1. Trang chủ
  2. » Luận Văn - Báo Cáo

khai phá dữ liệu bằng cây quyết định.

33 1,7K 27
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 474 KB

Nội dung

Xây dựng ứng dụng demo cho kỹ thuật khai phá dữ liệu bằng cây quyết định

Trang 1

khai phá dữ liệu bằng cây quyết định.

Information

MỤC LỤC

LỜI MỞ ĐẦU

Chương 1: Tổng quan về khai phá dữ liệu

1.1 Khám phá tri thức và khai phá dữ liệu là gì?

1.2 Quá trình phát hiện tri thức

1.2.1 Hình thành và định nghĩa bài toán

1.2.2 Thu thập và tiền xử lý dữ liệu

1.2.3 Khai phá dữ liệu và rút ra các tri thức

1.2.4 Phân tích và kiểm định kết quả

1.2.5 Sử dụng các tri thức phát hiện được

1.3 Quá trình khai phá dữ liệu

1.3.1 Gom dữ liệu (gatherin)

1.3.2 Trích lọc dữ liệu (selection)

1.3.3 Làm sạch và tiền xử lý dữ liệu (cleansing preprocessing)

1.3.4 Chuyển đổi dữ liệu (transformation)

1.3.5 Phát hiện và trích mẫu dữ liệu ( pattern extraction and discovery)

1.3.6 Đánh giá kết quả mẫu (evaluation of result )

1.4 Chức năng của khai phá dữ liệu

1.5 Các kỹ thuật khai phá dữ liệu

1.6 Các dạng dữ liệu có thể khai phá được

1.7 Các lĩnh vực liên quan đến khai phá dữ liệu và ứng dụng của khai phá dữ liệu 1.7.1 Các lĩnh vực liên quan đến phát hiện tri thức và khai phá dữ liệu

