; (2,0 điểm) 0,25 0,25 ⎩2ab = − b VI.b 0,25 1⎞ ⎛ ⎜ − ; − ⎟ 2⎠ ⎝ 0,25 (1,0 điểm) Gọi A(x; y) Do A, B thuộc (E) có hoành độ dương tam giác OAB cân O, nên: y A H O B 0,25 − x2 B(x; – y), x > Suy ra: AB = 2| y | = Gọi H trung điểm AB, ta có: OH ⊥ AB OH = x Diện tích: SOAB = x − x 2 x = x (4 − x ) ≤ Dấu " = " xảy ra, x = 0,25 0,25 ⎛ ⎛ ⎛ ⎛ 2⎞ 2⎞ 2⎞ 2⎞ Vậy: A ⎜⎜ 2; ⎟⎟ A ⎜⎜ 2; − ⎟⎟ B ⎜⎜ 2; ⎟⎟ B ⎜⎜ 2; − ⎟ ⎠ ⎠ ⎠ ⎟⎠ ⎝ ⎝ ⎝ ⎝ 0,25 (1,0 điểm) (S) có tâm I(2; 2; 2), bán kính R = Nhận xét: O A thuộc (S) Tam giác OAB đều, có bán kính đường tròn ngoại tiếp r = OA = 3 (P) qua O có phương trình dạng: ax + by + cz = 0, a2 + b2 + c2 ≠ (*) (P) qua A, suy ra: 4a + 4b = ⇒ b = – a Khoảng cách: d(I, (P)) = d(I, (P)) = 2(a + b + c) 2 a +b +c 0,25 R2 − r = = 2c 2a + c ⇒ 2c 2a + c = ⇒ 2a2 + c2 = 3c2 ⇒ c = ± a Theo (*), suy (P): x – y + z = x – y – z = Trang 4/5 0,25 0,25 0,25 Câu VII.b (1,0 điểm) Đáp án Gọi z = a + bi (a, b ∈ R), ta có: (2z – 1)(1 + i) + ( z + 1)(1 – i) = – 2i ⇔ [(2a – 1) + 2bi](1 + i) + [(a + 1) – bi](1 – i) = – 2i ⇔ (2a – 2b – 1) + (2a + 2b – 1)i + (a – b + 1) – (a + b + 1)i = – 2i ⎧3a − 3b = ⎩a + b − = −2 ⇔ (3a – 3b) + (a + b – 2)i = – 2i ⇔ ⎨ ⇔ a= 1 , b = − ⋅ Suy môđun: | z | = a + b = ⋅ 3 - Hết - Trang 5/5 Điểm 0,25 0,25 0,25 0,25 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC Câu số 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ĐÁP ÁN ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Môn: TIẾNG ANH; Khối A1 Mã đề thi 318 426 537 681 794 859 B B B B B C C A B D B A C D C C C B B B A A B C B C C B A A B D D C D C C B A D D B D A B A D D A C B D A A B D C C D C A B A D C A D A B B B B B A D A A B C B C D D A D C C D B C D B B A D C B D C B A B C C A C D D D C B B B D D C C A D D B B B A D D B D A D D A A C A A C B C D C C C C B D A A D D A D D B A A A A A D D A D D A A C D A B C A B C B B C A C D C B D C A B D C C B C A A B A D D C D A A C D D D A C D D A C A A A C C C A C B B D C D D D C D B C C B A C C B B C A D Câu số 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Mã đề thi 318 426 537 681 794 859 A C D B A A B A A C B B C B B C C B A D C A A B C C A A B D D D B A B D B C D A C A D D D A A D A A D B A B A B D B A A A D B D C B B A D A B A D D D C A D D C A B D A A B B A D A C B C B B B A D B D A A B A B A B B C B D D D D C B B C A D A D A B B B A A D C B C C C B B C A B B D C D B B C D C A C A C D C B B A C D D D C D C A B C C D B A D C A A A C C A B C D D B C C D A A D B D D C C D B C A A B C C C B A B C B C D D A D C C D D D B C A C C C C A B B A C D A D C A B B C B ... B D A A D D A D D B A A A A A D D A D D A A C D A B C A B C B B C A C D C B D C A B D C C B C A A B A D D C D A A C D D D A C D D A C A A A C C C A C B B D C D D D C D B C C B A C C B B C A D... 80 Mã đề thi 318 426 537 681 794 859 A C D B A A B A A C B B C B B C C B A D C A A B C C A A B D D D B A B D B C D A C A D D D A A D A A D B A B A B D B A A A D B D C B B A D A B A D D D C A D... A B D A A B B A D A C B C B B B A D B D A A B A B A B B C B D D D D C B B C A D A D A B B B A A D C B C C C B B C A B B D C D B B C D C A C A C D C B B A C D D D C D C A B C C D B A D C A A A

Ngày đăng: 01/02/2016, 04:07

w