1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bề rộng phân rã hạt squark thành hạt quark và gluinos trong mẫu chuẩn siêu đối xứng tối thiểu (MSSM)

60 451 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 0,94 MB

Nội dung

Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp MỞ ĐẦU Lý chọn đề tài Mẫu chuẩn (SM) đời sở nhóm gauge SU(3)SU(2)U(1) nhằm thống tương tác mạnh, tương tác yếu tương tác điện từ Mẫu chuẩn chứng tỏ lý thuyết tốt hầu hết dự đốn thực nghiệm khẳng định vùng lượng ≤ 200GeV Mặc dù SM nhiều hạn chế, trước hết liên quan đến q trình xảy vùng lượng cao thêm vào chưa giải số vấn đề lý thuyết thân số số tương tác, khối lượng, … Những hạn chế dẫn đến cần thiết phải nghiên cứu mẫu chuẩn mở rộng Phát triển mơ hình chuẩn thu mơ mơ hình 3-3-1, lý thuyết siêu đối xứng, lý thuyết thống lớn, lý thuyết dây … Mẫu chuẩn siêu đối xứng tối thiểu (MSSM) hướng mở rộng có nhiều hứa hẹn SM Trong mẫu chuẩn siêu đối xứng, fecmion ln kèm với boson (chúng gọi bạn đồng hành siêu đối xứng) nên số hạt tăng lên Và thực nghiệm chưa phát hạt bạn đồng hành siêu đối xứng hạt biết Do vấn đề quan tâm nghiên cứu q trình vật lý có tham gia hạt đốn nhận mẫu chuẩn siêu đối xứng tối thiểu để hy vọng tìm chúng từ thực nghiệm Các q trình vật lý thực nghiệm quan tâm phải kể đến q trình phân rã hạt ví dụ rã hạt Squark Vi phạm đối xứng CP đóng vai trò quan trọng mẫu chuẩn mẫu chuẩn siêu đối xứng tối thiểu, việc xét tới vi phạm đối xứng CP kéo theo phải phức hóa số tham số mẫu ảnh hưởng định tới số kết vật lý Cho tới năm 2003-2006, hầu hết Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp nghiên cứu phân rã Squark tính đến vi phạm CP giải tương đối vẹn tồn q trình phân rã Squark thành A0, H0 với tham số phức; Squark thành boson Higgs + Squark; Squark thành Charginos (neutralinos) + quark ; Squark thành Boson gauge + squark… Qua ta thấy q trình phân rã hạt Squark thành Quark Gluinos chưa đề cập tới tốn cần nghiên cứu cách cụ thể Mục đích nghiên cứu Khóa luận nghiên cứu q trình phân rã hạt Squark thành hạt Quark Gluinos mẫu chuẩn siêu đối xứng tối thiểu: * Tính giải tích độ rộng phân rã mức  tính đến vi phạm CP * Tính giải tích độ rộng phân rã có hiệu chỉnh đỉnh vòng tính đến vi phạm đối xứng CP Phƣơng pháp nghiên cứu * Sử dụng quy tắc Feynman phương pháp quan trọng việc tính giải tích độ rộng phân rã, hiệu chỉnh vòng tính giản đồ lượng riêng * Các phương pháp khử phân kỳ lý thuyết trường lượng tử, đặc biệt phương pháp chỉnh thứ ngun có đóng góp quan trọng việc tính hiệu chỉnh vòng Ngồi sử dụng hàm tích phân Pasarion – Veltman Bố cục đề tài Đề tài ngồi phần mở đầu, kết luận phụ lục có chương: Chương I: “Mẫu chuẩn siêu đối xứng tối thiểu (MSSM)” Chương II: “Vi phạm đối xứng CP” Chương III: “Bề rộng phân rã hạt Squark thành hạt Quark Gluinos mẫu chuẩn siêu đối xứng tối thiểu (MSSM)” Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp CHƢƠNG I MẪU CHUẨN SIÊU ĐỐI XỨNG TỐI THIỂU (MSSM) Siêu đối xứng đối xứng fermion boson, hay xác trạng thái có spin khac Các phép biến đổi siêu đối xứng sinh vi tử (generator) Q, biến fermion thành boson ngược lại Các vi tử với vi tử nhóm Poincare  P  tạo thành đại số siêu đối xứng:   Q , P   Q , P   Q , Q   Qa , Q  (1.1) Q , P   2 (1.2)      P   1 Q , M v    v  Q , Q , M v       Q   2 (1.3) Với   ma trận Pauli Các trạng thái hạt thuyết trường siêu đối xứng thành lập biểu diễn đại số (1.1 – 1.3) Các biểu diễn siêu đa tuyến có tính chất quan trọng sau: * Số bậc tự boson femion nhau, nB  