1.7.2 Ứng dụng của khai phá dữ liệu

1.8 Các thách thức và hướng phát triển của phát hiện tri thức và khai phá dữ liệu

Chương 2: Khai phá dữ liệu bằng cây quyết định

2.1 Cây quyết định

2.1.1 Định nghĩa cây quyết định

2.1.2 Ưu điểm của cây quyết định

2.1.3 Vấn đề xây dựng cây quyết định

2.1.4 Rút ra các luật từ cây quyết định

2.2 Các thuật toán khai phá dữ liệu bằng cây quyết định

2.2.1 Thuật toán CLS

2.2.2 Thuật toán ID3

Trang 2

2.2.3 Thuật toán C4.5

2.2.4 Thuật toán SLIQ[5]

2.2.5 Cắt tỉa cây quyết định

2.2.6 Đánh giá và kết luận về các thuật toán xây dựng cây quyết định

Chương 3: Xây dựng chương trình dêmo

3.1 Mô tả bài toán

3.2 Thu thập và tiền xử lý dữ liệu

Trang 3

MỤC LỤC

LỜI MỞ ĐẦU 4

Chương 1: Tổng quan về khai phá dữ liệu 5

1.1.Khám phá tri thức và khai phá dữ liệu là gì? 5

1.2.Quá trình phát hiện tri thức 6

1.2.1.Hình thành và định nghĩa bài toán 7

1.2.2.Thu thập và tiền xử lý dữ liệu 7

1.2.3.Khai phá dữ liệu và rút ra các tri thức 8

1.2.4.Phân tích và kiểm định kết quả 8

1.2.5.Sử dụng các tri thức phát hiện được 8

1.3.Quá trình khai phá dữ liệu 9

1.3.1.Gom dữ liệu (gatherin) 9

1.3.2.Trích lọc dữ liệu (selection) 9

1.3.3.Làm sạch và tiền xử lý dữ liệu (cleansing preprocessing) 9

1.3.4.Chuyển đổi dữ liệu (transformation) 10

1.3.5.Phát hiện và trích mẫu dữ liệu ( pattern extraction and discovery) 10

1.3.6.Đánh giá kết quả mẫu (evaluation of result ) 10

1.4.Chức năng của khai phá dữ liệu 10

1.5.Các kỹ thuật khai phá dữ liệu 11

1.5.1.Phân lớp dữ liệu: 11

1.5.2.Phân cụm dữ liệu: 11

1.5.3.Khai phá luật kết hợp: 11

1.5.4.Hồi quy: 12

1.5.5.Giải thuật di truyền: 12

1.5.6.Mạng nơron: 12

1.5.7.Cây quyết định 12

1.6.Các dạng dữ liệu có thể khai phá được 13

1.7.Các lĩnh vực liên quan đến khai phá dữ liệu và ứng dụng của khai phá dữ liệu 13

1.7.1.Các lĩnh vực liên quan đến phát hiện tri thức và khai phá dữ liệu 13

1.7.2.Ứng dụng của khai phá dữ liệu 13

1.8.Các thách thức và hướng phát triển của phát hiện tri thức và khai phá dữ liệu 14

Chương 2: Khai phá dữ liệu bằng cây quyết định 15

2.1.Cây quyết định 15

2.1.1.Định nghĩa cây quyết định 15

2.1.2.Ưu điểm của cây quyết định 16

2.1.3.Vấn đề xây dựng cây quyết định 16

2.1.4.Rút ra các luật từ cây quyết định 16

Trang 4

2.2.Các thuật toán khai phá dữ liệu bằng cây quyết định 17

2.2.1.Thuật toán CLS 17

2.2.2.Thuật toán ID3 18

2.2.3.Thuật toán C4.5 20

2.2.4.Thuật toán SLIQ[5] 23

2.2.5.Cắt tỉa cây quyết định 26

2.2.6.Đánh giá và kết luận về các thuật toán xây dựng cây quyết định 28

Chương 3: Xây dựng chương trình dêmo 30

3.1.Mô tả bài toán 30

3.2.Thu thập và tiền xử lý dữ liệu 30

3.3.Chương trình 31

Chương 4 KẾT LUẬN 32

4.1 Đánh Giá 32

4.1.1 Lý thuyết 32

4.1.2 Ứng dụng 32

4.2 Hướng Phát Triển 32

TÀI LIỆU THAM KHẢO 32

Tài liệu tiếng Việt 32

Tài liệu tiếng Anh 33

LỜI MỞ ĐẦU

Trong nhiều năm qua, cùng với sự phát triển của công nghệ thông tin và ứng dụng của công nghệ thông tin trong nhiều lĩnh vực của đời sống xã hội, thì lượng dữ

Trang 5

liệu được các cơ quan thu thập và lưu trữ ngày một nhiều lên Người ta lưu trữ những

dữ liệu này vì cho rằng nó ẩn chứa những giá trị nhất định nào đó Tuy nhiên theo thống kê thì chỉ có một lượng nhỏ của những dữ liệu này (khoảng từ 5% đến 10%) là luôn được phân tích, số còn lại họ không biết sẽ phải làm gì và có thể làm gì với những dữ liệu này, nhưng họ vẫn tiếp tục thu thập và lưu trữ vì hy vọng những dữ liệu này sẽ cung cấp cho họ những thông tin quý giá một cách nhanh chóng để đưa ra những quyết định kịp thời vào một lúc nào đó Chính vì vậy, các phương pháp quản trị và khai thác cơ sở dữ liệu truyền thống ngày càng không đáp ứng được thực tế đã làm phát triển một khuynh hướng kỹ thuật mới đó là Kỹ thuật phát hiện tri thức và khai phá dữ liệu (KDD - Knowledge Discovery and Data Mining)

