1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tổng hợp và đặc trưng vật liệu nanocomposit giữa hydroxyapatit và một số polyme tự nhiên

155 556 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 155
Dung lượng 10,58 MB

Nội dung

B GIO DC V O TO VIN HN LM KHOA HC V CễNG NGH VIT NAM VIN HểA HC NGUYN TH LAN HNG NGHIÊN CứU TổNG HợP Và ĐặC TRƯNG VậT LIệU NanoCOMPOSIT GIữA HYDROXYAPATIT Và MộT Số POLYME Tự NHIÊN Chuyờn ngnh: Húa vụ c Mó s: 62.44.01.13 LUN N TIN S HểA HC Ngi hng dn khoa hc: PGS TS o Quc Hng PGS TS Phan Th Ngc Bớch H NI 2015 LI CAM OAN Tụi xin cam oan, õy l cụng trỡnh nghiờn cu ca riờng tụi di s hng dn ca PGS.TS o Quc Hng v PGS.TS Phan Th Ngc Bớch Hu ht cỏc s liu, kt qu lun ỏn l ni dung t cỏc bi bỏo ó v sp c xut bn ca tụi v cỏc thnh viờn ca th khoa hc Cỏc s liu, kt qu nghiờn cu c trỡnh by lun ỏn l trung thc v cha tng c cụng b bt k cụng trỡnh no khỏc H Ni, thỏng 12 nm 2015 Tỏc gi Nguyn Th Lan Hng LI CM N Vi lũng kớnh trng v bit n sõu sc, tụi xin gi li cm n ti hai ngi Thy ca tụi l PGS.TS o Quc Hng v PGS.TS Phan Th Ngc Bớch, nhng ngi Thy ó ht lũng hng dn, giỳp v to mi iu kin thun li nht cho tụi hon thnh bn lun ỏn Cỏc Thy ó tn tỡnh ch bo tụi c v lnh vc khoa hc cng nh cuc sng S tn tõm dy bo ca cỏc Thy ó giỳp tụi ngy cng vng bc hn trờn ng nghiờn cu khoa hc m mỡnh ó la chn Trong quỏ trỡnh thc hin lun ỏn, tụi ó nhn c s giỳp nhit tỡnh ca cỏc cỏn b nghiờn cu thuc Vin Húa hc, Vin Hn lõm Khoa hc v Cụng ngh Vit Nam Nhõn dp ny tụi xin gi li cm n chõn thnh n cỏc cụ chỳ, anh ch em thuc Phũng Vụ c, Vin Húa hc, Vin Hn lõm Khoa hc v Cụng ngh Vit Nam, nhng ngi ó luụn giỳp , khớch l, ng viờn v dnh nhng tỡnh cm tt p cho tụi sut thi gian lm lun ỏn Tụi xin gi li cm n ti Ban lónh o Vin Húa hc, Phũng Qun lý Tng hp ó luụn quan tõm ti tin cụng vic v to mi iu kin thun li cho tụi hc tp, nghiờn cu v lm vic Tụi xin chõn thnh cm n Ban Ch nhim Khoa S phm Húa Sinh - K thut Nụng nghip, Ban Giỏm hiu Trng i hc ng Thỏp ó to mi iu kin thun li cho tụi v thi gian quỏ trỡnh hc nghiờn cu Tụi xin cm n Chng trỡnh Khoa hc v Cụng ngh trng im cp Nh nc Nghiờn cu, ng dng v phỏt trin cụng ngh sau thu hoch (KC.07/11-15) ca B Khoa hc v Cụng ngh ó h tr kinh phớ thc hin nghiờn cu ny Nhõn dp ny, tụi mun dnh nhng tỡnh cm sõu sc nht, trõn trng nht v xin kớnh tng thnh qu nh m tụi t c ti nhng ngi thõn gia ỡnh: Ba M - nhng ngi ó ht lũng nuụi dy tụi khụn ln, luụn ng viờn h tr tụi v mi mt, cỏc anh ch em ó chia s nhng khú khn, thụng cm v giỳp tụi Cui cựng tụi xin dnh nhng tỡnh cm c bit ti gia ỡnh nh thõn yờu ca tụi, ú l chng v gỏi tụi, nhng ngi ó luụn s chia, giỳp , cho tụi ngh lc v tinh thn hon thnh lun ỏn, l ngun ng viờn giỳp tụi vt qua mi khú khn v th thỏch cuc sng Tỏc gi Nguyn Th Lan Hng MC LC Trang M U Chng TNG QUAN 1.1 Hydroxyapatit (HA - Ca10(PO4)6(OH)2) 1.1.1 Tỡnh hỡnh nghiờn cu, ng dng v phng phỏp iu ch 1.1.2 Tớnh cht .7 1.2 Polyme t nhiờn 1.2.1 Tinh bt (TB) 1.2.2 Maltodextrin (MD) 14 1.2.3 Alginat (Alg) .16 1.3 Vt liu composit HA/polyme 20 1.3.1 S to thnh vt liu composit HA/polyme .20 1.3.2 Cỏc phng phỏp tng hp composit HA/polyme 24 1.3.3 c trng ca vt liu composit HA/polyme 30 1.3.4 ng dng ca composit HA/polyme 34 Chng THC NGHIM V CC PHNG PHP NGHIấN CU .38 2.1 Húa cht v cỏc nguyờn liu u 38 2.2 Tng hp HA vựng nhit thp 42 2.3 Nghiờn cu tng hp cỏc composit HA/polyme 43 2.3.1 Composit HA/tinh bt (HA/TB) 43 2.3.2 Composit HA/tinh bt sn (HA/TBS) 45 2.3.3 Composit HA/maltodextrin (HA/MD) vi cỏc DE khỏc 45 2.3.4 Composit HA/alginat (HA/alg) v HA/oligoalginat (HA/olig) 46 2.4 Cỏc phng phỏp xỏc nh c trng 46 2.4.1 Phng phỏp nhiu x tia X (XRD) 46 2.4.2 Phng phỏp ph hng ngoi (FT-IR) .47 2.4.3 Phng phỏp hin vi in t quột (SEM) 47 2.4.4 Phng phỏp hin vi in t truyn qua (TEM) 48 2.4.5 Phng phỏp phõn tớch nhit (TGA-DTA) 48 2.4.6 Phng phỏp ph cng hng t ht nhõn (NMR) 49 Chng KT QU V THO LUN .50 3.1 Tng hp HA bng phng phỏp kt ta vựng nhit thp 50 3.1.1 c trng XRD 50 3.1.2 c trng SEM 51 3.1.3 c trng FT-IR 53 3.1.4 c trng nhit 54 3.2 Nghiờn cu tng hp composit HA/tinh bt (HA/TB) 55 3.2.1 Phng phỏp trn HA bt 55 3.2.2 Phng phỏp trn HA huyn phự .59 3.2.3 Phng phỏp kt ta trc tip 71 3.2.4 So sỏnh hai phng phỏp tng hp vt liu composit HA/tinh bt (HA/TB) 88 3.3 Nghiờn cu tng hp composit HA/tinh bt sn (HA/TBS) 90 3.3.1 c trng XRD 90 3.3.2 c trng SEM v TEM .91 3.3.3 c trng FT-IR 93 3.3.4 c trng nhit 94 3.4 Nghiờn cu tng hp cỏc composit HA/maltodextrin (HA/MD) vi DE khỏc 95 3.4.1 Nghiờn cu tng hp cỏc composit HA/MD vi DE 12, 16, 20 v 25 95 3.4.2 nh hng ca t l thnh phn n cỏc c trng ca composit HA/MD vi DE 12 .99 3.4.3 So sỏnh cỏc composit HA/MD vi DE khỏc 105 3.5 Nghiờn cu tng hp composit HA/alginat (HA/alg) v HA/oligoalginat (HA/olig) 106 3.5.1 Nghiờn cu tng hp composit HA/alginat (HA/alg) .106 3.5.2 c trng cỏc oligome ca alginat 113 3.5.3 Nghiờn cu tng hp composit HA/olig 117 KT LUN V KIN NGH 122 DANH MC CC CễNG TRèNH KHOA HC CễNG B TI LIU THAM KHO PH LC DANH MC CC Kí HIU V CH VIT TT Vit tt CaP: Canxi photphat DE: ng lng ng kh - Destrose Equivalent DP: polyme húa - Degree of Polymerization DTA: Phõn tớch nhit vi sai - Differential Thermal Analysis FT-IR: Ph hng ngoi bin i Fourier - Fourier Transform Infrared Spectroscopy GPC: Sc ký thm thu gel - Gel Permeation Chromatography HA: Hydroxyapatit - Ca10(PO4)6(OH)2 PDI: phõn tỏn lng phõn t - Polydispersity Index SEM: Hin vi in t quột - Scanning Electron Microscopy TEM: Hin vi in t truyn qua - Transmission Electron Microscopy TGA: Phõn tớch nhit trng lng -Thermal Gravimetric Analysis XRD: Nhiu x tia X - X-Ray Diffraction Kớ hiu alg: alginat D: Kớch thc tinh th trung bỡnh ca HA tớnh theo cụng thc Scherrer G: -L-guluronic M: -D-mannuronic MD: Maltodextrin Mw: Khi lng phõn t trung bỡnh olig: oligoalginat PVA: Poly(vinyl alcohol) PAA: Polyacrylic axit PCL: Poly (-caprolacton) TB: Tinh bt TBS: Tinh bt sn XC: tinh th ca HA DANH MC BNG Bng 1.1 Trang Tớnh cht ca amyloz, amylopectin 11 Bng 2.1 Cỏc húa cht v nguyờn liu u s dng lun ỏn .38 Bng 2.2 ng lng ng kh (DE) ca cỏc polysaccarit 40 Bng 3.1 Kớch thc tinh th trung bỡnh v tinh th ca HA tng hp vựng nhit thp .51 Bng 3.2 Kớch thc trung bỡnh v tinh th ca HA mu HA v HT 56 Bng 3.3 Kớch thc trung bỡnh v tinh th ca HA cỏc mu composit HA/TB tng hp theo phng phỏp trn huyn phự 60 Bng 3.4 Kớch thc trung bỡnh v tinh th ca HA composit HA/TB tng hp cỏc nhit khỏc 65 Bng 3.5 Kớch thc trung bỡnh v tinh th ca HA mu HN v HE 66 Bng 3.6 Kớch thc trung bỡnh v tinh th ca HA composit HA/TB cú v khụng cú tỏc ng ca súng siờu õm 68 Bng 3.7 Kớch thc trung bỡnh v tinh th ca HA composit HA/TB c sy nhit v ụng khụ 69 Bng 3.8 Kớch thc trung bỡnh v tinh th ca HA cỏc mu composit HA/TB tng hp theo phng phỏp kt ta trc tip 72 Bng 3.9 S súng ca cỏc nhúm chc HA, TB v cỏc composit HA/TB 76 Bng 3.10 Kớch thc trung bỡnh v tinh th ca cỏc mu composit tng hp cỏc nhit khỏc 79 Bng 3.11 Kớch thc trung bỡnh v tinh th ca cỏc mu composit vi tc cp axit khỏc 82 Bng 3.12 Kớch thc trung bỡnh v tinh th ca HA ca cỏc mu composit HA/TB cú v khụng cú súng siờu õm 85 Bng 3.13 Kớch thc trung bỡnh v tinh th ca HA mu HD1 v HD2 87 Bng 3.14 Kớch thc v tinh th ca HA tng hp theo cỏc phng phỏp khỏc .88 Bng 3.15 Kớch thc v tinh th ca HA cỏc mu composit HA/TBS .91 Bng 3.16 Kớch thc v tinh th ca cỏc composit HM12, HM16, HM20 v HM25 96 Bng 3.17 Kớch thc trung bỡnh v tinh th ca HA cỏc composit HA/MD 100 Bng 3.18 S súng c trng ca cỏc nhúm chc HA, MD v cỏc composit HA/MD 101 Bng 3.19 Kớch thc trung bỡnh v tinh th ca HA cỏc composit HA/alg .108 Bng 3.20 Kt qu phõn tớch ph 1H-NMR ca alginat .116 DANH MC HèNH Trang Hỡnh 1.1 Cỏc dng hỡnh thỏi hc ca tinh th HA .7 Hỡnh 1.2 Cu trỳc ụ mng c s ca tinh th HA Hỡnh 1.3 Cu trỳc phõn t amyloz (a), amylopectin (b) 10 Hỡnh 1.4 nh hin vi quang hc ca ht tinh bt ngụ cỏc nhit khỏc quỏ trỡnh h húa [88] .13 Hỡnh 1.5 c trng cu trỳc ca alginat: a) Cỏc monome ca alginat; b) Cu trỳc chui, cu dng gh; c) Cỏc kiu phõn b cỏc mch alginat 16 Hỡnh 1.6 Mụ hỡnh liờn kt gia ion Ca2+ v alginat a) Mụ hỡnh to ht gel canxi alginat; b) Liờn kt ca block G vi ion canxi 18 Hỡnh 1.7 S to mm ca HA trờn cht nn polyme (a) Cỏc nhúm chc trờn phõn t polyme l cỏc v trớ to mm cho tinh th HA, (b) S to mm v phỏt trin tinh th HA trờn cỏc polyme c gn trờn Au 22 Hỡnh 1.8 Cu trỳc húa hc ca (a) mụ hỡnh hp trng ca canxi alginat, (b) mụ hỡnh hp trng vi cỏc ion tin cht cho s to mm HA v (c) cu trỳc hp trng khoỏng húa v (d) si nano composit HA/alginat tng hp trc tip .23 Hỡnh 1.9 S mụ t cỏc ht HA b mc kt vt lớ cht nn collagen (a) Theo nh SEM, HA kt cht nn collagen tng hp bng phng phỏp trn (b) 25 Hỡnh 1.10 S thớ nghim (a) v c ch (b) ca quỏ trỡnh EPD iu ch lp ph composit GO-HY-HA trờn cht nn Ti 27 Hỡnh 1.11 S ch to mng si composit HA/gelatin theo phng phỏp in xoay trũn .28 Hỡnh 1.12 S chuyn pha t brushit sang HA theo thi gian 31 Hỡnh 1.13 Gin DT-TGA ca cỏc vt liu composit HA/chitosan vi hm lng khỏc 32 Hỡnh 1.14 Cỏc dng hỡnh thỏi hc ca composit: ht micro (a), nano (b), khung xp (c), si (d), gin khung (e), mng a lp (f) 33 Hỡnh 2.1 Quy trỡnh iu ch oligome t alginat [118, 119] 40 Hỡnh 2.2 Phng phỏp tng hp HA t Ca(OH)2 v H3PO4 42 Hỡnh 2.3 S phng phỏp thc nghim tng hp composit HA/TB theo phng phỏp trn huyn phự 43 Hỡnh 2.4 S quy trỡnh thc nghim tng hp composit HA/TB theo phng phỏp kt ta trc tip .44 Hỡnh 3.1 Gin XRD ca cỏc mu HA tng hp -15, -10 v 0oC 50 Hỡnh 3.2 nh SEM ca cỏc mu HA tng hp vựng nhit thp 52 Hỡnh 3.3 Ph FT-IR ca mu HA tng hp 0oC 53 Hỡnh 3.4 Gin phõn tớch nhit ca mu HA tng hp 0oC 54 Hỡnh 3.5 Gin XRD ca HA, tinh bt (TB) v composit HA/TB (HT) 55 Hỡnh 3.6 nh SEM ca cỏc mu TB1, TB2, HA v HT 56 Hỡnh 3.7 Ph FT-IR ca HA, TB v composit HA/TB (HT) .57 Hỡnh 3.8 Gin phõn tớch nhit ca mu TB 58 Hỡnh 3.9 Gin phõn tớch nhit ca mu HT 58 Hỡnh 3.10 Gin XRD ca cỏc mu composit HA/TB tng hp theo phng phỏp trn huyn phự .60 Hỡnh 3.11 Ph FT-IR ca HA, tinh bt v cỏc composit tng hp bng phng phỏp trn huyn phự 61 Hỡnh 3.12 nh SEM ca cỏc composit HA/TB tng hp theo phng phỏp trn huyn phự .62 Hỡnh 3.13 nh TEM ca cỏc composit HA/TB tng hp theo phng phỏp trn huyn phự .63 Hỡnh 3.14 Gin phõn tớch nhit ca mu HT50 64 Hỡnh 3.15 Gin XRD ca cỏc mu composit HA/TB tng hp cỏc nhit khỏc .64 Hỡnh 3.16 nh SEM ca cỏc composit HA/TB tng hp cỏc nhit khỏc 65 Hỡnh 3.17 Gin XRD ca cỏc