Đáp án đề thi đại học môn lý khối A năm 2008 tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất...
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 ĐỀ CHÍNH THỨC Câu số 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Môn: VẬT LÍ; Khối: A Mã đề thi 157 269 374 683 817 936 A A A D A A A A D B C A D D D C A D A B D B A B D B D C C A B D D B A B D A A D C C A B D B A C C D C A B A D A C B A D D C A A D C C C C A C C C C D C B B A D C A D C A B C C D B B C A D C C D B A A C B A D C A D B D B B C A D D B A A C D A C C C D A A C B A D A C A A C B D A D C B D B C A A D C A A D B D A A B B B B B D B C C C D A D D B C A C C D B D D D D A A D A C B C B A A D A D B D C C Câu số 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Mã đề thi 157 269 374 683 817 936 D C C C D A C D D A B D B C C C B C B A A D D B B A B B B D C D A C A A A D B C D B C A A B D D B C C D B C A B D C B B B C A A A B C D D D B A B B D B C B C D D A C C D B C A C B B C B B C D B A D B B C C C D B D B D A B C A D D A B A C D C C B D C C B A D D B A C B A D B B C A C B A C D B C A B D A B B B D A B B A D B A BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 05 trang) ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm (1,0 điểm) ⎧1 ⎫ • Tập xác định: D = \ \ ⎨ ⎬ ⎩2⎭ • Sự biến thiên: Chiều biến thiên: y ' = −1 ( x −1) 0,25 < 0, ∀x ∈ D 1⎞ ⎛1 ⎞ ⎛ Hàm số nghịch biến khoảng ⎜ − ∞; ⎟ ⎜ ; + ∞ ⎟ 2⎠ ⎝2 ⎠ ⎝ 1 Giới hạn tiệm cận: lim y = lim y = − ; tiệm cận ngang: y = − x → −∞ x → +∞ 2 lim − y = − ∞, lim + y = + ∞; tiệm cận đứng: x = ⎛1⎞ ⎛1⎞ x →⎜ ⎟ x →⎜ ⎟ ⎝2⎠ Bảng biến thiên: ⎝2⎠ x −∞ y’ y − 0,25 − +∞ − 0,25 +∞ − −∞ y • Đồ thị: (C) O − 2 x 0,25 –1 (1,0 điểm) Hoành độ giao điểm d: y = x + m (C) nghiệm phương trình: x + m = −x +1 2x −1 ⇔ (x + m)(2x – 1) = – x + (do x = không nghiệm) ⇔ 2x + 2mx – m – = (*) ∆' = m2 + 2m + > 0, ∀m Suy d cắt (C) hai điểm phân biệt với m 0,25 0,25 Gọi x1 x2 nghiệm (*), ta có: k1 + k2 = – 4( x1 + x2 ) − x1 x2 − 4( x1 + x2 ) + 1 – = − (2 x1 − 1) (2 x2 − 1) (4 x1 x2 − 2( x1 + x2 ) + 1) Theo định lý Viet, suy ra: k1 + k2 = – 4m2 – 8m – = – 4(m + 1)2 – ≤ – Suy ra: k1 + k2 lớn – 2, m = – Trang 1/5 0,25 0,25 Câu II (2,0 điểm) Đáp án Điểm (1,0 điểm) Điều kiện: sin x ≠ (*) Phương trình cho tương đương với: (1 + sin2x + cos2x)sin2x = 2 sin2xcosx ⇔ + sin2x + cos2x = 2 cosx (do sinx ≠ 0) ⇔ cosx (cosx + sinx – • cosx = ⇔ x = ) = π + kπ, thỏa mãn (*) 0,25 0,25 0,25 π π ) = ⇔ x = + k2π, thỏa mãn (*) 4 π π Vậy, phương trình có nghiệm: x = + kπ; x = + k2π (k ∈ Z) • cosx + sinx = ⇔ sin(x + 0,25 (1,0 điểm) ⎧⎪5 x y − xy + y − 2( x + y ) = (1) ⎨ 2 (2) ⎪⎩ xy ( x + y ) + = ( x + y ) Ta có: (2) ⇔ (xy – 1)(x2 + y2 – 2) = ⇔ xy = x2 + y2 = • xy = 1; từ (1) suy ra: y4 – 2y2 + = ⇔ y = ± Suy ra: (x; y) = (1; 1) (x; y) = (–1; –1) • x2 + y2 = 2; từ (1) suy ra: 3y(x2 + y2) – 4xy2 + 2x2y – 2(x + y) = 2 ⇔ 6y – 4xy + 2x y – 2(x + y) = ⇔ (1 – xy)(2y – x) = ⇔ xy = (đã xét) x = 2y Với x = 2y, từ x2 + y2 = suy ra: ⎛ 10 10 ⎞ ⎛ 10 10 ⎞ (x; y) = ⎜⎜ ; ;− ⎟⎟ (x; y) = ⎜⎜ − ⎟ ⎠ 5 ⎟⎠ ⎝ ⎝ ⎛ 10 10 ⎞ ⎛ 10 10 ⎞ Vậy, hệ có nghiệm: (1; 1), (– 1; – 1), ⎜⎜ ; ;− ⎟⎟ , ⎜⎜ − ⎟ ⎠ ⎝ 5 ⎟⎠ ⎝ III (1,0 điểm) I = π π π 4 ( x sin x + cos x) + x cos x dx = ∫0 x sin x + cos x ∫ dx + x cos x ∫ x sin x + cos x dx 0,25 0,25 0,25 0,25 0,25 π π Ta có: ∫ dx = x 04 = π π ∫ IV (1,0 điểm) 0,25 π x cos x dx = x sin x + cos x d(x sin x + cos x) ∫0 x sin x + cos x = ( ln x sin x + cos x ) π ⎛ ⎛ π ⎞⎞ ⎛ ⎛ π ⎞⎞ π = ln ⎜⎜ ⎜ + 1⎟ ⎟⎟ Suy ra: I = + ln ⎜⎜ ⎜ + 1⎟ ⎟⎟ 4 ⎝ ⎠ ⎝ ⎠⎠ ⎝ ⎠ ⎝ (SAB) (SAC) vuông góc với (ABC) ⇒ SA ⊥ (ABC) S n góc (SBC) AB ⊥ BC ⇒ SB ⊥ BC ⇒ SBA n = 60o ⇒ SA = AB tan SBA n = 2a (ABC) ⇒ SBA Mặt phẳng qua SM song song với BC, cắt AC N H ⇒ MN //BC N trung điểm AC D N C A BC AB MN = = a, BM = = a M 2 B ( BC + MN ) BM 3a = ⋅ Thể tích: VS.BCNM = S BCNM ⋅ SA = a 3 ⋅ Diện tích: SBCNM = 2 Trang 2/5 0,25 0,25 0,25 0,25 Câu Đáp án Điểm Kẻ đường thẳng ∆ qua N, song song với AB Hạ AD ⊥ ∆ (D ∈ ∆) ⇒ AB // (SND) ⇒ d(AB, SN) = d(AB, (SND)) = d(A, (SND)) Hạ AH ⊥ SD (H ∈ SD) ⇒ AH ⊥ (SND) ⇒ d(A, (SND)) = AH Tam giác SAD vuông A, có: AH ⊥ SD AD = MN = a ⇒ d(AB, SN) = AH = V (1,0 điểm) SA AD = 2a 39 ⋅ 13 0,25 0,25 SA2 + AD 1 + ≥ (*), với a b dương, ab ≥ Trước hết ta chứng minh: + a + b + ab Thật vậy, (*) ⇔ (a + b + 2)(1 + ab ) ≥ 2(1 + a)(1 + b) ⇔ (a + b) ab + ab ≥ a + b + 2ab b )2 ≥ 0, với a b dương, ab ≥ Dấu xảy ra, khi: a = b ab = Áp dụng (*), với x y thuộc đoạn [1; 4] x ≥ y, ta có: x 1 P= + + ≥ + 3y 2x + 3y + z + x x 2+ 1+ y z x y 0,25 ⇔ ( ab – 1)( a – Dấu " = " xảy khi: x z x = = y y z 0,25 (1) x t2 + ⋅ = t, t ∈ [1; 2] Khi đó: P ≥ 2t + + t y Đặt − ⎡⎣t (4t − 3) + 3t (2t − 1) + 9) ⎤⎦ t2 < Xét hàm f(t) = + , t ∈ [1; 2]; f '(t ) = 2t + + t (2t + 3) (1 + t ) ⇒ f(t) ≥ f(2) = 0,25 34 x = ⇔ x = 4, y = (2) ; dấu " = " xảy khi: t = ⇔ y 33 34 Từ (1) (2) suy dấu " = " xảy khi: x = 4, y = z = 33 34 Vậy, giá trị nhỏ P ; x = 4, y = 1, z = 33 ⇒P≥ VI.a 0,25 (1,0 điểm) (2,0 điểm) A Đường tròn (C) có tâm I(2; 1), bán kính IA = n = MBI n = 90o MA = MB Tứ giác MAIB có MAI I ⇒ SMAIB = IA.MA B M ∆ 0,25 ⇒ MA = ⇒ IM = IA2 + MA2 = M ∈ ∆, có tọa độ dạng