Kỹ thuật phát hiện tri thức và khai phá dữ liệu đã và đang được nghiên cứu, ứng dụng trong nhiều lĩnh vực khác nhau trên thế giới, tại Việt Nam kỹ thuật này còn tương đối mới mẻ tuy nhiên cũng đang được nghiên cứu và bắt đầu đưa vào một số ứng dụng thực tế Vì vậy, hiện nay ở nước ta vấn đề phát hiện tri thức và khai phá dữ liệu đang thu hút được sự quan tâm của nhiều người và nhiều công ty phát triển ứng dụng công nghệ thông tin Trong phạm vi đề tài nghiên cứu khoa học này của em, em

sẽ trình bày những nội dung sau:

Chương 1: Tìm hiểu những kiến thức tổng quan về khám phá tri thức và khai

phá dữ liệu

Chương 2: Nghiên cứu kỹ thuật khai phá dữ liệu bằng cây quyết định.

Chương 3: Xây dựng ứng dụng demo cho kỹ thuật khai phá dữ liệu bằng cây

quyết định

Chương 1: Tổng quan về khai phá dữ liệu

1.1 Khám phá tri thức và khai phá dữ liệu là gì?

Trang 6

Phát hiện tri thức (Knowledge Discovery ) trong các cơ sở dữ liệu là một qui

trình nhận biết các mẫu hoặc các mô hình trong dữ liệu với các tính năng: hợp thức, mới, khả ích, và có thể hiểu được [4]

Còn khai thác dữ liệu (data mining) là một ngữ tương đối mới, nó ra đời vào

khoảng những năm cuối của của thập kỷ 1980 Có rất nhiều định nghĩa khác nhau về khai phá dữ liệu Giáo sư Tom Mitchell đã đưa ra định nghĩa của khai phá dữ liệu như sau: “Khai phá dữ liệu là việc sử dụng dữ liệu lịch sử để khám phá những qui tắc

và cải thiện những quyết định trong tương lai.” Với một cách tiếp cận ứng dụng hơn, tiến sĩ Fayyad đã phát biểu: ”Khai phá dữ liệu thường được xem là việc khám phá tri thức trong các cơ sở dữ liệu, là một quá trình trích xuất những thông tin ẩn, trước đây chưa biết và có khả năng hữu ích, dưới dạng các quy luật, ràng buộc, qui tắc trong cơ

sở dữ liệu.” Còn các nhà thống kê thì xem " khai phá dữ liệu như là một quá trình phân tích được thiết kế thăm dò một lượng cực lớn các dữ liệu nhằm phát hiện ra các mẫu thích hợp và/ hoặc các mối quan hệ mang tính hệ thống giữa các biến và sau đó

sẽ hợp thức hoá các kết quả tìm được bằng cách áp dụng các mẫu đã phát hiện được cho tập con mới của dữ liệu"

Nói tóm lại: khai phá dữ liệu là một bước trong quy trình phát hiện tri thức gồm có các thụât toán khai thác dữ liệu chuyên dùng dưới một số quy định về hiệu quả tính toán chấp nhận được để tìm ra các mẫu hoặc các mô hình trong dữ liệu [4]

1.2 Quá trình phát hiện tri thức

Quá trình khám phá tri thức được tiến hành qua 5 bước sau [5]:

Trang 7

Hình 1.1 Quá trình khám phá tri thức

1.2.1 Hình thành và định nghĩa bài toán

Đây là bước tìm hiểu lĩnh vực ứng dụng và hình thành bài toán, bước này

sẽ quyết định cho việc rút ra những tri thức hữu ích, đồng thời lựa chọn các phương pháp khai phá dữ liệu thích hợp với mục đích của ứng dụng và bản chất của dữ liệu

1.2.2.Thu thập và tiền xử lý dữ liệu

Trong bước này dữ liệu được thu thập ở dạng thô (nguồn dữ liệu thu thập có thể là từ các kho dữ liệu hay nguồn thông tin internet) Trong giai đoạn này dữ liệu cũng được tiền xử lý để biến đổi và cải thiện chất lượng dữ liệu cho phù hợp với phương pháp khai phá dữ liệu được chọn lựa trong bước trên

Bước này thường chiếm nhiều thời gian nhất trong quá trình khám phá tri thức

Các giải thuật tiền xử lý dữ liệu bao gồm :