mu composit HA/TB tng hp dung mụi nc v etanol .66 Hỡnh 3.18 nh SEM ca cỏc composit HA/TB tng hp dung mụi nc v etanol 67 Hỡnh 3.19 Gin XRD ca cỏc mu HF v HF2 67 39 E T Purdy K, Takii S, Nedwell D, Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method, Appl Environ Microbiol, 1996, 62, 3905-3907 40 Y Hashimoto, T Taki,T Sato, Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions, Journal of Environmental Management, 2009, 90(5), 1782-1789 41 Y Wang, L Liu, S Guo, Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro, Polyme Degradation and Stability, 2010, 95(2), 207213 42 S V Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates, Acta Biomaterialia, 2010, 6(3), 715-734 43 L Wang, G H Nancollas, Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls, Dalton Transactions, 2009, 15(15), 2665-2672 44 B Li, B Guo, H Fan, X Zhang, Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro, Applied Surface Science, 2008, 255(2), 357-360 45 Y Cai, Y Liu, W Yan, Q Hu, J Tao, et al., Role of hydroxyapatite nanoparticle size in bone cell proliferation, Journal of Materials Chemistry, 2007, 17(36), 3780-3787 46 M Vallet-Regớ, J M Gonzỏlez-Calbet, Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry, 2004, 32(12), 1-31 47 J Song, E Saiz, C R Bertozzi, A New Approach to Mineralization of Biocompatible Hydrogel Scaffolds: An Efficient Process toward 3Dimensional Bonelike Composites, Journal of the American Chemical Society, 2003, 125(5), 1236-1243 48 V M Rusu, C H Ng, M Wilke, B Tiersch, P Fratzl, et al., Size-controlled hydroxyapatite nanoparticles as self-organized organicinorganic composite materials, Biomaterials, 2005, 26(26), 5414-5426 128 49 M Sadat-Shojai, M T Khorasani, E Dinpanah-Khoshdargi, A Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 2013, 9(8), 7591-621 50 V Uskokovic, D P Uskokovic, Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents, J Biomed Mater Res B Appl Biomater., 2011, 96(1), 152-191 51 M H Santos, M d Oliveira, L P d F Souza, H S Mansur, W L Vasconcelos, Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process, Materials Research, 2004, 7, 625-630 52 Ngc Liờn, Nghiờn cu quy trỡnh tng hp bt v ch th gm xp hydroxyapatit, Bỏo cỏo tng kt ti khoa hc cụng ngh cp B, Vin Cụng ngh X him, 2005, H Ni 53 Trn i Lõm, Nguyn Ngc Thnh, Tng hp nano tinh th hydroxyapatit bng phng phỏp kt ta, Tp Khoa hc v Cụng ngh, 2007, 45(1B), 470-474 54 o Quc Hng, V Th Du, Nghiờn cu nh hng ca nhit v dung mụi etanol n s hỡnh thnh bt canxi hydroxyapatit t canxi hydroxit, Tp Húa hc, 2011, 49((3A)), 11-15 55 V Duy Hin, o Quc Hng, Phan Th Ngc Bớch, Tng hp v kho sỏt nh hng ca nhit n kớch thc ht hydroxyapatit bng phng phỏp kt ta hoỏ hc, Tp Húa hc, 2007, 45(6A), 21-25 56 V Duy Hin, Nghiờn cu ch to v c trng húa lý ca hydroxyapatit dng gm xp cú kh nng ng dng y sinh hc, Lun ỏn tin s Húa hc, Vin Húa hc-Vin Hn lõm Khoa hc v Cụng ngh Vit Nam, 2010, H Ni 57 Lờ Anh Tun, Nghiờn cu ch to vt liu compozit polyme-hydroxyapatit cho mc ớch ng dng y sinh hc, Bỏo cỏo tng kt ti nghiờn cu khoa hc-cụng ngh, Vin Húa hc-Vin Hn lõm Khoa hc v Cụng ngh Vit Nam, 2009, H Ni 58 Dinh Thi Mai Thanh, Pham Thi Thu Trang, Ho Thu Huong, Tran Dai Lam, Pham Thi Nam, Nguyen Thu Phuong, Jun Seo-Park, Nguyen Thi Thu Trang, Thai Hoang, Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration, Int J Nanotechnol, 2015, 12(5/6/7), 391-404 129 59 Nguyen Kim Nga, Tran Thanh Hoai, Pham Hung Viet, Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone tissue engineering, Colloids and Surfaces B: Biointerfaces, 2015, 128, 506-514 60 T Ishikawa, Coloring Phenomenon of Hydroxyapatit, Journal of the Ceramic Society of Japan, 2004, 112(9), 507-510 61 T S B Narasaraju, D E Phebe, Some Physico-chemical Aspects of Hydroxyapatite, Journal of Materials Science, 1996, 31(1-21), 62 J R Gasga, E S Pastenes, Determination of the Point and Space Groups for Hydroxyapatite by Computer Simulation of CBED Electron Diffraction Patterns, Revista Mexicana de Fớsica, 2005, 51(5), 525-529 63 M Markovic, B O Fowler, M S Tung, Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material, J Res Natl Inst Stand Technol, 2004, 109(6), 553-568 64 D H Dube, C R Bertozzi, Glycans in cancer and inflammation [mdash] potential for therapeutics and diagnostics, Nat Rev Drug Discov, 2005, 4(6), 477-488 65 C L Cooke, H J An, J Kim, J V Solnick, C B Lebrilla, Method for Profiling Mucin Oligosaccharides from Gastric Biopsies of Rhesus Monkeys with and without Helicobacter pylori Infection, Analytical Chemistry, 2007, 79(21), 8090-8097 66 Z Xiao, B R Tappen, M Ly, W Zhao, L P Canova, et al., Heparin Mapping Using Heparin Lyases and the Generation of a Novel Low Molecular Weight Heparin, Journal of Medicinal Chemistry, 2011, 54(2), 603-610 67 G Gatti, B Casu, G K Hamer, A S Perlin, Studies on the Conformation of Heparin by 1H and 13C NMR Spectroscopy, Macromolecules, 1979, 12(5), 1001-1007 68 F Khan, S R Ahmad, Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application, Macromolecular Bioscience, 2013, 13(4), 395-421 130 69 L Margaretha Sửderqvist, S John, A Ann-Christine, H Jonas, Hydrogels from Polysaccharides for Biomedical Applications, in Materials, Chemicals, and Energy from Forest Biomass, American Chemical Society, 2007, chap 10, 153-167 70 J N BeMiller, R L Whistler, Starch Chemistry and Technology, Academic Press, 2004, 3rd ed., Chap 71 Nguyn Vn Khụi, Polysaccharide v ng dng cỏc dn xut tan ca chỳng thc phm, NXB Khoa hc v K thut, 2006, H Ni 72 J.