nF * Khối lượng trạng thái siêu đa tuyến suy biến, mB  mF * Năng lượng P0  1.1 Mở đầu Mẫu chuẩn siêu đối xứng tối thiểu (MSSM – Minimal Supersymmetric Standard Model) xây dựng sở ý tưởng mở rộng mẫu chuẩn cách tiết kiệm đơn giản nhất, sử dụng nhóm đối xứng chuẩn SU(3)SU(2)U(1) thay trường bình thường siêu trường (trường + superpaner) Trước hết, phải bổ sung hạt siêu đối xứng tương ứng với hạt biết mơ hình chuẩn để lập nên siêu đa tuyến: Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp * Các boson chuẩn: Wi ; B , G mở rộng thành siêu đa tuyến vector cách bổ sung spinor W i  Winos  , B  Binos  , G a  Gluinos  - gọi chung gaugino * Các quark lepton: mở rộng thành siêu đa tuyến chiral cách bổ sung hạt vơ hướng tương ứng gọi scalar quark (squark) scarlar lepton (slepton) hay gọi chung scalar fermion (sfermion) * Các hạt Higgs: Các hạt vơ hướng Higgs mở rộng thành siêu đa tuyến chiral cách bổ sung spinor đồng hành Higgsino Tuy nhiên, với siêu đa tuyến chiral Higgs khơng đủ để tính khối lượng cho tất quark lepton, số hạng tương tác Yukawa lý thuyết gauge siêu đối xứng xuất phát từ siêu thế, chứa siêu trường chiral khơng chứa liên hợp hermitic siêu trường Do đó, để tính khối lượng cho quark với điện tích 2/3, cần có thêm siêu đa tuyến chiral Higgs độc lập, H : 1,  1/  1.2 Bảng hạt có MSSM Cấu trúc hạt MSSM tóm tắt bảng Cách ký hiệu siêu đa tuyến chiral ứng với quark lepton bảng hiểu sau: Q a : quark phân cực trái, UCa , DCa : phản quark phân cực trái, La : lepton phân cực trái, ECa : phản lepton phân cực trái, Với a số hệ quark lepton Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp Siêu đa Fermion Boson SU(3) SU(2) UY(1) U(1)em Bosongauge Higg Lepton Quark tuyến U a  Qa   a  D  qLa  s  0,5  q La  s   1/6 2/3     1/  U Ca uRa (s  0,5) uRa* (s  0) -2/3 -2/3 DCa d Ra (s  0,5) dRa* ( s  0) 1/3 1/3 a Na  L   a  E  lLa  s  0,5 lLa  s    0     1  ECa eRa  s  0,5  eRa*  s   1  H10  H1     H   1  h10     (s = 0,5)  h     h10     (s = 0)  h1   H 2  H2    H   2  h2     (s = 0,5)  h   2  h2    (s = 0)  h2  2 0   1  V1 B  s  0,5  B  s  1 1 0 V2 W  s  0,5 W  s  1 (0, ±1) V3 G  s  0,5 G  s  1 0  0     1  Bảng 1: Cấu trúc hạt MSSM Trong đó:  u  2 uL  Q L  , U C  u *R  2 uR , DC  dR*  2 d R ,  d  2 d   L L (1.4)  H  2 H 10   H 2  2 H 2  H1    , H2     H   2 H    H  2 H   1   2  (1.5)     1.3 Lagrangian mơ hình chuẩn (SM) Lagrangian mơ hình chuẩn (SM) viết sau : Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp LSM      Fbv F  vb   D hD  h   a  a 1  iq L  D qLi  iu R  D u Ri  id R  D d Ri  il L  D lLi  ie R  D eRi i 1 i i i i  i    Yu ij hqLi uRj  Yd ij hqLi d Rj  Yl ij hlLi eRj  h.c  V  h, h  i , j 1  (1.6) Thế vơ hướng cho lưỡng tuyến Higgs chọn sau: V  h, h    hh    hh  (1.7) Với   (vì ngược lại hệ vật lý khơng bền1) Với   , đối xứng SU(2)L  SU(1)Y bị phá vỡ thành đối xứng U 1 EM Khi cực tiểu vơ 2 hướng khơng nằm = mà hh   2 1.4 Lagrangian siêu đối xứng MSSM Để có biểu thức cụ thể Lagrangian, ta phải viết phép biến đổi gauge tương ứng nhóm đối xứng SU(3)C, SU(2)L, U(1)Y cho siêu trường chiral khác - Các phép biến đổi gauge SU(3)C: Q a  e i Q a , UCa  ei3UCa , DCa  ei3 DCa , La , ECa , H1, H  La , ECa , H1, H (1.8) j j 1 Ở đây, phép biến đổi SU(3)C tham số hóa 3    3j , với  j ma trận Gell – Mann, 3j siêu trường chiral phân cực trái sử dụng tham số Khi  < 0;  < vơ hướng khơng có cực tiểu mà có cực đại, = Nếu   vơ hướng có cực tiểu địa phương tại, = khơng có cực tiểu tồn cục Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp - Các phép biến đổi gauge SU(2)L: Q a  e i Q a , La  ei2 La , H1 ,2  ei2 H1 ,2 , UCa , DCa , ECa  UCa , DCa , ECa j j 1 đây,     2j (1.9) , với  j ma trận Pauli - Các phép biến đổi gauge U(1)Y: i1 Qa  e Qa , U e a C D e a C La  e  i1 U Ca , i1 DCa ,  i1 La , ECa  ei1 ECa , H1  e  1 H1 , i1 H2  e2 H2 (1.10) Người ta định nghĩa siêu đa tuyến vector tương ứng với nhóm đối xứng SU(3)C, SU(2)L, U(1)Y sau: V3  V3a a 1 a , a a 1 V2  V2a V1 (1.11) Các siêu đa tuyến vector này, tương ứng theo thứ tự, chứa hạt gauge gaugino nhóm đối xứng SU(3)C, SU(2)L, U(1)Y bậc tự Siêu W chọn vào dạng tương tác Yukawa sau: W  Eab La ECb H1  DabQa DCb H1  UabQaUCb H   H1H Lương Bích Vân (1.12) K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp Trong đó: -  gọi tham số khối lượng higgino - Các ma trận E , D , U chứa số tương tác Yukawa liên hệ với ma trận khối lượng fecmion ME, MD, MU g.M e g.M d g.M U , D  , U  2mw cos  2mw cos  2mw cos  E  (1.13) Với tan  giá trị trung bình chân khơng trường Higgs, g hệ số gauge (gauge coupling) Như vậy, Lagrangian siêu đối xứng đầy đủ mẫu chuẩn có dạng: LSUSY  V1 V  a  V3 V2 16V1 a V3 a  a a  V3 3   Q  e e e Q  U c  e e U C   DC  e e DCa  v1   La  eV2 e La   Eca  eV1 Eca  H1 eV2 e     V1 V1  H1  H 2eV2 e H      W   W    Tr W3W3  Tr W3W3      g3    Tr W2W2   Tr W2W2     8g2  Tr W1W1   Tr W1W1    16 g12   (1.14) Trong đó: W   W   : tương ứng largrangian tương tác Higgs với quark Wn : động cho siêu đa tuyến gauge xây dựng với đa tuyến chiral cho nhóm SU(n) (với n = 1, 2, 3) 1.5 Cơ chế phá vỡ siêu đối xứng mềm khối lƣợng hạt Trên phương diện thực nghiệm, chưa phát hạt đồng hành siêu đối xứng slepton, quark gaugino, ta xác định giới hạn cho khối lượng hạt qua bất đẳng thức: Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp msquark  mquark , mslepton  mlepton mgaugino  mgauge (1.15) Các bất đẳng thức (1.15) mẫu thuẫn với u cầu cân khối lượng trạng thái hạt siêu đa tuyến Sự mâu thuẫn cho thấy tự thân siêu đối xứng xuất phase bị phá vỡ (broken phase) 1.5.1 Phá vỡ siêu đối xứng mềm Để phá vỡ siêu đối xứng mềm cách tường minh mà đảm bảo tính tái chuẩn hóa lý thuyết khơng làm xuất phân kỳ bậc 2, người ta đưa vào số hạng đặc biệt, khơng siêu đối xứng bất biến gauge, gọi số hạng “phá vỡ siêu đối xứng mềm” Người ta tìm thấy số hạng thỏa mãn u cầu: Số hạng khối lượng Gaugino: M a a a (a số nhóm), Số hạng khối lượng vơ hướng: M 2 i , Tương tác tam tuyến vơ hướng: Aijk i jk , Số hạng nhị tuyến: Bij i j  h.c Chúng dẫn đến Lagrangian phá vỡ siêu đối xứng mềm có dạng sau: Lsoft  2    M WW    M gg    mH2 H1  mH2 H  M Q2 qL M1BB 2  2 2  M U2 uRc  M D2 dRc  M L2 lRc  M E2 eRc  hE AE H1lL eRc  hD AD H1qL dRc  hU AU H qLuRc  B H1H  h.c Tóm lại: Lagrangian tồn phần MSSM có dạng: L = LSUSY + Lsoft (1.17) Trước đây, ta thấy dù siêu đối xứng có bảo tồn hay bị phá vỡ, đối xứng điện yếu khơng thể bị phá vỡ tự pháp Bây với diện số hạng phá vỡ siêu đối xứng mềm, vấn đề giải Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp 1.5.2 Gaugino Higgino 1.5.2.1 Chargino Neutralino Phá vỡ đối xứng SU(2)U(1) dẫn đến trộn lẫn gaugino điện từ yếu higgino Sự trộn tạo thành hạt mang tên chargino, neutralino Trạng thái riêng khối lượng charged gaugino higgsino gọi chargino Ký hiệu:    W  , H 2  , W  , H 1  Lm    Với X   0    j , j   X (1.18)  X T   j      j  (1.19) 2s mw     M  2c m  w  Ký hiệu: sw , cw, s , c tương ứng với sin  w,cos  w,sin ,cos  Trong đó:  w góc Weinberg, tan  giá trị trung bình chân khơng