1 Xử lý dữ liệu bị mất/ thiếu: Các dạng dữ liệu bị thiếu sẽ được thay thế bởi các giá trị thích hợp

2 Khử sự trùng lắp: các đối tượng dữ liệu trùng lắp sẽ bị loại bỏ

đi Kỹ thuật này không được sử dụng cho các tác vụ có quan tâm đến phân bố dữ liệu

Trang 8

3 Giảm nhiễu: nhiễu và các đối tượng tách rời khỏi phân bố chung

sẽ bị loại đi khỏi dữ liệu

4 Chuẩn hoá: miền giá trị của dữ liệu sẽ được chuẩn hoá

5 Rời rạc hoá: các dạng dữ liệu số sẽ được biến đổi ra các giá trị rời rạc

6 Rút trích và xây dựng đặc trưng mới từ các thuộc tính đã có

7 Giảm chiều: các thuộc tính chứa ít thông tin sẽ được loại bỏ bớt

1.2.3.Khai phá dữ liệu và rút ra các tri thức

Đây là bước quan trọng nhất trong tiến trình khám phá tri thức Kết quả của bước này là trích ra được các mẫu và/hoặc các mô hình ẩn dưới các dữ liệu Một mô hình có thể là một biểu diễn cấu trúc tổng thể một thành phần của hệ thống hay cả hệ thống trong cơ sở dữ liệu, hay miêu tả cách dữ liệu được nảy sinh Còn một mẫu là một cấu trúc cục bộ có liên quan đến vài biến và vài trường hợp trong cơ sở dữ liệu

Bước thứ tư là hiểu các tri thức đã tìm được, đặc biệt là làm sáng tỏ các

mô tả và dự đoán Trong bước này, kết quả tìm được sẽ được biến đổi sang dạng phù hợp với lĩnh vực ứng dụng và dễ hiểu hơn cho người dùng

Trong bước này, các tri thức khám phá được sẽ được củng cố, kết hợp lại thành một hệ thống, đồng thời giải quyết các xung đột tiềm năng trong các tri thức đó Các mô hình rút ra được đưa vào những hệ thống thông tin thực tế dưới dạng các môdun hỗ trợ việc đưa ra quyết định

Các giai đoạn của quá trình khám phá tri thức có mối quan hệ chặt chẽ với nhau trong bối cảnh chung của hệ thống Các kỹ thuật được sử dụng trong giai đoạn trước có thể ảnh hưởng đến hiệu quả của các giải thuật được sử dụng trong các giai đoạn tiếp theo Các bước của quá trình khám phá tri thức

có thể được lặp đi lặp lại một số lần, kết quả thu được có thể được lấy trung bình trên tất cả các lần thực hiện

Trang 9

1.3 Quá trình khai phá dữ liệu

Khai phá dữ liệu là hoạt động trọng tâm của quá trình khám phá tri thức Thuật ngữ

khai phá dữ liệu còn được một số nhà khoa học gọi là phát hiện tri thức trong cơ sở dữ liệu ( knowledge discovery in database _KDD) ( theo Fayyad Smyth and Piatestky-Shapiro 1989)

Quá trình này gồm có 6 bước [1]:

Hình 1.2 Quá trình khai phá dữ liệuQuá trình khai phá dữ liệu bắt đầu với kho dữ liệu thô và kết thúc với tri thức được chiết xuất ra Nội dung của quá trình như sau:

1.3.1 Gom dữ liệu (gatherin)

Tập hợp dữ liệu là bước đầu tiên trong khai phá dữ liệu Bước này lấy

dữ liệu từ trong một cơ sở dữ liệu, một kho dữ liệu, thậm chí dữ liệu từ những nguồn cung ứng web