-A Han, J N BeMiller, Preparation and physical characteristics of slowly digesting modiWed food starches, Carbohydrate Polymes, 2007, 67, 366-374 73 H Fredriksson, J Silverio, R Andersson, et al The influence of amylose and amylopectin characteristic on gelatinization and retrogradation properties of different starches, Carbohydrate Polymes, 1998, 35, 119-134 74 I Bjửrck, N G Asp, Controlling the nutritional properties of starch in foods a challenge to the food industry, Trends in Food Science and Technology, 1994, 5, 213-218 75 J Singh, L Kaur, O J M Carthy, Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications A review, Food Hydrocolloids, 2007, 21(1), 1-22 76 Phm Vit Hựng, Xỏc nh mt s tớnh cht ca tinh bt sn, khoai lang, khoai tõy, dong ring v nghiờn cu mt s thụng s cụng ngh sn xut tinh bt bin tớnh bng axit HCl, Lun cao hc, Trng i hc Bỏch Khoa H Ni, 2001, H Ni 77 C Takeda, Y Takeda, S Hizukuri, Structure of amylomaize amylose, Cereal Chemistry, 1989, 66(1), 22-25 78 S Radosta, M Hagerer, W Vorwerg, Molecular characteristics of amylose and starch in dimethyl sulfoxide, Biomacromolecules, 2001, 2, 970-978 131 79 S G You, M M Fiedorowicz, S T Lim, Molecular characterization of wheat amylopectins by multiangle laser light scattering analysis, Cereal Chemistry, 1999, 76(1), 116-121 80 O.-J Peng, A S Perlin, Observations on N.M.R spectra of starches in dimethyl sulfoxide, iodine-complexing, and salvation in water-di-methyl sulfoxide, Carbohydrate Research, 1987, 160, 57-72 81 T Aberle, W Burchard, W Vorwerg, S Radosta, Conformational contributions of amylose and amylopectin to the structural properties of starches from various sources, Starch/Starke, 1994, 46, 329-335 82 J F Foster, Starch: Chemistry and technology R L Whistler, & E F Paschall (Eds.), Academic Press, 1965, New York 83 T A Waigh, I Hopkinson, A M Donald, Analysis of the native structure of starch granules with X-ray microfocus diffraction, Macromolecules 1997, 30, 3813-3820 84 Nguyn Quang Huy, Nghiờn cu bin tớnh tinh bt bng mt s tỏc nhõn húa hc v ng dng, Lun ỏn Tin s Húa hc, Vin Húa hc-Vin Hn lõm Khoa hc v Cụng ngh Vit Nam, 2012, H Ni 85 Hong Kim Anh, Ngụ K Sng v cỏc cng s, Nghiờn cu kh nng thy phõn tinh bt sn dng ht cha qua h húa ca amylaza bng kớnh hin vi in t, Tp Sinh hc, 2002, 24(3), 47-52 86 J A Han, J N BeMiller, B Hamaker, S T Lim, Structural changes of debranched corn starch by aqueous heating and stirring, Cereal Chemistry, 2003, 80, 323-328 87 R F Tester, W R Morrison, Swelling and gelatinization of cereal starches I Effects of amylopectin, amylose and lipids, Cereal Chemistry, 1990, 67, 551-559 88 W S Ratnayake, P S J David (2006), Gelatinization and Solubility of Corn Starch during Heating in Excess Water: New Insights, Journal of Agricultural and Food Chemistry 2006, 3712-3716 89 L Jing-ming, Z Sen-lin, Scanning electron microscope study on gelatinization of starch granules in excess water, Starch/Staerke, 1990, 42, 96-98 132 90 M Sekine, K Otobe, J Sugiyama, Y Kawamura, Efects of heating, vacuum drying and steeping on gelatinization properties and dynamic viscoelasticity of various starches, Starch/Stọrke, 2000, 52, 389-405 91 D Howling, G G Birch, K J Parker, Sugar Science and Technology Elsevier Applied Science, Eds 1979, London 92 C Y Takeiti, T G Kieckbusch, F P Collares-Queiroz, Morphological and Physicochemical Characterization of Commercial Maltodextrins with Different Degrees of Dextrose-Equivalent, International Journal of Food Properties, 2010, 13(2), 411-425 93 S Udomrati, S Gohtani, Tapioca maltodextrin fatty acid ester as a potential stabilizer for Tween 80-stabilized oil-in-water emulsions, Food Hydrocolloids, 2015, 44(0), 23-31 94 F Avaltroni, P Bouquerand, V Normand, Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions, Carbohydrate Polymes, 2004, 58(3), 323-334 95 P Dokic, J Jakovljevic, L Dokic-Baucal, Molecular characteristics of maltodextrins and rheological behaviour of diluted and concentrated solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 141, 435-440 96 G R Marques, S V Borges, K S de Mendonỗa, R V de Barros Fernandes,E G T Menezes, Application of maltodextrin in green corn extract powder production, Powder Technology, 2014, 263(0), 89-95 97 R V de Barros Fernandes, S V Borges, D A Botrel, Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil, Carbohydrate Polymes, 2014, 101, 524-532 98 Y Bai, Y.