trường higgs Ma trận X chéo hóa hai ma trận Unita thực U V  1m1  M D  U * XV 1    2 m     Trong đó: U 22  U11  U12  U 21  U 1 (1.20) M    2mw2 cos 2 W M    2mw2 cos 2 1 W M    2mw2 cos 2 V11  V22  1 W V21  V12  Với: W  M V    2mw2 1 M    2mw2 cos 2 W    M  m sin 2 2 w (1.21) (1.22) (1.23) (1.24) (1.25)  U  dấu  M cos    sin   ,  v  dấu  M sin    cos   Lương Bích Vân 10 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp    2 Dii  p pv g v  p k    mq mg Cii Thay vào ta có:  m   g  ii qi Dii  g  p p  k  p   mq mg Cii s  d p  i   p2  mg2   p  k 2  mq2  Áp dụng cơng thức Pasarino từ (B-2) đến (B-6) Và Dii   Riq1    Riq2   1, Cii  Riq1 Riq2   1 sin 2 q 2 i Ta có: 4 s     m    3 g qi ii     Dii A0  mq2   mg2 B0 mq2i , mg2 , mq2  mq2i B1 mq2i , mg2 , mq2  mq mg Cii B0 mq2i , mg2 , mq2  g      ii mq2i   4 s 3     A  m   m B  m , m , m   q qi  qi g q    mg2   1 mq mg sin 2q B0 mq2i , mg2 , mq2 i  (3.44) Trong đó: A0 , B0 , B1 hàm Pasarino – Veltman     ): * Với bóng squark (tương tác qqqq Giản đồ: p,t q1,2 k, r p,t k, s qi q j Dựa vào quy tắc Feynman, giản đồ ứng với biểu thức:   m   i  2     q  ij qi Lương Bích Vân g s2 d P TrsaTtta Stj Skk  TrtaTsta Sik S  P  mq2k k 1 46 (3.45) K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp Mà TrsaTtta  0, g s2TrtaTtta   q      ij mq2i  16 s s 1   Sik Skj   d p 3 k 1 i p  mq2 k Áp dụng hàm Pasarino (B-1) i = j:  q      ij mq2i  s   Sik S ki A0  mq2 3 k 1 k  (3.46)  ) * Với bóng gluon (tương tác qqgg Giản đồ: Dựa vào quy tắc Feynman, giản đồ có biểu thức: d p 1  lim  d p 2   v  p p v (3.47) Nên giản đồ khơng có đóng góp vào lượng riêng Squark +Từ có:  mq2  Re   ii  mq2    ii  mq2    ii  mq2   g i  g   q i i i (3.48)  + Hàm sóng tái chuẩn hóa Squark chứa Z ni  qi  :      gg   Zii gg    Re   ii mq2i  với   ii m2    2 s     m    3 B  m g ii qi    m   g ii qi Lương Bích Vân qi     ii  p  p ,0, mq2i  2mq2i B0 mq2i ,0, mq2i p  m2  2 s B0 mq2i , mg2 , mq2  mq2i  mg2  mq2 B0 mq2i , mg2 , mq2  3     47    K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp  2mq mg  1 sin 2 q B0 mq2i , mg2 , mq2 i   g ,q   Zi 'i Và  g , q  Re   i 'i mq2i   ;  2 mqi '  mqi  i '  i  Vậy hàm sóng tái chuẩn hóa xác định nhờ biểu thức:   qi0  1   Zii  qi   Zii ' qi '   (3.49) 3.3.1.2 Đối với quark tham số đưa vào phức * Với vòng gluon – quark Giản đồ: g q q q Dựa vào quy tắc Feynman, ta có biểu thức: g q m   g s2 Tsa' r Tssa '  i  2  Mà g s2 Tsa' r Tssa '   d p       i pˆ  kˆ  mq    2 2 p  p  k   mq   (3.50) 16 s v , TS  i   p  k       mq Và áp dụng hàm Pasarino (B-2), (B-3)   mq    g 2 s mq B0  mq2 ,0, mq2   B1  mq2 ,0, mq2   / 3   (3.51) * Với vòng gluion - squark Giản đồ: Lương Bích Vân 48 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp Dựa vào quy tắc Feynman, ta có biểu thức:  g   mq  g s g s ' Trsa' Tssa '   2  i  R P  R P   ipˆ  m   R P  R P  i  pˆ  kˆ   m  d p  p  m   p  k   m  q i1 L q i2 R g q i1 R q i2 L 2 g qi   (3.52) qi     TS  Sp  Riq1 PL  Riq2 PR   ipˆ  mg   Riq1 PR  Riq2 PL  i pˆ  kˆ  mqi        Sp  Riq1 Riq1 PL  Riq2 Riq2 PR   i  pˆ  mg  Riq2 Riq1 PR  Riq1 Riq2 PL   i kˆ  pˆ  mqi     ˆ ˆ  imqi pˆ   Sp  Riq1 Riq1  Riq2 Riq2    Riq1 Riq1  Riq2 Riq2    p pv g v  pk      Sp  Riq2 Riq1  Riq1 Riq2   img kˆ  pˆ  mqi mg   Riq1 Riq1  Riq2 Riq2 4 p pv g v  p k    4mqi mg  Riq2 Riq1  Riq1 Riq2     2 Dii  p pv g v  p k    mqi mg Cii  Thay vào ta có:  g   mq Dii  g v p pv  k  p   mqi mq Cii 4 s  d p 3 i   p2  mg2   p  k 2  mq2i  Áp dụng cơng thức Pasarino từ (B-2) đến (B-6) Dii   