1.3.2 Trích lọc dữ liệu (selection)

Ở giai đoạn này dữ liệu được lựa chọn và phân chia theo một

số tiêu chuẩn nào đó

1.3.3 Làm sạch và tiền xử lý dữ liệu (cleansing preprocessing).

Giai đoạn thứ ba này là giai đoạn hay bị sao lãng, nhưng thực tế nó là một bước rất quan trọng trong quá trình khai phá dữ liệu Một số lỗi thường

Trang 10

mắc phải trong khi gom dữ liệu là dữ liệu không đầy đủ hoặc không thống nhất, thiếu chặt chẽ Vì vậy dữ liệu thường chứa các giá trị vô nghĩa và không có khả năng kết nối dữ liệu Ví dụ Sinh viên có tuổi=200 Giai đoạn thứ ba này nhằm

xử lý các dữ liệu như trên(dữ liệu vô nghĩa, dữ liệu không có khả năng kết nối) Những dữ liệu dạng này thường được xem là thông tin dư thừa, không có giá trị Bởi vậy đây là một quá trình rất quan trọng Nếu dữ liệu không được làm sạch- tiền xử lý - chuẩn bị trước thì sẽ gây nên những kết quả sai lệch nghiêm trọng về sau

1.3.4 Chuyển đổi dữ liệu (transformation)

Trong giai đoạn này, dữ liệu có thể được tổ chức và sử dụng lại Mục đích của việc chuyển đổi dữ liệu là làm cho dữ liệu phù hợp hơn với mục đích khai phá dữ liệu

1.3.5 Phát hiện và trích mẫu dữ liệu ( pattern extraction and discovery)

Đây là bước tư duy trong khai phá dữ liệu Ở trong giai đoạn này nhiều thuật toán khác nhau đã được sử dụng để trích ra các mẫu từ dữ liệu Thuật toán thường dùng để trích mẫu dữ liệu là thuật toán phân loại dữ liệu, kết hợp

dữ liệu, thuật toán mô hình hoá dữ liệu tuần tự

1.3.6 Đánh giá kết quả mẫu (evaluation of result )

Đây là giai đoạn cuối cùng trong quá trình khai phá dữ liệu, ở giai đoạn này các mẫu dữ liệu được chiết xuất ra bởi phần mềm khai phá dữ liệu Không phải mẫu dữ liệu nào cũng hữu ích, đôi khi nó còn bị sai lệch Vì vậy cần phải đưa ra những tiêu chuẩn đánh giá độ ưu tiên cho các mẫu dữ liệu để rút ra được những tri thức cần thiêt

1.4 Chức năng của khai phá dữ liệu

Khai phá dữ liệu có hai chức năng cơ bản đó là: chức năng dự đoán và chức năng mô tả

Trang 11

1.5 Các kỹ thuật khai phá dữ liệu

Trong thực tế có nhiều kỹ thuật khai phá dữ liệu khác nhau nhằm thực hiện hai chức năng mô tả và dự đoán

- Kỹ thuật khai phá dữ liệu mô tả: có nhiệm vụ mô tả các tính chất hoặc các đặc tính chung của dữ liệu trong CSDL hiện có Một số kỹ thuật khai phá trong nhóm này là: phân cụm dữ liệu (Clustering), tổng hợp (Summarisation), trực quan hoá (Visualization), phân tích sự phát triển và

độ lệch (Evolution and deviation analyst),…

- Kỹ thuật khai phá dữ liệu dự đoán: có nhiệm vụ đưa ra các dự đoán dựa vào các suy diễn trên cơ sở dữ liệu hiện thời Một số kỹ thuật khai phá trong nhóm này là: phân lớp (Classification), hồi quy (Regression), cây quyết định (Decision tree), thống kê (statictics), mạng nơron (neural network), luật kết hợp,…

Một số kỹ thuật phổ biến thường được sử dụng để khai phá dữ liệu hiện nay là :

1.5.3 Khai phá luật kết hợp:

Mục tiêu của phương pháp này là phát hiện và đưa ra các mối liên hệ giữa các giá trị dữ liệu trong cơ sở dữ liệu Đầu ra của giải thuật luật kết hợp là tập luật kết hợp tìm được Phương pháp khai phá luật kết hợp gồm có hai bước:

Trang 12

- Bước 1: Tìm ra tất cả các tập mục phổ biến Một tập mục phổ biến được xác định thông qua tính độ hỗ trợ và thoả mãn độ hỗ trợ cực tiểu.