-C Shi, Structure and preparation of octenyl succinic esters of granular starch, microporous starch and soluble maltodextrin, Carbohydrate Polymes, 2011, 83(2), 520-527 99 K C M Raja, B Sankarikutty, M Sreekumar, Jayalekshmy, S Narayanan, Material Characterization studies of maltodextrin sample for use of wall material, Starch/Stọrke, 1989, 41, 289 133 100 S Radosta, F Schierbaum, F Reuther, H Ager, Polyme-water interaction of maltodextrins Part I Water vapour sorption and desorption of maltodextrin powders, Starch/Stọrke, 1989, 41, 395 101 B J Donnelly, J C Fruin, B L Scallet, Reactions of oligosaccharides III hygroscopic properties, Cereal Chem, 1973, 50, 512 102 J F Kennedy, R J Noy, J A Stead, C A White, Oligosaccharide component composition and storage properties of commercial low DE maltodextrins and their further modification by enzymatic treatment, Starch/Stọrke, 1985, 37, 343 103 J F Kennedy, R J Noy, J A Stead,C A White, Factors affecting, and prediction of, the low temperature precipitation of commercial low DE maltodextrins, Starch/Stọrke, 1986, 38, 273 104 K Draget, O Smidsrứd, G Skjỏk-Brek, Alginates from Algae Polysaccharides and Polyamides in the Food Intrstry Properties Production, and Patents, 2005, 1-30 105 S N Pawar, K J Edgar, Alginate derivatization: a review of chemistry, properties and applications, Biomaterials, 2012, 33(11), 3279-305 106 K Y Lee, D J Mooney, Alginate: properties and biomedical applications, Prog Polym Sci., 2012, 37(1), 106-126 107 Thnh Th Thu Thy, ng V Lng, Nguyn Tin Ti, H Du Cng, Trn Thu Hng, Trn Th Thanh Võn, Bựi Minh Lý, Chit tỏch v cu trỳc húa hc ca alginate t to nõu Sargasum swartzii thu thp bin Nha Trang, Tp Khoa hc v Cụng ngh cỏc trng i hc k thut, 2012, 90, 156-159 108 A Haug, Composition and Properties of Alginates, Thesis, Norwegian Institute of Technology, 1964, Trondheim 109 A Haug, B Larsen, O Smidsrứd, Uronic acid sequence in alginate from different sources, Carbohydrate Research, 1974, 32, 217-225 110 O Smidsrứd, K I Draget, Chemistry and Physical Properties of Alginates, Carbohydrate Europe, 1996, 14, 6-13 134 111 O Smidsrứd, A Haug, B Larsen, The influence of pH on the rate of hydrolysis of acidic polysaccharides, Acta Chemica Scandinavica, 1966, 20, 1026-1034 112 O Smidsrứd, Solution properties of alginate, Cacbohydrate Research, 1970, 13, 359-372 113 M Iwamoto, M Kurachi, T Nakashima, D Kim, K Yamaguchi, et al., Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW246.7 cells, FEBS Letters, 2005, 579(20), 4423-4429 114 R Shiroma, S Uechi, S Tawata, M Tako, Isolation and Characterization of Alginate from Hizikia fusiformis and Preparation of its Oligosaccharides, J Appl Glycosci., 2007, 54, 85-90 115 X Hu, X Jiang, J Gong, H Hwang, Y Liu, et al., Antibacterial activity of lyase-depolymeized products of alginate, Journal of Applied Phycology, 2005, 17(1), 57-60 116 C A Ryan, E E Farmer, Oligosaccharide Signals in Plants- A Current Assessment, Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(1), 651-674 117 P de Vos, M M Faas, B Strand, R Calafiore, Alginate-based microcapsules for immunoisolation of pancreatic islets, Biomaterials, 2006, 27(32), 5603-5617 118 Chu Dinh Kinh Tran Vinh Thien, Tran Thai Hoa, Dinh Quang Khieu, Preparation of alginic acid oligomer by phosphoric acid hdrolysis, Advances in Natural Sciences, 2007, 8(1), 35-42 119 A T A Ikeda, H Ono, Preparation of low-molecular weight alginic acid by acid hydrolysis, Carbohydrate Polymes, 2000, 42, 421-425 120 Riki Shiroma, Shuntoku Uechi, Shinkichi Tawata, Masakuni Tako, Isolation and characterization of alginate from Hizikia fusiformis and preparing of its oligosaccharides, Journal of Applied Glycoscience, 2007, 54(2), 85-90 121 J.-O You, C.-A Peng, Calcium-Alginate Nanoparticles Formed by Reverse Microemulsion as Gene Carriers, Macromolecular Symposia, 2005, 219(1), 147-153 135 122 P Gacesa, Alginates, Carbohydrate Polymes, 1988, 8(3), 161-182 123 H Hahn, S Tsai, Introduction to Composite Materials, 1980, Taylor & Francis 124 H Gao, B Ji, I Jager, E Arzt, P Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proceedings of the National Academy of Sciences, 2003, 100(10), 5597-5600 125 M Swetha, K Sahithi, A Moorthi, N Srinivasan, K Ramasamy, et al., Biocomposites containing natural polymes and hydroxyapatite for bone tissue engineering, International Journal of Biological Macromolecules, 2010, 47(1), 1-4 126 A Tampieri, G Celotti, E Landi, M Sandri, N Roveri, et al., Biologically inspired synthesis of bone-like composite: Self-assembled collagen fibers/hydroxyapatite nanocrystals, Journal of Biomedical Materials Research Part A, 2003, 67A(2), 618-625 127 C Liu, 10 - Collagenhydroxyapatite composite scaffolds for tissue engineering, in Hydroxyapatite (Hap) for Biomedical Applications, M Mucalo, Editor, Woodhead Publishing, 2015, 211-234 128 D A Wahl, J.T Czernuszka, Collagen-Hydroxyapatite composites for hard tissue repair, Europaen Cells and Materials, 2006, 11, 43-56 129 S Mollazadeh, J Javadpour, A Khavandi, In situ synthesis and characterization of nano-size hydroxyapatite in poly(vinyl alcohol) matrix, Ceramics International, 2007, 33(8), 1579-1583 130 H W Kim, J C Knowles, H.