Riq1    Riq2   1, Cii  Ri21Ri22   1 sin 2 q Và i Ta có:  mq g     4 s Dii A0 mq2i  mg2 B0 mq2 , mg2 , mq2i  mq2 B1 mq2 , mg2 , mq2i 3        mqi mg Cii B0 mq2 , mq2 , mq2i Lương Bích Vân 49    K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp  4 s 3  A  m   m B  m , m , m   m qi q q g qi qi   mq  Re  mq g    mq g  + Từ ta có:     1 mqi mg sin 2 q B0 mq2 , mg2 , mq2i i   (3.53) + Hàm sóng tái chuẩn hóa chứa:  Z qL g    Z qR g      B0  B1   2mq '  B0  B1         4  m  sin  B  cos  B   m B   m   1 m m sin 2  B    3   Z qL g    Z qR g  2 s 3 4 s i mq  cos2 q B11  sin q B12   mq2 B1i   mg2   1 mqi mg sin 2q B0i    3 s q q Trong đó: 1 2 q q i i g qi g q i Bk  Bk  mq2 , 0, mq2  ; B k  Bk  mq2 , 0, mq2      Bki  Bki mq2 , mg2 , mq2i ; Bki  Bki mq2 , mg2 , mq2i ; Vậy trường q tái chuẩn hóa tính từ:   q  1   Z qL PL   Z qR PR  q   (3.54) 3.3.1.3 Đối với gluinos tham số đưa vào phức * Với vòng Squark – quark: Giản đồ q ,a k,r p g i k,s k+p g i q,s’ Dựa vào quy tắc Feynman, ta có biểu thức :  g   mq  i Lương Bích Vân g s g s ' Tsa' r Tssa '   2  i  (3.55) 50 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp  d p     Sp  Riq1 PR  Riq2 PL   i  pˆ   mq   Riq1 PL  Riq2 PR  i pˆ  kˆ  mq p 2  mq2   p  k   mq2         TS  Sp  Riq1 PR  Riq2 PL   i  pˆ   mq   Riq1 PL  Riq2 PR  i pˆ  kˆ  mq         Sp  Riq1 Riq1 PR  Riq2 Riq2 PL   i  pˆ   mq  Riq2 Riq1 PR  Riq1 Riq2 PL  i pˆ  kˆ  mq    ˆ ˆ  imq pˆ   Sp  Riq1 Riq1  Riq2 Riq2     Riq1 Riq1  Riq2 Riq2    p pv g v  pk      Sp  Riq2 Riq1  Riq1 Riq2  imq pˆ  kˆ  mq mq  Ta áp dụng cơng thức:   ˆ ˆ  4ab; Sp     0; Sp   5    0; Sp   5   v   Sp1  n; Sp ab Do đó: TS   Riq1 Riq1  Riq2 Riq2 4 p pv g v  p k    4mq mq  Riq2 Riq1  Riq1 Riq2     2 Dii  p pv g v  p k    4mq mqCii  Thay vào ta có:  g   mg i Dii  g v p pv  k  p   mq mq Cii 4 s  d p 3 i   p  mg2   p  k 2  mq2  Áp dụng cơng thức Pasarino từ (B-2) đến (B-6) Và Dii   Ri21    Riq2   1, Cij  Riq1 Riq2   1 sin 2 q   mgi    g i 4 s Dii A0  mq2   mg2 B1 mg2i , mq2 , mq2  mg2 B0 mg2 i , mq2 , mq2 3      mq mq Cii B0 mg2i , mq2 , mq2 Lương Bích Vân 51    K32C - Vật Lý  Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp   mgi    q  A  m   m B  m , m , m   m 4 s 3 q g i g i q q     1 mq mq sin 2q B0 mg2i , mq2 , mq2 i q  mg  Re  mg(q )  + Vậy:  (3.56) + Hàm sóng tái chuẩn hóa gluino chứa:     4  m  sin  B  cos  B   m B  m   1 m m sin 2  B  ,   3  2 s i mq  cos2  q B11  sin  q B12   mg2 B1i  mq2   1 mq mq sin 2 q B0i  ,   3  Z qL g    Z gR  q  s g q 1  2 q  g i i q  q q q i  Bki  Bki mg2i , mq2 , mq2 ; Bki  Bki mg2i , mq2 , mq2 ; Trong đó: Vậy hàm sóng tái chuẩn hóa xác định từ:   g  1   Z gL PL   Z gR PR  g   (3.57) ** Khi hiệu chỉnh đỉnh  v  xuất số hạng phân kỳ Phân kỳ hồng ngoại tự động loại bỏ xét thêm phát xạ gluon thực :  g     qi   q  g  g  (3.58) Phân kỳ tử ngoại giải nhờ tái chuẩn hóa hàm sóng  w tái chuẩn hóa khối lượng  c  ** Tái chuẩn hóa số tương tác (khối lượng) dẫn tới:  c    + Tính M M  c  8  c   mi2 , mq2 , mg2  16 m i  M0  c (3.59) :  R q i1  Riq2   m   m    m   m    m   m    i 2 i q g q g  4  mq   mq   mg   mg  Re  Ri*1q Riq2    M0  c Lương Bích Vân  M  8  R q i1  Riq2 52   2m  m  2m  m   m   q q g g i K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp  4  mq mg  mg  mq  Re  Ri*1q Riq2     c    mi2 , mq2 , mg2  16 m i   mi2 , mq2 , mg2  16 m i 8  Re M 0  M 0 c   R q i1  Riq2    2m  m  2m  m   m   q g q i g  4  mq mg  mg  mq  Re  Ri*1q Riq2  Với:  mq    (3.60)  Re mq B0  mq2 ,0, mq2   B1  mq2 ,0, mq2   1/  A0 mq2i  2          mq2 B1 mq2 , mg2 , mq2i  mg2   1 mqi mg sin 2 q B0 mq2 , mg2 , mq2i  mg    Re 2 i  A  m   m B  m , m , m   q  g i g i q q    mq2   1 mq2 mq2  sin 2 q B0 mg2i , mq2 , mq2  mi2  4 i   Re 2mq2i B0 mq2i , 0, mq2i  B1 mq2i , 0, mq2i 4    A m  m B m q  qi qi     m   1 m m , mg2 , mq2     S k 1 i g q g ik   S ki A0 mq2k    sin 2 q B0 mq2i , mg2 , mq2  ** Tái chuẩn hóa hàm sóng dẫn tới :  w   + Tính M M   w   w   mi2 , mq2 , mg2  16 m i M   w (3.61) : 1 2    M 1   Z qL PL   Z qR PR 1   Z gL PL   Z gR PR  2          M 1   Z qL   Z gL   Z qR   Z gR    M 1   I1  I  I     4     w  Lương Bích Vân   mi2 , mq2 , mg2  16 m i Re M 0  M 0( w)  53 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp    mi2 , mq2 , mg2  16 m i M0   I1  I  I3  4 Với I1 = B0 ( mq2 , 0, mq2 ) – B1 ( mq2 , 0, mq2 ) - (3.62) + 2mq’ [ B0 ( mq2 , 0, mq2 ) – B1 ( mq2 , 0, mq2 )] i 2 2 i 2  mq B1 (mq , mg , mqi )  2mq B1 (mq , mg , mqi )    I2    i i 2   2[( m  (  1) m m sin  ) B ( m , m , m )]  g qi g q q g qi    i 2 2 i 2  mg B1 (mgi , mq , mq )  2mg B1 (mgi , mq , mq )    I3    i i    2[(mq  (1) mq mq sin 2q ) B0 ]  Từ (3.27), (3.35), (3.58), (3.60), (3.62) ta có: Độ rộng phân rã tổng cộng tính là:   0  ( v )  ( w)  ( c )  ( g ) Lương Bích Vân 54 (3.63) K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp KẾT LUẬN CHUNG Khóa luận trình bày chương Chương I trình bày tổng qt mẫu chuẩn siêu đối xứng tối thiểu, hạt mơ hình Lagrange tương tác mẫu Chương II trình bày khái niệm phép đối xứng CP đồng thời tính đến vi phạm đối xứng CP ta phải phức hóa vài tham số Nội dung chủ yếu khóa luận trình bày chương III Chương III nghiên cứu độ rộng phân rã hạt Squark thành hạt Quark Gluinos mẫu chuẩn siêu đối xứng tối thiểu (MSSM) tính đến vi phạm đối xứng CP Bài tốn tính đến hiệu chỉnh đỉnh vòng tính trường hợp vi phạm đối xứng CP tổng qt (với tham số phức) Khóa luận góp phần vào q trình nghiên cứu phân rã hạt Squark thành hạt nhằm giúp thực nghiệm tìm hạt mẫu Từ kết đạt hạn chế khóa luận ta có định hướng nghiên cứu mở rộng đề tài: + Trên sở kết giải tích tính được, lập trình tính số để đánh giá ảnh hưởng vi phạm đối xứng CP độ rộng phân rã + Tiếp tục nghiên cứu phân rã mở rộng tính hiệu chỉnh đỉnh vòng + Mở rộng tốn trường hợp lượng cao, với siêu đối xứng bậc cao Lương Bích Vân 55 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp DANH MỤC CÁC TÀI LIỆU THAM KHẢO Hoang Ngoc Long (2003), Nhập mơn lí thuyết trường mơ hình thống tương tác điệu yếu, NXB KH KT, Hà Nội Vu Van Hung Cơ học lượng tử NXB ĐHSP HN 2000 Le Viet Hoa, Hoang Phuc Huan Báo cáo khoa học trường ĐHSP HN 2007 Hoang Phuc Huan Luận văn Th.s ĐHSP HN 2007 Nguyen Chinh Cuong (2004), “Squark decays into H0 in the MSSM with complex parameters”, Communications in Physics, Vol.14, N04, pp.231-237 Louis J., Brunner I and Huber S J (1998), “The supersymmetric standard model”, hep-ph/9811341 Derendinger J.P (1990), Globally Supersymmetric theories in Four and Two Dimensions, World Scientific, Singapore Ho K Q and Yem P X (1998), Elementary particles and their interactions, Springer, Berlin and New York Nir Y “CP vilation in and Beyond he Standard Model”, heip – pp/9911321 10 Kraml S (1999), “Stops and sbottoms phenomenology in the MSSM:, (PhD thesis, Institut fur hochenergiephysik Vienna), hep-ph/9903257 11 Nguyen Chinh Cuong, (2006), “Một số q trình vi phạm đối xứng CP mẫu chuẩn siêu đối xứng tối thiểu”, Luận án tiến sỹ Lương Bích Vân 56 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp PHỤ LỤC A Các ma trận Dirac + Các ma trận Dirac, ký hiệu   (µ=0,1,2,3), ma trận 4x4 thỏa mãn hệ thức: {   ,v} = 2gµv (A-1) Và tính chất:  0   ,  k   k   k ,       (A-2) + Ma trận  = i   1 2 có tính chất: { ,  } = , (A-3)  5 =  ,  52 =1 (A-4) + 1 0   1 0   gµv =   0 1     0 1 (A-5) +  a  a   (A-6) + Các biểu thức hệ quả: gµvgµv =     = 4, (A-7)    v   = 2 v ˆ ˆ ˆ   2abc ˆ ˆ ˆ,   ab ˆ ˆ   4ab   aˆ   2aˆ ,   abc (A-8) (A-9) + Chú ý tính vết (Sp) ma trận Dirac: Sp(I) = (A-10) Sp(   ) = 0, Sp (  )=0 (A-11) Sp(    ) = Sp(     v  ) = (A-12) Sp(     v ) = (A-13) Lương Bích Vân 57 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp Sp {Vết tích số lẻ ma trận } = (A-14) Sp(    v ) = gµv (A-15) Sp(    v     ) = 4(gµvg +gµgvp - gµpgv) (A-16) Sp(     v    ) = 4µv (A-17) B Hàm Pasarino – Veltman a Hàm điểm (one – point function) A(m2) = i dD p  m2 (   ln m2 ) p  m  i (B-1) = m2[B0(0,m2, m2)+1] Trong :  =    ln  4D b Hàm hai điểm (two – point function) B0 , B , B v (q , m12 , m22 )   1, p , p pv dD p 2 i ( p  m1  i )[( p  q )  m22  i ] (B-2) Trong đó: 1 B0 (q , m , m )     dx.ln[q x  x(q  m22  m12 )  m12  i ]    ln(m12 m22 )   2 2 m12  m22  q  i  m12  m22 m12 2    ln   (q  i , m1 , m2 )ar cosh q  m2 m12 m22      Với: (x,y,z) = x2 + y2 + z2 – 2(xy+yz+ xz) Và Bµ (q2, m12 , m22 ) = qµB1(q2, m12 , m22 ), (B-3) Bµv (q2, m12 , m22 ) = qµ qvB21(q2, m12 , m22 )- gµvB22(q2, m12 , m22 ), (B-4) q2 B22= A( m12 ) - m22 B0, Lương Bích Vân (B-5) 58 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp q2 B1= [ A( m12 ) – A( m22 ) – (q2- m12  m22 ) B0] (B-6) c Hàm ba điểm (three – point function) C0, Cµ, Cµv(q2, k2,(q+k)2, m12 , m22 , m32 = 1, p , p pv dDp =  i ( p  m12  i )[( p  q)  m22  i ][( p  q  k )  m32  i ]' (B-7) Cµ = qµ C11+ kµ C12 , (B-8) Cµv = qµ qv C21+ kµ kv C22 +( qµ kv+ qµ qv) C23 - gµvC24 (B-9) C Hàm truyền Đỉnh tƣơng tác Hàm truyền  g, p g  p  mg2  i ipˆ  mg   g , p g i , p  p  mg2  i v i p  mi2  i 2 ipˆ  mq  Lương Bích Vân q, p p  mg2  i v 59 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp Đỉnh tương tác qi , r , k ig sTrsa  p  k   ij   g, a q j , s, p q, r , k igsTrsa  g, a v q, s, p g , b  g s f abc   g, a g , c qi , s i gsTrsa  Riq1 PR  Riq2 PL  q, r v g , a Lương Bích Vân 60 K32C - Vật Lý [...]... Luận Tốt Nghiệp CHƢƠNG III BỀ RỘNG PHÂN RÃ HẠT SQUARK THÀNH HẠT QUARK VÀ GLUINOS TRONG MẪU CHUẨN SIÊU ĐỐI XỨNG TỐI THIỂU (MSSM) Các quá trình phân rã của các Squark trong MSSM đã được đề cập đến rất nhiều trong những năm gần đây vì nó có một ý nghĩa quan trọng trong việc tìm ra các hạt mới của mẫu Các bài toán phân rã khi chưa kể tới vi phạm đối xứng CP đã được giải quyết tương đối hoàn chỉnh Một số công... đối hoàn chỉnh Một số công trình đã tính tới vi phạm CP như phân rã Squark thành A0 , H 0 với tham số phức; Squark thành boson Higgs + Squark; Squark thành charginos (neutralion) + quark; Squark thành Boson gauge + squark … Trong chương này sẽ nghiên cứu quá trình phân rã Squark thành hạt Quark và Gluinos trong MSSM khi kể tới vi phạm đối xứng CP Các kết quả giải tích được tính tới hiệu chỉnh đỉnh... 1/2 M   m12 , m22 , m32  2 Ta tính được độ rộng phân rã:   (3.18) 16 m13 3.2.2 Bề rộng phân rã hạt Squark thành hạt Quark và Gluinos + Phương trình phân rã: qi  q  g Hình 1: Giản đồ feynman hiệu chỉnh SUSY – QCD rã Squark thành Quark và Gluinos: a Mức cây; b và c Hiệu chỉnh đỉnh 1 vòng; d Phát xạ gluon thực + Tính độ rộng phân rã khi tham số đưa vào là phức: Lương Bích Vân 35 K32C - Vật Lý... phân rã chia cho tổng số hạt Biểu thức vi phân d là: d   d dòng   2  2.Ea 4   Pi  Pf  M fi  2 n k 1  d 3 Pk  2  3 (3.14) S 2 Ek * Xét phân rã một hạt (xung lượng P, khối lượng M) thành n hạt ở trạng thái cuối Biểu thức vi phân của độ rộng phân rã : d   P  P1  P2   Pn   M fi 2 2E p d  f S (3.15) Với Ep và M là năng lượng và khối lượng của hạt bị phân rã * Trong trường hợp phân. ..     (2.61) Trong đó cij và sij là cosij và sin ij (bộ ba sin ij được gọi là ba tham số trộn thực) 2.3.2 Vi phạm đối xứng CP trong MSSM Sự mở rộng siêu đối xứng của mẫu chuẩn có đặc điểm chứa một lượng lớn các tham số vi phạm CP và tham số vị mới Phần siêu đối xứng của Lương Bích Vân 26 K32C - Vật Lý Trường ĐHSP Hà Nội 2 Khóa Luận Tốt Nghiệp lagrangian phụ thuộc vào tham số của siêu thế (được... CP thì một vài hằng số tương tác phải là phức 2.3.1 Vi phạm đối xứng CP trong mẫu chuẩn Vi phạm CP xuất hiện một cách tự nhiên trong ba thế hệ của mẫu chuẩn và tồn tại ở pha của ma trận CKM Tương tác Yukawa chính là nguồn dẫn đến vi phạm đối xứng CP Xét Lagrangian của mẫu chuẩn có dạng: LSM  Lkinetic  LHiggs  LYukawa (2.47) Lkinetic  QL   iQLiI   DQLiI Trong đó, với lep – hand quark ta có:... f S w2 cos 2  mz2  Trong đó: Ký hiệu F được thay bởi Q trong trường hợp squark và L trong trường hợp slepton, F '   E, D,U  , f   e, d , u .eq và I 3qL là điện tích và thành phần thứ ba của spin đồng vị yếu của fermion tương ứng Trong trường hợp up – type squark ta có vi  v2 còn trường hợp down – type squark và lepton mang điện vi  v1 Af là hằng số vô hướng, M F2 ,F ' và gf là các ma trận... ĐỐI XỨNG CP Đối xứng chẵn lẻ và liên hợp điện tích (Charge – Parity symmetry) được gọi là đối xứng CP Vi phạm đối xứng CP đóng một vai trò quan trọng trong hiểu biết của chúng ta về vũ trụ học Thực tế trong vũ trụ quan sát được thì vật chất nhiều hơn phản vật chất và để tạo ra điều đó từ một trạng thái cân bằng giữa vật chất và phản vật chất ta không thể bỏ qua một số vi phạm, trong đó có vi phạm đối. .. phạm đối xứng CP (điều này đã được Sakharov chỉ ra vào năm 1976) Một trong những phép thử để kiểm tra tính đúng đắn của mẫu chuẩn và MSSM là sự vi phạm đối xứng CP, việc xét tới vi phạm CP kéo theo phải phức hóa một số tham số của mẫu và như vậy nó sẽ có ảnh hưởng nhất định đến một số kết quả vật lý Cho đến nay, vi phạm đối xứng CP đã được quan sát trong thực nghiệm ở các hệ K – meson trung hòa và cũng... quát: Trong trường hợp số hạt đồng nhất của từng loại hạt lớn hơn 1 d fi  M fi 4F 2 d  f S  M fi 4F 2 d  f  c 1 lc ! (3.13) Với lc là số hạt đồng nhất loại c S  c 1 là thừa số tổ hợp lc ! Lương Bích Vân 32 K32C - Vật Lý Trường ĐHSP Hà Nội 2 Khóa Luận Tốt Nghiệp 3.2 Bề rộng phân rã của một quá trình 3.2.1 Biểu thức tổng quát Bề rộng phân rã    của một quá trình được định nghĩa bằng số hạt bị phân ... rộng phân rã hạt Squark thành hạt Quark Gluinos mẫu chuẩn siêu đối xứng tối thiểu (MSSM) Lương Bích Vân K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp CHƢƠNG I MẪU CHUẨN SIÊU ĐỐI XỨNG TỐI... độ rộng phân rã trình) Lương Bích Vân 28 K32C - Vật Lý Trường ĐHSP Hà Nội Khóa Luận Tốt Nghiệp CHƢƠNG III BỀ RỘNG PHÂN RÃ HẠT SQUARK THÀNH HẠT QUARK VÀ GLUINOS TRONG MẪU CHUẨN SIÊU ĐỐI XỨNG TỐI... cứu trình phân rã hạt Squark thành hạt Quark Gluinos mẫu chuẩn siêu đối xứng tối thiểu: * Tính giải tích độ rộng phân rã mức  tính đến vi phạm CP * Tính giải tích độ rộng phân rã có hiệu chỉnh

Ngày đăng: 30/11/2015, 21:52

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w