- Bước 2: Sinh ra các luật kết hợp mạnh từ tập mục phổ biến, các luật phải thoả mãn độ hỗ trợ và độ tin cậy cực tiểu

1.5.4 Hồi quy:

Phương pháp hồi quy tương tự như là phân lớp dữ liệu Nhưng khác ở chỗ nó dùng để dự đoán các giá trị liên tục còn phân lớp dữ liệu dùng để dự đoán các giá trị rời rạc

1.5.5 Giải thuật di truyền:

Là quá trình mô phỏng theo tiến hoá của tự nhiên Ý tưởng chính của giải thuật là dựa vào quy luật di truyền trong biến đổi, chọn lọc tự nhiên và tiến hoá trong sinh học

1.5.6 Mạng nơron:

Đây là một trong những kỹ thuật khai phá dữ liệu được ứng dụng phổ biến hiện nay Kỹ thuật này phát triển dựa trên một nền tảng toán học vững vàng, khả năng huấn luyện trong kỹ thuật này dựa trên mô hình thần kinh trung ương của con người

Kết quả mà mạng nơron học được có khả năng tạo ra các mô hình dự báo, dự đoán với độ chính xác và độ tin cậy cao Nó có khả năng phát hiện ra được các xu hướng phức tạp mà kỹ thuật thông thường khác khó có thể phát hiện ra được Tuy nhiên phương pháp mạng nơ ron rất phức tạp và quá trình tiến hành nó gặp rất nhiều khó khăn: đòi hỏi mất nhiều thời gian, nhiều dữ liệu, nhiều lần kiểm tra thử nghiệm

1.5.7 Cây quyết định.

Kỹ thuật cây quyết định là một công cụ mạnh và hiệu quả trong việc phân lớp và dự báo Các đối tượng dữ liệu được phân thành các lớp Các giá trị của đối tượng dữ liệu chưa biết sẽ được dự đoán, dự báo Tri thức được rút

Trang 13

ra trong kỹ thuật này thường được mô tả dưới dạng tường minh, đơn giản, trực quan, dễ hiểu đối với người sử dụng.

1.6 Các dạng dữ liệu có thể khai phá được

- CSDL quan hệ

- CSDL đa chiều

- CSDL giao dịch

- CSDL quan hệ - đối tượng

- CSDL không gian và thời gian

- CSDL đa phương tiện

1.7 Các lĩnh vực liên quan đến khai phá dữ liệu và ứng dụng của khai phá

dữ liệu

1.7.1 Các lĩnh vực liên quan đến phát hiện tri thức và khai phá dữ liệu

Phát hiện tri thức và khai phá dữ liệu được ứng dụng trong nhiều ngành và lĩnh vực khác nhau như: tài chính ngân hàng, thương mại, y tế, giáo dục, thống

kê, máy học, trí tuệ nhân tạo, csdl, thuật toán toán học, tính toán song song với tốc độ cao, thu thập cơ sở tri thức cho hệ chuyên gia,…

1.7.2 Ứng dụng của khai phá dữ liệu

Khai phá dữ liệu được vận dụng để giải quyết các vấn đề thuộc nhiều lĩnh vực khác nhau Chẳng hạn như giải quyết các bài toán phức tạp trong các ngành đòi hỏi kỹ thuật cao, như tìm kiếm mỏ dầu, từ ảnh viễn thám, cảnh báo hỏng hóc trong các hệ thống sản xuất; Được ứng dụng cho việc quy hoạch và phát triển các hệ thống quản lý và sản xuất trong thực tế như dự đoán tải sử dụng điện, mức độ tiêu thụ sản phẩm, phân nhóm khách hàng; Áp dụng cho các vấn