-E Kim, Hydroxyapatite/poly(-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery, Biomaterials, 2004, 25(7-8), 1279-1287 131 W Y Choi, H E Kim, S Y Oh, Y H Koh, Synthesis of poly(caprolactone)/hydroxyapatite nanocomposites using in-situ co-precipitation, Materials Science and Engineering: C, 2010, 30(5), 777-780 132 O V Kalinkevich, S M Danilchenko, M.V Pogorelov, et al., Chitosan hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests, Journal of Biological Physics and Chemistry 2009, 9, 119-126 136 133 M S Sadjadi, H Jazdarreh, Hydroxyapatite - starch nano biocomposites synthesis and characterization, International Journal of Nano Dimension, 2010, 1(1), 57-63 134 S Teng, J Shi, B Peng,L Chen, The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites, Composites Science and Technology, 2006, 66(11-12), 1532-1538 135 J C Fricain, S Schlaubitz, C Le Visage, I Arnault, S M Derkaoui, et al., A nano-hydroxyapatite Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering, Biomaterials, 2013, 34(12), 2947-2959 136 X Xiao, D He, F Liu, R Liu, Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis, Materials Chemistry and Physics, 2008, 112(3), 838-843 137 F.-Z Cui, Y Li, J Ge, Self-assembly of mineralized collagen composites, Materials Science and Engineering: R: Reports, 2007, 57(16), 1-27 138 Z.-X Liu, X.-M Wang, Q Wang, X.-C Shen, H Liang, et al., Evolution of calcium phosphate crystallization on three functional group surfaces with the same surface density, CrystEngComm, 2012, 14(20), 6695-6701 139 T Nonoyama, T Kinoshita, M Higuchi, K Nagata, M Tanaka, et al., Multistep Growth Mechanism of Calcium Phosphate in the Earliest Stage of MorphologyControlled Biomineralization, Langmuir, 2011, 27(11), 7077-7083 140 W Zhang, S S Liao, F Z Cui, Hierarchical Self-Assembly of Nano-Fibrils in Mineralized Collagen, Chemistry of Materials, 2003, 15(16), 3221-3226 141 B Li, Y Wang, D Jia, Y Zhou, Gradient Structural Bone-Like Apatite Induced by Chitosan Hydrogel via Ion Assembly, Journal of Biomaterials Science, Polyme Edition, 2011, 22(4-6), 505-517 142 G K Hunter, J O Young, et al., The Flexible Polyelectrolyte Hypothesis of ProteinBiomineral Interaction, Langmuir, 2010, 26(24), 18639-18646 143 S Yamane, K Akiyoshi, Nanogel-Inorganic Hybrid: Synthesis and Characterization of Polysaccharide - Calcium Phosphat Nanomaterials, European Cells and Materials, 2007, 14(3), 113 137 144 T Chae, H Yang, V Leung, F Ko, T Troczynski, Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration, J Mater Sci Mater Med, 2013, 24, 1885-1894 145 I Yamaguchi, K Tokuchi, H Fukuzaki, Y Koyama, K Takakuda, et al., Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites, Journal of Biomedical Materials Research, 2001, 55(1), 20-27 146 S.-H Rhee, J Tanaka, Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid, Biomaterials, 1999, 20(22), 2155-2160 147 K Kato, Y Eika, Y Ikada, In situ hydroxyapatite crystallization for the formation of hydroxyapatite/polyme composites, J Mater Sci, 1997, 32, 5533-5543 148 D Verma, K Katti, D Katti, Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy, Journal of Biomedical Materials Research Part A, 2006, 77A(1), 59-66 149 M Kikuchi, T Ikoma, D Syoji, H Matsumoto, Y Koyama, et al., Porous Body Preparation of Hydroxyapatite / Collagen Nanocomposites for Bone Tissue Regeneration, Key Engineering Materials, 2003, 254-256, 561-564 150 M R Finisie, A Josue, V T Favere, et al., Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration, An Acad Bras Cienc., 2001, 73(4), 525-532 151 M Supova, Problem of hydroxyapatite dispersion in polyme matrices: a review, J Mater Sci Mater Med., 2009, 20(6), 1201-13 152 R Murugan, S Ramakrishna, Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite, Biomaterials, 2004, 25, 3829-3835 153 A Tampieri, M Sandri, E Landi, D Pressato, S Francioli, et al., Design of graded biomimetic osteochondral composite scaffolds, Biomaterials, 2008, 29(26), 3539-3546 154 L M Mathieu, P.E Bourban, J.A E Mồnson, Processing of homogeneous ceramic/polyme blends for bioresorbable composites, Composites Science and Technology, 2006, 66(11-12), 1606-1614 138 155 F Sun, H Zhou, J Lee, Various preparation methods of highly porous hydroxyapatite/polyme nanoscale biocomposites for bone regeneration, Acta Biomaterialia, 2011, 7(11), 3813-3828 156 L M Mathieu, T L Mueller, P E Bourban, D P Pioletti, R Mỹller, et al., Architecture and properties of anisotropic polyme composite scaffolds for bone tissue engineering, Biomaterials, 2006, 27(6), 905-916 157 X Deng, J Hao, C Wang, Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals, Biomaterials, 2001, 22(21), 2867-2873 158 S Yu, K P Hariram, R Kumar, P Cheang, K K Aik, In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites, Biomaterials, 2005, 26(15), 2343-2352 159 X Zhang, Y B Li, Y Zuo, G Y Lv, Y H Mu, et al., Morphology, hydrogen-bonding and crystallinity of nano-hydroxyapatite/polyamide 66 biocomposites, Composites: Part A, 2007, 38, 843-848 160 H Li, Y Chen, Y Xie, Photo-crosslinking polymeization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application, Materials Letters, 2003, 57(19), 2848-2854 161 I Zhitomirsky, Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers, J