M(t; – t – 2) IM = ⇔ (t – 2)2 + (t + 3)2 = 25 ⇔ 2t2 + 2t – 12 = 0,25 ⇔ t = t = – Vậy, M(2; – 4) M(– 3; 1) 0,25 0,25 (1,0 điểm) ⎧2 x − y − z + = ⎪ Gọi M(x; y; z), ta có: M ∈ (P) MA = MB = ⇔ ⎨( x − 2) + y + ( z − 1) = ⎪ x + ( y + 2) + ( z − 3) = ⎩ Trang 3/5 0,25 Câu Đáp án Điểm ⎧2 x − y − z + = ⎪ ⇔ ⎨x + y − z + = ⎪( x − 2) + y + ( z − 1) = ⎩ 0,25 ⎧x = y − ⎪ ⇔ ⎨z = 3y ⎪7 y − 11y + = ⎩ 0,25 ⎛ 12 ⎞ ⎛ 12 ⎞ ; ⎟ Vậy có: M(0; 1; 3) M ⎜ − ; ; ⎟ ⎝ 7 7⎠ ⎝ 7 7⎠ ⇔ (x; y; z) = (0; 1; 3) ⎜ − ; VII.a Gọi z = a + bi (a, b ∈ R), ta có: z = z + z ⇔ (a + bi)2 = a2 + b2 + a – bi (1,0 điểm) 2 ⎧a − b = a + b + a ⇔ a – b + 2abi = a + b + a – bi ⇔ ⎨ ⎧a = − 2b ⎩b(2a + 1) = ⇔ ⎨ 0,25 ⎛ 1⎞ ⎟ (a; b) = ⎝ 2⎠ 1 1 Vậy, z = z = − + i z = − – i 2 2 ⇔ (a; b) = (0; 0) (a; b) = ⎜ − ; (2,0 điểm) 0,25 0,25 ⎩2ab = − b VI.b 0,25 1⎞ ⎛ ⎜ − ; − ⎟ 2⎠ ⎝ 0,25 (1,0 điểm) Gọi A(x; y) Do A, B thuộc (E) có hoành độ dương tam giác OAB cân O, nên: y A H O B 0,25 − x2 B(x; – y), x > Suy ra: AB = 2| y | = Gọi H trung điểm AB, ta có: OH ⊥ AB OH = x Diện tích: SOAB = x − x 2 x = x (4 − x ) ≤ Dấu " = " xảy ra, x = 0,25 0,25 ⎛ ⎛ ⎛ ⎛ 2⎞ 2⎞ 2⎞ 2⎞ Vậy: A ⎜⎜ 2; ⎟⎟ A ⎜⎜ 2; − ⎟⎟ B ⎜⎜ 2; ⎟⎟ B ⎜⎜ 2; − ⎟ ⎠ ⎠ ⎠ ⎟⎠ ⎝ ⎝ ⎝ ⎝ 0,25 (1,0 điểm) (S) có tâm I(2; 2; 2), bán kính R = Nhận xét: O A thuộc (S) Tam giác OAB đều, có bán kính đường tròn ngoại tiếp r = OA = 3 (P) qua O có phương trình dạng: ax + by + cz = 0, a2 + b2 + c2 ≠ (*) (P) qua A, suy ra: 4a + 4b = ⇒ b = – a Khoảng cách: d(I, (P)) = d(I, (P)) = 2(a + b + c) 2 a +b +c 0,25 R2 − r = = 2c 2a + c ⇒ 2c 2a + c = ⇒ 2a2 + c2 = 3c2 ⇒ c = ± a Theo (*), suy (P): x – y + z = x – y – z = Trang 4/5 0,25 0,25 0,25 Câu VII.b (1,0 điểm) Đáp án Gọi z = a + bi (a, b ∈ R), ta có: (2z – 1)(1 + i) + ( z + 1)(1 – i) = – 2i ⇔ [(2a – 1) + 2bi](1 + i) + [(a + 1) – bi](1 – i) = – 2i ⇔ (2a – 2b – 1) + (2a + 2b – 1)i + (a – b + 1) – (a + b + 1)i = – 2i ⎧3a − 3b = ⎩a + b − = −2 ⇔ (3a – 3b) + (a + b – 2)i = – 2i ⇔ ⎨ ⇔ a= 1 , b = − ⋅ Suy môđun: | z | = a + b = ⋅ 3 - Hết - Trang 5/5 Điểm 0,25 0,25 0,25 0,25 ... ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 05 trang) ĐÁP ÁN − THANG ĐIỂM Câu I (2,0 điểm) Đáp án Điểm (1,0 điểm)... 59 60 Mã đề thi 157 269 374 683 817 936 D C C C D A C D D A B D B C C C B C B A A D D B B A B B B D C D A C A A A D B C D B C A A B D D B C C D B C A B D C B B B C A A A B C D D D B A B B D B... với AB Hạ AD ⊥ ∆ (D ∈ ∆) ⇒ AB // (SND) ⇒ d(AB, SN) = d(AB, (SND)) = d (A, (SND)) Hạ AH ⊥ SD (H ∈ SD) ⇒ AH ⊥ (SND) ⇒ d (A, (SND)) = AH Tam giác SAD vuông A, có: AH ⊥ SD AD = MN = a ⇒ d(AB, SN) = AH