đề xã hội như phát hiện tội phạm, tăng cường an ninh…

Một số ứng dụng cụ thể như sau :

- Khai phá dữ liệu được sử dụng để phân tích dữ liệu, hỗ trợ ra quyết định

- Trong sinh học: nó dùng để tìm kiếm , so sánh các hệ gen và thông tin di chuyền, tìm mối liên hệ giữa các hệ gen và chuẩn đoán một số bệnh di chuyền

Trang 14

- Trong y học: khai phá dữ liệu giúp tìm ra mối liên hệ giữa các triệu chứng, chuẩn đoán bệnh.

- Tài chính và thị trường chứng khoán: Khai phá dữ liệu để phân tích tình hình tài chính, phân tích đầu tư, phân tích cổ phiếu

- Khai thác dữ liệu web

- Trong thông tin kỹ thuật: khai phá dữ liệu dùng để phân tích các sai hỏng, điều khiển và lập lịch trình…

- Trong thông tin thương mại: dùng để phân tích dữ liệu người dùng, phân tích dữ liệu marketing, phân tích đầu tư, phát hiện các gian lận

1.8 Các thách thức và hướng phát triển của phát hiện tri thức và khai phá dữ liệu.

Sự phát triển của phát hiện tri thức và khai phá dữ liệu gặp phải một số thách thức sau:

- CSDL lớn (số lượng bản ghi, số bảng)

- Số chiều lớn

- Thay đổi dữ liệu và tri thức có thể làm cho các mẫu đã phát hiện không còn phù hợp nữa

- Dữ liệu bị thiếu hoặc bị nhiễu

- Quan hệ giữa các trường phức tạp

- Vấn đề giao tiếp với người sử dụng và kết hợp với các tri thức đã có

- Tích hợp với các hệ thống khác

- …

Hướng phát triển của khám phá tri thức và khai phá dữ liệu là vượt qua được tất cả những thách thức trên Chú trọng vào việc mở rộng ứng dụng để đáp ứng cho mọi lĩnh vực trong đời sống xã hội, và tăng tính hữu ích của việc khai phá dữ liệu trong những lĩnh vực đã có khai phá dữ liệu Tạo ra các phương pháp khai phá dữ liệu linh động, uyển chuyển để xử lý số lượng dữ liệu lớn một cách hiệu quả Tạo ra tương tác người sử dụng tốt, giúp người sử dụng tham gia điều khiển quá trình khai phá dữ liệu, định hướng hệ thống khai phá dữ liệu trong việc phát hiện các mẫu đáng quan tâm Tích hợp khai phá dữ liệu vào trong các hệ cơ sở dữ liệu Ứng dụng khai phá dữ liệu để khai phá dữ liệu web trực tuyến Một vấn đề quan trọng trong

Trang 15

việc phát triển khám phá tri thức và khai phá dữ liệu đó là vấn đề an toàn và bảo mật thông tin trong khai phá dữ liệu.

Chương 2: Khai phá dữ liệu bằng cây quyết định

2.1 Cây quyết định

2.1.1 Định nghĩa cây quyết định

Trong lĩnh vực học máy, cây quyết định là một kiểu mô hình dự báo

(predictive model), nghĩa là một ánh xạ từ các quan sát về một sự vật/hiện

tượng tới các kết luận về giá trị mục tiêu của sự vật/hiện tượng Mỗi nút trong

(internal node) tương ứng với một biến; đường nối giữa nó với nút con của nó

thể hiện giá trị cụ thể cho biến đó Mỗi nút lá đại diện cho giá trị dự đoán của biến mục tiêu, cho trước các giá trị dự đoán của các biến được biểu diễn bởi đường đi từ nút gốc tới nút lá đó Kỹ thuật học máy dùng trong cây quyết định được gọi là học bằng cây quyết định, hay chỉ gọi với cái tên ngắn gọn là cây quyết định [3]

Ví dụ: Cây quyết định phân lớp mức lương

Hình 2.1 Cây quyết định phân lớp mức lương

Age?