Eur Ceram Soc., 1998, 18, 849-856 162 X Pang, I Zhitomirsky, Electrodeposition of composite hydroxyapatitechitosan films, Mater Chem Phys., 2005, 94, 245-251 163 K Grandfield, I Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite-silica-chitosan coatings, Mater Charact., 2008, 59, 61-67 164 F Sun, X Pang, I Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings, J Mater Process Technol., 2009, 209, 1597-1606 165 Jody G Redepenning, Electrolytic deposition of coatings for prosthetic metals and alloys, US Patent 7387846 June 17th, 2008 166 J C Vogt, G Brandes, I Krỹger, P Behrens, I Nolt, et al., A comparison of different nanostructured biomaterials in subcutaneous tissue, J Mater Sci Mater Medical Physics, 2008, 19(7), 2629-2636 139 167 M Li, Q Liu, Z Jia, X Xu, Y Shi, et al., Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid- hydroxyapatite nanocomposite coatings, Applied Surface Science, 2013, 284, 804-810 168 Y Ito, H Hasuda, M Kamitakahara, C Ohtsuk, et al., A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material, J Biosci Bioeng, 2005, 100, 43-49 169 H W Kim, J H Song, H E Kim, Nanofiber generation of gelatinhydroxyapatite biomimetics for guided tissue regeneration, Advanced Functional Materials, 2005, 15, 1988-1994 170 N M S M Rajkumar, V Rajendran, In-situ preparation of hydroxyapatite nanorod embedded poly (vinyl alcohol) composite and its characterization, International Journal of Engineering Science and Technology, 2010, 2(6), 2437-2444 171 K Kato, Y Eika,Y Ikada, In situ hydroxyapatite crystallization for the formation of hydroxyapatite, Journal of Materials Science 1997, 32(20), 5533-5543 172 S Liou, Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios, Biomaterials, 2003, 24(22), 3981-3988 173 I Yamaguchi, K Tokuchi, H Fukuzaki, et al., Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites, J Biomed Mater Res B Appl Biomater., 2001, 55, 20-27 174 J Redepenning, G Venkataraman, et al Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates, J Biomed Mat Res, 2003, 66A, 411-416 175 Q Hu, B Li, M Wang, J Shen, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture, Biomaterials, 2004, 25, 779-785 176 M Meskinfam, M S Sadjadi, H.Jazdarreh, Biomimetic Preparation of Nano Hydroxyapatite in Gelatin-Starch Matrix, World Academy of Science, Engineering and Technology, 2011, 76, 395-398 140 177 M C Chang, C.-C Ko,W H Douglas, Preparation of hydroxyapatite-gelatin nanocomposite, Biomaterials, 2003, 24(17), 2853-2862 178 C.-C Ding, S.-H Teng, H Pan, In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application, Materials Letters, 2012, 79, 72-74 179 Q Hu, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture, Biomaterials, 2004, 25(5), 779-785 180 M R Nikpour, S M Rabiee, M Jahanshahi, Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications, Composites Part B: Engineering, 2012, 43(4), 1881-1886 181 V M Rusu, C H Ng, M Wilke, B Tiersch, P Fratzl, et al., Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials, Biomaterials, 2005, 26(26), 5414-26 182 H H Jin, C H Lee, W K Lee, J K Lee, H C Park, et al., In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds, Materials Letters, 2008, 62(10-11), 1630-1633 183 A Tampieri, M Sandri, E Landi, G Celotti, N Roveri, et al., HA/alginate hybrid composites prepared through bio-inspired nucleation, Acta Biomater, 2005, 1(3), 343-51 184 T Chae, H Yang, V Leung, F Ko, T Troczynski, Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration, Journal of Materials Science: Materials in Medicine, 2013, 24(8), 1885-1894 185 K Jinku, M Sean, T Brandi, A U Pedro, S Young-Hye, et al., Rapidprototyped PLGA/-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model, Biofabrication, 2012, 4(2), 025003 186 X Lin, X Li, H Fan, X Wen, J Lu, et al., In situ synthesis of bone-like apatite/collagen nano-composite at low temperature, Materials Letters, 2004, 58(27-28), 3569-3572 141 187 K P R M Sivakumar, Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatitegelatin composite microspheres, Biomaterials, 2002, 23, 3175-3181 188 H C S De Whalley, ICUMSA Methods of Sugar Analysis: Official and Tentative Methods Recommended by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA) , Elsevier, 2013, 2, 13-15 189 S Mandel, A C Tas, Brushite (CaHPO4ã2H2O) to octacalcium phosphat (Ca8(HPO4)2(PO4)4ã5H2O) transformation in DMEM solutions at 36.5 C, Materials Science and Engineering C, 2010, 30, 245254 190 A Cuneyt Tas, S B Bhaduri, Preparation of brushite powders and their in vitro conversion to nanoapatites, Bioceramics: Materials and Application V, 2004, 18, 119-127 191 Li Wang, Yue Li, Chunzhong Li, In situ processing and properties of nanostructured hydroxyapatite/alginate composite, J Nanopart Res., 2009, 11, 691-699 192 Th Thanh Xuõn, Nguyn Vn Thnh, ng V Lng, Bựi Minh Lý, Trn Th Thanh Võn, Thnh Th Thu Thy, Nghiờn cu phõn lp v cu trỳc húa hc ca Alginate v phõn on ca chỳng t rong nõu Tubinaria ornate) J.Agardh., Tp Khoa hc v Cụng ngh, 2014, 52(5A), 35-41 193 Trn Th Thanh Võn, Thnh Th Thu Thy, Vừ Mai Nh Hiu, Bựi Minh Lý, Nghiờn cu cu trỳc ca fucoidan chit tỏch t rong nõu Sargassum carpophyllum J.Ag Tp Húa hc, 2013, 51(6ABC), 95-98 194 Chu Dinh Kinh, Tran Vinh Thien, Tran Thai Hoa, and Dinh Quang Khieu, Interpretation of 1H-NMR spectrum of alginate by 1H-1H TOCSY and COSY spectrum, Tp húa hc, 2007, 45 (6), 772-775 142 [...]