≤ 35salary

Trang 16

2.1.2 Ưu điểm của cây quyết định

So với các phương pháp khai phá dữ liệu khác, cây quyết định có một số

ưu điểm sau

- Cây quyết định tương đối dể hiểu

- Đòi hỏi mức tiền xử lý dữ liệu đơn giản

- Có thể xử lý với cả các dữ liệu rời rạc và liên tục

- Cây quyết định là một mô hình hộp trắng

- Kết quả dự đoán bằng cây quyết định có thể thẩm định lại bằng cách kiểm tra thống kê

Có nhiều thuật toán khác nhau để xây dựng cây quyết định như: CLS, ID3, C4.5, SLIQ, SPRINT, EC4.5, C5.0…Nhưng nói chung quá trình xây dựng cây quyết định đều được chia ra làm 3 giai đoạn cơ bản:

a Xây dựng cây: Thực hiện chia một cách đệ quy tập mẫu dữ liệu huấn luyện cho đến khi các mẫu ở mối nút lá thuộc cùng một lớp

b Cắt tỉa cây: Là việc làm dùng để tối ưu hoá cây Cắt tỉa cây chính là việc trộn một cây con vào trong một nút lá

c Đánh giá cây: Dùng để đánh giá độ chính xác của cây kết quả Tiêu chí đánh giá là tổng số mẫu được phân lớp chính xác trên tổng số mẫu đưa vào

2.1.4 Rút ra các luật từ cây quyết định.

Có thể chuyển đổi qua lại giữa mô hình cây quyết định và mô hình dạng luật (IF …THEN…) Hai mô hình này là tương đương nhau

Ví dụ từ cây 2.1 ta có thể rút ra được các luật sau

IF (Age <= 35) AND (salary<=40) THEN class = bad

IF (Age<=35) AND (salary>40) THEN class = good

IF (Age>35) AND (salary <=50 ) THEN class = bad

IF (Age > 35) AND(salary>50) THEN class = good

Ngày đăng: 25/04/2013, 10:41

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[2] Võ Huỳnh Tâm - Trần Ngân Bình, "Giáo trình trí tuệ nhân tạo", Chương 9 Học máy, Nhà xuất bản: Đại học Cần Thơ Sách, tạp chí
Tiêu đề: Giáo trình trí tuệ nhân tạo
Nhà XB: Nhà xuất bản: Đại học Cần Thơ
[5] Jaiwei Han and Micheline Kamber, Data Mining: Concepts and Techniques (2001), ISBN 1-55860-489-8 Sách, tạp chí
Tiêu đề: Data Mining: Concepts and Techniques
Tác giả: Jaiwei Han and Micheline Kamber, Data Mining: Concepts and Techniques
Năm: 2001
[3] Wikipedia - Bách khoa toàn thư mở - Cây quyết định. http://en.wikipedia.org/wiki/Decision tree Tài liệu tiếng Anh Link
[7] Knowledge Discovery Nuggets: http://www.kdnuggets.com/ Link
[4] Introduction to Knowledge Discovery and Data Mining, Institute of Information Technology Khác
[6] Knowledge Discovery in Databases. G.piatetsky - Shapiro and W.J. Frawley. AAAI/MIT Press, 1991 Khác
[8] Slide Learning from Data: Decision trees, Amos Storkey, School of Informatics university of Edinburgh, Semester 1, 2004 Khác
[9] Thomas, Data mining: Definittions and decision tree examples, State university of New York Khác

HÌNH ẢNH LIÊN QUAN

Hình 1.1. Quá trình khám phá tri thức - khai phá dữ liệu bằng cây quyết định.
Hình 1.1. Quá trình khám phá tri thức (Trang 7)
Hình 2.1 Cây quyết định phân lớp mức lương - khai phá dữ liệu bằng cây quyết định.
Hình 2.1 Cây quyết định phân lớp mức lương (Trang 15)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w