... liệu sẵn có trong nước và góp phần tạo ra một loại vật liệu có nhiều ưu điểm và khả năng ứng dụng trong dược học và y sinh học, chúng tôi chọn đề tài: Nghiên cứu tổng hợp và đặc trưng vật liệu nanocomposit giữa hydroxyapatit và một số polyme tự nhiên  Mục tiêu của luận án Nghiên cứu tổng hợp được các composit chứa HA với một số polysaccarit từ ngũ cốc và rong biển Việt Nam: - HA/tinh bột, HA/tinh bột... ra một vật liệu mới có các đặc tính tốt hơn các thành phần riêng lẻ ban đầu Composit có thể là vật liệu tự nhiên hoặc tổng hợp Các ví dụ cho composit tự nhiên là: gỗ, vỏ sò, xương, răng… Lấy cảm hứng từ những vật liệu đó, hiện nay, có một xu hướng mới là phát triển các vật liệu composit mô phỏng sinh học, vật liệu lai vô cơ/hữu cơ với pha vô cơ là HA và chất nền là các polyme [124-126] Xương là vật liệu. .. Riêng về vật liệu composit HA /polyme, một số nghiên cứu chế tạo đã được công bố trong những năm gần đây Bằng phương pháp đồng kết tủa từng bước, Lê Anh Tuấn và các cộng sự đã tổng hợp được các composit HA/collagen với tỉ lệ 6 thành phần khác nhau và khảo sát các đặc trưng của chúng [57] Đinh Thị Mai Thanh và các cộng sự [58] đã nghiên cứu chế tạo nanocomposit HA/PLA dạng xốp ứng dụng làm vật liệu cấy... Ca3(PO4)2 (β – TCP) và Ca4P2O9 hoặc CaO: Ca10(PO4)6(OH)2  2β – Ca3(PO4)2 + Ca4P2O9 + H2O (1.5) Ca10(PO4)6(OH)2  3β – Ca3(PO4)2 + CaO + H2O (1.6) 1.2 Polyme tự nhiên Polyme là những hợp chất cao phân tử, cấu tạo từ các đơn vị mắt xích cơ sở lặp đi lặp lại nhiều lần Xuất phát từ nguồn gốc, có thể phân chia các hợp chất polyme thành: polyme tự nhiên và polyme tổng hợp Polyme tự nhiên hay polyme sinh học... HA/alginat và HA/oligoalginat Xác định các đặc trưng và đưa ra được mối liên hệ giữa đặc trưng của composit HA /polyme và các thông số cấu trúc của polyme  Nội dung của luận án Để hoàn thành các mục tiêu đề ra, luận án bao gồm các nội dung nghiên cứu sau: 1 Tổng hợp HA ở vùng nhiệt độ thấp (-15, -10, 0oC), nhằm làm giảm kích thước, độ tinh thể của HA và để so sánh với pha HA trong các vật liệu composit HA /polyme. .. rất được quan tâm nghiên cứu Một xu hướng mới hiện nay là chế tạo các nanocomposit mô phỏng sinh học, vật liệu lai vô cơ-hữu cơ với chất điền vào là HA và chất nền là các polyme Trong các vật liệu nanocomposit HA /polyme, polyme đóng vai trò là chất nền cung cấp các vị trí tạo mầm, điều chỉnh sự phát triển và hình thái học của tinh thể nano HA Sự hình thành liên kết hóa học giữa HA và polyme, như liên... ghép vật liệu gốm chứa HA vào cơ thể, một lớp mô mới được hình thành trên bề mặt của nó và góp phần vào sự liên kết của các mô cấy vào xương, dẫn đến định hình vượt trội mô cấy đến các mô xung quanh [14-17] Hơn nữa, một số nghiên cứu cho thấy HA hoặc các muối CaP có thể được khai thác như một hợp chất mô hình để nghiên cứu quá trình khoáng hóa sinh học trong cơ thể con người [6, 7, 18-22] Các nghiên cứu. .. đầu nghiên cứu tổng hợp HA đơn chất dạng bột, xốp, màng định hướng ứng dụng trong dược học và y sinh học Riêng vật liệu composit HA /polyme mới chỉ có một số ít nghiên cứu chế tạo composit chứa HA với chitosan, collagen, PLA Mặt khác, là một nước nhiệt đới, chúng ta có nguồn tinh bột từ ngũ cốc và alginat từ rong biển rất phong phú Để tận dụng nguồn nguyên liệu sẵn có trong nước và góp phần tạo ra một. .. của giá trị DE đến đặc trưng của các composit 4 Điều chế oligome của alginat, tổng hợp và khảo sát các đặc trưng của composit HA/alginat, HA/oligoalginat 3 Chƣơng 1 TỔNG QUAN 1.1 Hydroxyapatit (HA - Ca10(PO4)6(OH)2) 1.1.1 Tình hình nghiên cứu, ứng dụng và phương pháp điều chế Các muối canxi photphat (CaP) là thành phần khoáng trong xương và răng của động vật có xương sống [1-4] Xương và các mô cứng khác... cộng hợp kiểu Michael và oxy hóa metan [33, 34], nguyên liệu phát laser [35], vật liệu huỳnh quang [36], dây dẫn ion và cảm biến khí [37] HA tổng hợp cũng có thể được sử dụng trong phương pháp sắc ký cột để tách phân đoạn đơn giản và nhanh chóng các protein và axit nucleic [38, 39] Hơn nữa, HA còn là vật liệu có giá trị cho quá trình xử lý nước và hấp phụ kim loại nặng trong đất [40] Các nghiên cứu ... nguyên liệu sẵn có nước góp phần tạo loại vật liệu có nhiều ưu điểm khả ứng dụng dược học y sinh học, chọn đề tài: Nghiên cứu tổng hợp đặc trưng vật liệu nanocomposit hydroxyapatit số polyme tự nhiên ... Vật liệu composit HA /polyme 20 1.3.1 Sự tạo thành vật liệu composit HA /polyme .20 1.3.2 Các phương pháp tổng hợp composit HA /polyme 24 1.3.3 Đặc trưng vật liệu composit HA /polyme. .. 1.2 Polyme tự nhiên Polyme hợp chất cao phân tử, cấu tạo từ đơn vị mắt xích sở lặp lặp lại nhiều lần Xuất phát từ nguồn gốc, phân chia hợp chất polyme thành: polyme tự nhiên polyme tổng hợp Polyme

Ngày đăng: 28/01/2016, 15:09

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN