BỘ GIÁO DỤC VÀ ĐÀO TẠO Kú thi tuyÓn sinh đại học, cao ĐẳnG năm 2002 Môn thi : toán (Thêi gian lµm bµi: 180 phót) -Đ CHNH TH C Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm) Cho hàm số : y = x + 3mx + 3(1 − m ) x + m − m (1) ( m tham số) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = Tìm k để phơng trình: x + x + k − 3k = có ba nghiệm phân biệt Viết phơng trình đờng thẳng qua hai điểm cực trị đồ thị hàm số (1) Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm) log 32 x + log 32 x + − 2m − = Cho ph−¬ng trình : (2) ( m tham số) m = Giải phơng trình (2) Tìm m để phơng trình (2) có nghiệm thuộc đoạn [ ; 3 ] Câu III (ĐH : 2,0 điểm; CĐ : 2,0 điểm ) cos 3x + sin 3x Tìm nghiệm thuộc khoảng (0 ; ) phơng trình: sin x + = cos x + + sin x TÝnh diÖn tÝch hình phẳng giới hạn đờng: y =| x − x + | , y = x + Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm) Cho hình chóp tam giác S ABC đỉnh S , có độ dài cạnh đáy a Gọi M N lần lợt trung điểm cạnh SB SC Tính theo a diƯn tÝch tam gi¸c AMN , biÕt r»ng mặt phẳng ( AMN ) vuông góc với mặt phẳng ( SBC ) Trong kh«ng gian víi hƯ toạ độ Đêcac vuông góc Oxyz cho hai đờng thẳng: x = 1+ t x − 2y + z − = ∆1 : vµ ∆ : y = + t x + y − 2z + = z = + 2t a) ViÕt ph−¬ng trình mặt phẳng ( P) chứa đờng thẳng song song với đờng thẳng b) Cho điểm M (2;1;4) Tìm toạ độ điểm H thuộc đờng thẳng cho đoạn thẳng MH có độ dài nhỏ Câu V.( ĐH : 2,0 điểm) Trong mặt phẳng với hệ toạ độ Đêcac vuông góc Oxy , xét tam giác ABC vuông A , phơng trình đờng thẳng BC x y = 0, đỉnh A B thuộc trục hoành bán kính đờng tròn nội tiếp Tìm tọa độ trọng tâm G tam giác ABC Cho khai triển nhị thức: n n n −1 n −1 −x x2−1 −3x x −1 x2−1 −3x x2−1 −3x n −1 n + = C n0 2 + C n + L + C n + C n ( n số nguyên dơng) Biết r»ng khai triĨn ®ã C n = 5C n số hạng thứ t 20n , tìm n vµ x HÕt Ghi chó: 1) ThÝ sinh thi cao đẳng không làm Câu V HONG THI VIÊT - Đ I H C BÁCH KHOA ĐÀ N NG FACE : https://www.facebook.com/gsbkdn2013 n T NG H P ĐỀ THI TUYỂN SINH MƠN TỐN ĐH & CĐ 2002 - 2013 Bộ giáo dục đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán khối A đề thức Thêi gian lµm bµi : 180 _ mx + x + m (1) (m tham số) x 1) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = 2) Tìm m để đồ thị hàm số (1) cắt trục hoành hai điểm phân biệt hai điểm có hoành độ dơng Câu (2 điểm) cos x 1) Giải phơng trình cotgx = + sin x − sin x + tgx 1 x − = y − x y 2) Gi¶i hệ phơng trình y = x + Câu (3 điểm) 1) Cho hình lËp ph−¬ng ABCD A ' B ' C ' D ' Tính số đo góc phẳng nhị diện [B, A' C , D] 2) Trong kh«ng gian với hệ tọa độ Đêcac vuông góc Oxyz cho hình hép ch÷ nhËt ABCD A ' B ' C ' D ' cã A trïng víi gèc cđa hƯ täa ®é, B (a; 0; 0), D(0; a; 0), A '(0; 0; b) (a > 0, b > 0) Gäi M trung điểm cạnh CC ' a) Tính thĨ tÝch khèi tø diƯn BDA ' M theo a b a b) Xác định tỷ số để hai mặt phẳng ( A ' BD) ( MBD) vuông góc với b Câu ( điểm) y= Câu (2 điểm) Cho hàm số n 1) Tìm hệ số số hạng chứa x khai triển nhị thức Niutơn + x , biÕt r»ng x3 C nn++14 − C nn+ = 7(n + 3) ( n số nguyên dơng, x > 0, C nk số tổ hợp chập k n phần tư) 2) TÝnh tÝch ph©n I= ∫ dx x x +4 Câu (1 điểm) Cho x, y, z ba số dơng x + y + z ≤ Chøng minh r»ng 1 x2 + + y2 + + z2 + ≥ x2 y2 z2 82 −−−−−−−−−−−−−−−−−−−−−−−−− HÕT −−−−−−−−−−−−−−−−−−−−−−−−− Ghi chú: Cán coi thi không giải thích thêm Họ tên thí sinh: Số báo danh: …………… HOÀNG THÁI VIÊT - Đ I H C BÁCH KHOA ĐÀ N NG FACE : https://www.facebook.com/gsbkdn2013 Bé gi¸o dơc đào tạo -§Ị chÝnh thøc đề thi tuyển sinh đại học, cao đẳng năm 2004 Môn thi : Toán , Khối A Thời gian làm : 180 phút, không kể thời gian phát đề Câu I (2 điểm) x + 3x (1) 2(x 1) 1) Khảo sát hàm số (1) 2) Tìm m để đờng thẳng y = m cắt đồ thị hàm số (1) hai ®iĨm A, B cho AB = Cho hµm số y = Câu II (2 điểm) 2(x 16) 1) Giải bất phơng trình x + x −3 > 7−x x −3 ⎧ ⎪ log (y − x) − log y = ⎨ ⎪ x + y = 25 2) Giải hệ phơng trình Câu III (3 điểm) ( ) 1) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A ( 0; ) B 3; Tìm tọa độ trực tâm tọa độ tâm đờng tròn ngoại tiếp tam giác OAB 2) Trong không gian với hệ tọa độ Oxyz cho hình chóp S.ABCD có đáy ABCD hình thoi, AC cắt BD gốc tọa độ O BiÕt A(2; 0; 0), B(0; 1; 0), S(0; 0; 2 ) Gọi M trung điểm cạnh SC a) Tính góc khoảng cách hai đờng thẳng SA, BM b) Giả sử mặt phẳng (ABM) cắt đờng thẳng SD điểm N Tính thể tích khối chóp S.ABMN Câu IV (2 điểm) 1) Tính tích phân I = ∫ 1+ x dx x −1 2) T×m hƯ sè cđa x8 khai triĨn thành đa thức + x (1 x) Câu V (1 điểm) Cho tam giác ABC không tù, thỏa mÃn điều kiện Tính ba góc cđa tam gi¸c ABC cos2A + 2 cosB + 2 cosC = -Cán coi thi không giải thích thêm Họ tên thí sinh Sè b¸o danh HOÀNG THÁI VIÊT - Đ I H C BÁCH KHOA ĐÀ N NG FACE : https://www.facebook.com/gsbkdn2013 Mang Giao duc Edunet - http://www.edu.net.vn BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005 Mơn: TỐN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề C©u I (2 điểm) Gọi (Cm ) đồ thị hàm số y = m x + x (*) ( m tham số) 1) Khảo sát biến thiên vẽ đồ thị hàm số (*) m = 2) Tìm m để hàm số (*) có cực trị khoảng cách từ điểm cực tiểu (C m ) đến tiệm cận xiên (Cm ) C©u II (2 điểm) 1) Giải bất phương trình 5x − − x −1 > 2x − cos 3x cos 2x − cos x = 2) Giải phương trình C©u III (3 ®iÓm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng d1 : x − y = d : 2x + y − = Tìm tọa độ đỉnh hình vng ABCD biết đỉnh A thuộc d1 , đỉnh C thuộc d đỉnh B, D thuộc trục hoành x −1 y + z − 2) Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : = = mặt −1 phẳng (P) : 2x + y − 2z + = a) Tìm tọa độ điểm I thuộc d cho khoảng cách từ I đến mặt phẳng (P) b) Tìm tọa độ giao điểm A đường thẳng d mặt phẳng (P) Viết phương trình tham số đường thẳng ∆ nằm mặt phẳng (P), biết ∆ qua A vng góc với d C©u IV (2 điểm) π sin 2x + sin x dx + 3cos x 2) Tìm số nguyên dương n cho +1 C12n +1 − 2.2C 22n +1 + 3.22 C32n +1 − 4.23 C 42n +1 + L + (2n + 1).2 2n C 2n 2n +1 = 2005 1) Tính tích phân I = ∫ ( Ckn số tổ hợp chập k n phần tử) C©u V (1 điểm) 1 + + = Chứng minh x y z 1 + + ≤ 2x + y + z x + 2y + z x + y + 2z Cho x, y, z số dương thỏa mãn Hết Cán coi thi khơng giải thích thêm Họ tên thí sinh …… số báo danh HOÀNG THÁI VIÊT - Đ I H C BÁCH KHOA ĐÀ N NG FACE : https://www.facebook.com/gsbkdn2013 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 ĐỀ CHÍNH THỨC Mơn thi: TỐN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Khảo sát biến thiên vẽ đồ thị hàm số y = 2x − 9x + 12x − Tìm m để phương trình sau có nghiệm phân biệt: x − 9x + 12 x = m Câu II (2 điểm) Giải phương trình: ( ) cos6 x + sin x − sin x cos x − 2sin x = ⎧⎪ x + y − xy =3 Giải hệ phương trình: ⎨ ( x, y ∈ \ ) x y + + + = ⎪⎩ Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A ' B'C ' D ' với A ( 0; 0; ) , B (1; 0; ) , D ( 0; 1; ) , A ' ( 0; 0; 1) Gọi M N trung điểm AB CD Tính khoảng cách hai đường thẳng A 'C MN Viết phương trình mặt phẳng chứa A 'C tạo với mặt phẳng Oxy góc α biết cos α = Câu IV (2 điểm) Tính tích phân: I = π ∫ sin 2x cos x + 4sin x dx Cho hai số thực x ≠ 0, y ≠ thay đổi thỏa mãn điều kiện: ( x + y ) xy = x + y − xy 1 + 3 x y PHẦN TỰ CHỌN: Thí sinh chọn câu V.a câu V.b Câu V.a Theo chương trình THPT khơng phân ban (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng: d1 : x + y + = 0, d : x − y − = 0, d3 : x − 2y = Tìm tọa độ điểm M nằm đường thẳng d3 cho khoảng cách từ M đến đường thẳng d1 hai lần khoảng cách từ M đến đường thẳng d Tìm giá trị lớn biểu thức A = n ⎛ ⎞ Tìm hệ số số hạng chứa x khai triển nhị thức Niutơn ⎜ + x ⎟ , biết ⎝x ⎠ n 20 C 2n +1 + C2n +1 + + C2n +1 = − 26 (n nguyên dương, Ckn số tổ hợp chập k n phần tử) Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm) Giải phương trình: 3.8x + 4.12x − 18x − 2.27 x = Cho hình trụ có đáy hai hình trịn tâm O O ' , bán kính đáy chiều cao a Trên đường tròn đáy tâm O lấy điểm A, đường tròn đáy tâm O ' lấy điểm B cho AB = 2a Tính thể tích khối tứ diện OO ' AB -Hết Cán coi thi khơng giải thích thêm Họ tên thí sinh: số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Mơn thi: TỐN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) x + 2(m + 1)x + m + 4m (1), m tham số x+2 Khảo sát biến thiên vẽ đồ thị hàm số (1) m = −1 Tìm m để hàm số (1) có cực đại cực tiểu, đồng thời điểm cực trị đồ thị với gốc tọa độ O tạo thành tam giác vuông O Cho hàm số y = Câu II (2 điểm) ( ) ( ) Giải phương trình: + sin x cos x + + cos x sin x = + sin 2x Tìm m để phương trình sau có nghiệm thực: x − + m x + = x − Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ⎧ x = −1 + 2t x y −1 z + ⎪ d1 : = = d : ⎨ y = + t −1 ⎪z = ⎩ Chứng minh d1 d chéo Viết phương trình đường thẳng d vng góc với mặt phẳng ( P ) : 7x + y − 4z = cắt hai đường thẳng d1 , d Câu IV (2 điểm) Tính diện tích hình phẳng giới hạn đường: y = ( e + 1) x, y = + e x x ( ) Cho x, y, z số thực dương thay đổi thỏa mãn điều kiện xyz = Tìm giá trị nhỏ biểu thức: x (y + z) y (z + x) z (x + y) + + ⋅ P= y y + 2z z z z + 2x x x x + 2y y PHẦN TỰ CHỌN: Thí sinh chọn làm câu V.a câu V.b Câu V.a Theo chương trình THPT khơng phân ban (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(0; 2), B(−2; −2) C(4; −2) Gọi H chân đường cao kẻ từ B; M N trung điểm cạnh AB BC Viết phương trình đường tròn qua điểm H, M, N 1 1 2n −1 22n − Chứng minh rằng: C12n + C32n + C52n + + C2n = 2n 2n + k ( n số nguyên dương, Cn số tổ hợp chập k n phần tử) Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm) Giải bất phương trình: log (4x − 3) + log (2x + 3) ≤ Cho hình chóp S.ABCD có đáy hình vng cạnh a, mặt bên SAD tam giác nằm mặt phẳng vng góc với đáy Gọi M, N, P trung điểm cạnh SB, BC, CD Chứng minh AM vng góc với BP tính thể tích khối tứ diện CMNP -Hết Cán coi thi không giải thích thêm Họ tên thí sinh: …………… ……………………………số báo danh: ……………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn thi: TỐN, khối A Thời gian làm 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) mx + (3m − 2)x − Cho hàm số y = (1), với m tham số thực x + 3m Khảo sát biến thiên vẽ đồ thị hàm số (1) m = Tìm giá trị m để góc hai đường tiệm cận đồ thị hàm số (1) 45o Câu II (2 điểm) 1 ⎛ 7π ⎞ + = 4s in ⎜ − x ⎟ Giải phương trình 3π ⎞ s inx ⎛ ⎝ ⎠ sin ⎜ x − ⎟ ⎝ ⎠ ⎧ ⎪ x + y + x y + xy + xy = − Giải hệ phương trình ⎨ ( x, y ∈ \ ) ⎪ x + y + xy(1 + 2x) = − ⎪⎩ Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A ( 2;5;3) đường thẳng x −1 y z − = = 2 Tìm tọa độ hình chiếu vng góc điểm A đường thẳng d Viết phương trình mặt phẳng (α) chứa d cho khoảng cách từ A đến (α) lớn Câu IV (2 điểm) d: π tg x dx cos 2x Tìm giá trị tham số m để phương trình sau có hai nghiệm thực phân biệt : 2x + 2x + − x + − x = m (m ∈ \) Tính tích phân I = ∫ PHẦN RIÊNG Thí sinh làm câu: V.a V.b Câu V.a Theo chương trình KHÔNG phân ban (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình tắc elíp (E) biết (E) có tâm sai hình chữ nhật sở (E) có chu vi 20 n Cho khai triển (1 + 2x ) = a + a1x + + a n x n , n ∈ `* hệ số a , a1 , , a n a1 a + + nn = 4096 Tìm số lớn số a , a1 , , a n 2 Câu V.b Theo chương trình phân ban (2 điểm) Giải phương trình log 2x −1 (2x + x − 1) + log x +1 (2x − 1) = Cho lăng trụ ABC.A 'B'C' có độ dài cạnh bên 2a, đáy ABC tam giác vuông A, AB = a, AC = a hình chiếu vng góc đỉnh A' mặt phẳng (ABC) trung điểm cạnh BC Tính theo a thể tích khối chóp A'.ABC tính cosin góc hai đường thẳng AA', B'C' thỏa mãn hệ thức a + Hết Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: Số báo danh: HOÀNG THÁI VIÊT - Đ I H C BÁCH KHOA ĐÀ N NG FACE : https://www.facebook.com/gsbkdn2013 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn thi: TỐN; Khối: A ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm): Câu I (2,0 điểm) x+2 Cho hàm số y = (1) 2x + Khảo sát biến thiên vẽ đồ thị hàm số (1) Viết phương trình tiếp tuyến đồ thị hàm số (1), biết tiếp tuyến cắt trục hồnh, trục tung hai điểm phân biệt A , B tam giác OAB cân gốc toạ độ O Câu II (2,0 điểm) (1 − 2sin x ) cos x = Giải phương trình (1 + 2sin x )(1 − sin x ) Giải phương trình 3x − + − x − = ( x ∈ \ ) Câu III (1,0 điểm) π Tính tích phân I = ∫ ( cos3 x − 1) cos x dx Câu IV (1,0 điểm) Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AB = AD = 2a , CD = a; góc hai mặt phẳng SBC ABCD 60D Gọi I trung điểm cạnh AD Biết hai mặt phẳng SBI ( ) ( ) ( ) ( SCI ) vng góc với mặt phẳng ( ABCD ) , tính thể tích khối chóp S ABCD theo a Câu V (1,0 điểm) Chứng minh với số thực dương x, y, z thoả mãn x ( x + y + z ) = yz , ta có: ( x + y) + ( x + z) + ( x + y )( x + z )( y + z ) ≤ ( y + z ) PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy , cho hình chữ nhật ABCD có điểm I (6;2) giao điểm hai đường 3 chéo AC BD Điểm M (1;5 ) thuộc đường thẳng AB trung điểm E cạnh CD thuộc đường thẳng Δ : x + y − = Viết phương trình đường thẳng AB Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng (S ) : x ( P ) : x − y − z − = phẳng ( P ) cắt mặt cầu ( S ) mặt cầu + y + z − x − y − z − 11 = Chứng minh mặt đường tròn Xác định toạ độ tâm tính bán kính đường trịn Câu VII.a (1,0 điểm) 2 theo 2 Gọi z1 z hai nghiệm phức phương trình z + z + 10 = Tính giá trị biểu thức A = z1 + z2 B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy , cho đường tròn ( C ) : x + y + x + y + = đường thẳng Δ : x + my − 2m + = 0, với m tham số thực Gọi I tâm đường tròn ( C ) Tìm m để Δ cắt ( C ) hai điểm phân biệt A B cho diện tích tam giác IAB lớn Trong khơng gian với hệ toạ độ Oxyz , cho mặt phẳng ( P ) : x − y + z − = hai đường thẳng x +1 y z + x −1 y − z +1 = = = = , Δ2 : Xác định toạ độ điểm M thuộc đường thẳng Δ1 cho −2 1 khoảng cách từ M đến đường thẳng Δ khoảng cách từ M đến mặt phẳng ( P ) Câu VII.b (1,0 điểm) ⎧⎪log ( x + y ) = + log ( xy ) Giải hệ phương trình ⎨ ( x, y ∈ \ ) ⎪⎩3x − xy + y = 81 Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Δ1 : Họ tên thí sinh: ; Số báo danh ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x3 − 2x2 + (1 − m)x + m (1), m tham số thực Khảo sát biến thiên vẽ đồ thị hàm số m = Tìm m để đồ thị hàm số (1) cắt trục hoành điểm phân biệt có hồnh độ x1, x2, x3 thoả mãn điều kiện x12 + x22 + x32 < Câu II (2,0 điểm) π⎞ ⎛ (1 + sin x + cos x) sin ⎜ x + ⎟ 4⎠ ⎝ = Giải phương trình cos x + tan x 2 Giải bất phương trình x− 1− x 2( x − x + 1) ≥ 1 x2 + e x + x2e x ∫0 + 2e x dx Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Gọi M N trung điểm cạnh AB AD; H giao điểm CN với DM Biết SH vng góc với mặt phẳng (ABCD) SH = a Tính thể tích khối chóp S.CDNM tính khoảng cách hai đường thẳng DM SC theo a ⎧⎪(4 x + 1) x + ( y − 3) − y = (x, y ∈ R) Câu V (1,0 điểm) Giải hệ phương trình ⎨ 2 + + − = x y x ⎪⎩ II PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x + y = d2: x − y = Gọi (T) đường tròn tiếp xúc với d1 A, cắt d2 hai điểm B C cho tam giác ABC vng B Viết điểm A có hồnh độ dương phương trình (T), biết tam giác ABC có diện tích x −1 y z + = = mặt phẳng (P): x − 2y + z = Trong không gian toạ độ Oxyz, cho đường thẳng ∆: −1 Gọi C giao điểm ∆ với (P), M điểm thuộc ∆ Tính khoảng cách từ M đến (P), biết MC = Câu III (1,0 điểm) Tính tích phân I = Câu VII.a (1,0 điểm) Tìm phần ảo số phức z, biết z = ( + i ) (1 − i ) B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho tam giác ABC cân A có đỉnh A(6; 6); đường thẳng qua trung điểm cạnh AB AC có phương trình x + y − = Tìm toạ độ đỉnh B C, biết điểm E(1; −3) nằm đường cao qua đỉnh C tam giác cho x+2 y−2 z +3 = = Trong không gian toạ độ Oxyz, cho điểm A(0; 0; −2) đường thẳng ∆: Tính khoảng cách từ A đến ∆ Viết phương trình mặt cầu tâm A, cắt ∆ hai điểm B C cho BC = (1 − 3i )3 Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z = Tìm mơđun số phức z + i z 1− i - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) −x + Câu I (2,0 điểm) Cho hàm số y = 2x − 1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Chứng minh với m đường thẳng y = x + m cắt đồ thị (C) hai điểm phân biệt A B Gọi k1, k2 hệ số góc tiếp tuyến với (C) A B Tìm m để tổng k1 + k2 đạt giá trị lớn Câu II (2,0 điểm) + sin x + cos x = sin x sin x Giải phương trình + cot x 2 ⎪⎧5 x y − xy + y − 2( x + y ) = ( x, y ∈ \) Giải hệ phương trình ⎨ 2 ⎪⎩ xy ( x + y ) + = ( x + y ) π Câu III (1,0 điểm) Tính tích phân I = ∫ x sin x + ( x + 1) cos x dx x sin x + cos x Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = BC = 2a; hai mặt phẳng (SAB) (SAC) vng góc với mặt phẳng (ABC) Gọi M trung điểm AB; mặt phẳng qua SM song song với BC, cắt AC N Biết góc hai mặt phẳng (SBC) (ABC) 60o Tính thể tích khối chóp S.BCNM khoảng cách hai đường thẳng AB SN theo a Câu V (1,0 điểm) Cho x, y, z ba số thực thuộc đoạn [1; 4] x ≥ y, x ≥ z Tìm giá trị nhỏ x y z biểu thức P = + + y+z z+x 2x + y PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho đường thẳng ∆: x + y + = đường tròn (C ) : x + y − x − y = Gọi I tâm (C), M điểm thuộc ∆ Qua M kẻ tiếp tuyến MA MB đến (C) (A B tiếp điểm) Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích 10 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) mặt phẳng ( P) : x − y − z + = Tìm tọa độ điểm M thuộc (P) cho MA = MB = Câu VII.a (1,0 điểm) Tìm tất số phức z, biết: z = z + z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x2 y2 + = Tìm tọa độ điểm A B thuộc Trong mặt phẳng tọa độ Oxy, cho elip ( E ): (E), có hồnh độ dương cho tam giác OAB cân O có diện tích lớn Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x + y + z − x − y − z = điểm A(4; 4; 0) Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) tam giác OAB Câu VII.b (1,0 điểm) Tính mơđun số phức z, biết: (2 z − 1)(1 + i ) + ( z + 1)(1 − i ) = − 2i - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: Mang Giao duc Edunet - http://www.edu.net.vn BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005 Mơn: TỐN, khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề - Câu I (2 điểm) m Gọi (Cm ) đồ thị hàm số y = x − x + (*) ( m tham số) 3 1) Khảo sát biến thiên vẽ đồ thị hàm số (*) m = 2) Gọi M điểm thuộc (Cm ) có hồnh độ −1 Tìm m để tiếp tuyến (Cm ) điểm M song song với đường thẳng 5x − y = Câu II (2 điểm) Giải phương trình sau: 1) 2) x + + x + − x + = π⎞ ⎛ π⎞ ⎛ cos x + sin x + cos ⎜ x − ⎟ sin ⎜ 3x − ⎟ − = 4⎠ ⎝ 4⎠ ⎝ Câu III (3 điểm) x y2 + = Tìm 1) Trong mặt phẳng với hệ tọa độ Oxy cho điểm C ( 2;0 ) elíp ( E ) : tọa độ điểm A, B thuộc ( E ) , biết hai điểm A, B đối xứng với qua trục hoành tam giác ABC tam giác 2) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng ⎧x+y−z−2 = x −1 y + z +1 d1 : = = d2 : ⎨ −1 ⎩ x + 3y − 12 = a) Chứng minh d1 d song song với Viết phương trình mặt phẳng (P) chứa hai đường thẳng d1 d b) Mặt phẳng tọa độ Oxz cắt hai đường thẳng d1 , d điểm A, B Tính diện tích tam giác OAB ( O gốc tọa độ) Câu IV (2 điểm) π 1) Tính tích phân I = ∫ ( esin x + cos x ) cos xdx 2) Tính giá trị biểu thức M = A 4n +1 + 3A 3n , biết C2n +1 + 2C2n + + 2C2n +3 + Cn2 + = 149 ( n + 1)! ( n số nguyên dương, A kn số chỉnh hợp chập k n phần tử C kn số tổ hợp chập k n phần tử) Câu V (1 điểm) Cho số dương x, y, z thỏa mãn xyz = Chứng minh + x + y3 + y3 + z + z3 + x + + ≥ 3 xy yz zx Khi đẳng thức xảy ra? -Hết -Cán coi thi khơng giải thích thêm Họ tên thí sinh Số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 ĐỀ CHÍNH THỨC Mơn: TỐN, khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số y = x − 3x + Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Gọi d đường thẳng qua điểm A(3; 20) có hệ số góc m Tìm m để đường thẳng d cắt đồ thị (C) điểm phân biệt Câu II (2 điểm) Giải phương trình: cos3x + cos2x − cosx − = 2x − + x − 3x + = Giải phương trình: ( x ∈ \ ) Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;3) hai đường thẳng: x −2 y+ z −3 x −1 y −1 z + d1 : = = , d2 : = = −1 −1 1 Tìm tọa độ điểm A' đối xứng với điểm A qua đường thẳng d1 Viết phương trình đường thẳng Δ qua A, vng góc với d1 cắt d2 Câu IV (2 điểm) 1 Tính tích phân: I = ∫ ( x − ) e2x dx Chứng minh với a > , hệ phương trình sau có nghiệm nhất: ⎧⎪e x − e y = ln(1 + x) − ln(1 + y) ⎨ ⎪⎩ y − x = a PHẦN TỰ CHỌN: Thí sinh chọn câu V.a câu V.b Câu V.a Theo chương trình THPT khơng phân ban (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x + y − 2x − 2y + = đường thẳng d: x − y + = Tìm tọa độ điểm M nằm d cho đường trịn tâm M, có bán kính gấp đơi bán kính đường trịn (C), tiếp xúc ngồi với đường trịn (C) Đội niên xung kích trường phổ thơng có 12 học sinh, gồm học sinh lớp A, học sinh lớp B học sinh lớp C Cần chọn học sinh làm nhiệm vụ, cho học sinh thuộc không lớp Hỏi có cách chọn vậy? Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm) 2 Giải phương trình: x + x − 4.2x − x − 22x + = Cho hình chóp tam giác S.ABC có đáy ABC tam giác cạnh a, SA = 2a SA vng góc với mặt phẳng (ABC) Gọi M N hình chiếu vng góc A đường thẳng SB SC Tính thể tích khối chóp A.BCNM - Hết Cán coi thi không giải thích thêm Họ tên thí sinh số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Mơn thi: TỐN, khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) 2x x +1 Khảo sát biến thiên vẽ đồ thị ( C ) hàm số cho Cho hàm số y = Tìm tọa độ điểm M thuộc (C), biết tiếp tuyến (C) M cắt hai trục Ox, Oy A, B tam giác OAB có diện tích Câu II (2 điểm) x x⎞ ⎛ Giải phương trình: ⎜ sin + cos ⎟ + cos x = 2 2⎠ ⎝ Tìm giá trị tham số m để hệ phương trình sau có nghiệm thực: 1 ⎧ ⎪x + x + y + y = ⎪ ⎨ ⎪ x + + y3 + = 15m − 10 ⎪⎩ x3 y3 Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1; 4; ) , B ( −1; 2; ) đường thẳng x −1 y + z = = −1 Viết phương trình đường thẳng d qua trọng tâm G tam giác OAB vng góc với mặt phẳng ( OAB ) Δ: Tìm tọa độ điểm M thuộc đường thẳng Δ cho MA + MB2 nhỏ Câu IV (2 điểm) e Tính tích phân: I = ∫ x 3ln xdx b a ⎞ ⎛ ⎞ ⎛ Cho a ≥ b > Chứng minh rằng: ⎜ 2a + a ⎟ ≤ ⎜ 2b + b ⎟ ⎠ ⎝ ⎠ ⎝ PHẦN TỰ CHỌN (Thí sinh chọn làm hai câu: V.a V.b) Câu V.a Theo chương trình THPT khơng phân ban (2 điểm) 10 Tìm hệ số x khai triển thành đa thức của: x (1 − 2x ) + x (1 + 3x ) 2 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( C ) : ( x − 1) + ( y + ) = đường thẳng d : 3x − 4y + m = Tìm m để d có điểm P mà từ kẻ hai tiếp tuyến PA, PB tới ( C ) (A, B tiếp điểm) cho tam giác PAB Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm) 1 Giải phương trình: log x + 15.2 x + 27 + log = 4.2 x − n = BAD n = 900 , BA = BC = a, AD = 2a Cạnh Cho hình chóp S.ABCD có đáy hình thang, ABC ( ) bên SA vng góc với đáy SA = a Gọi H hình chiếu vng góc A SB Chứng minh tam giác SCD vng tính (theo a) khoảng cách từ H đến mặt phẳng ( SCD ) -Hết Cán coi thi khơng giải thích thêm Họ tên thí sinh: …………… ……………………………Số báo danh: ……………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn thi: TỐN, khối D Thời gian làm 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số y = x − 3x + (1) Khảo sát biến thiên vẽ đồ thị hàm số (1) Chứng minh đường thẳng qua điểm I(1; 2) với hệ số góc k ( k > − ) cắt đồ thị hàm số (1) ba điểm phân biệt I, A, B đồng thời I trung điểm đoạn thẳng AB Câu II (2 điểm) Giải phương trình 2sinx (1 + cos2x) + sin2x = + 2cosx ⎧⎪ xy + x + y = x − 2y 2 Giải hệ phương trình ⎨ (x, y ∈ \) x 2y y x 2x 2y − − = − ⎪⎩ Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0), B(3;0;3), C(0;3;3), D(3;3;3) Viết phương trình mặt cầu qua bốn điểm A, B, C, D Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC Câu IV (2 điểm) lnx dx x Cho x, y hai số thực không âm thay đổi Tìm giá trị lớn giá trị nhỏ biểu (x − y)(1 − xy) thức P = (1 + x) (1 + y) Tính tích phân I = ∫ PHẦN RIÊNG Thí sinh làm câu: V.a V.b Câu V.a Theo chương trình KHƠNG phân ban (2 điểm) −1 k Tìm số nguyên dương n thỏa mãn hệ thức C12n + C32n + + C2n 2n = 2048 ( C n số tổ hợp chập k n phần tử) Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : y = 16x điểm A(1; 4) Hai điểm n = 90o Chứng minh phân biệt B, C (B C khác A) di động (P) cho góc BAC đường thẳng BC qua điểm cố định Câu V.b Theo chương trình phân ban (2 điểm) x − 3x + Giải bất phương trình log ≥ x 2 Cho lăng trụ đứng ABC.A'B'C' có đáy ABC tam giác vng, AB = BC = a, cạnh bên AA' = a Gọi M trung điểm cạnh BC Tính theo a thể tích khối lăng trụ ABC.A'B'C' khoảng cách hai đường thẳng AM, B'C .Hết Thí sinh khơng sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x − (3m + 2) x + 3m có đồ thị (Cm ), m tham số Khảo sát biến thiên vẽ đồ thị hàm số cho m = Tìm m để đường thẳng y = −1 cắt đồ thị (Cm ) điểm phân biệt có hồnh độ nhỏ Câu II (2,0 điểm) Giải phương trình cos5 x − 2sin 3x cos x − sin x = ⎧ x( x + y + 1) − = ⎪ ( x, y ∈ \) Giải hệ phương trình ⎨ ⎪⎩( x + y ) − x + = Câu III (1,0 điểm) dx e −1 Tính tích phân I = ∫ x Câu IV (1,0 điểm) Cho hình lăng trụ đứng ABC A ' B ' C ' có đáy ABC tam giác vng B, AB = a, AA ' = 2a, A ' C = 3a Gọi M trung điểm đoạn thẳng A ' C ', I giao điểm AM A ' C Tính theo a thể tích khối tứ diện IABC khoảng cách từ điểm A đến mặt phẳng ( IBC ) Câu V (1,0 điểm) Cho số thực không âm x, y thay đổi thoả mãn x + y = Tìm giá trị lớn giá trị nhỏ biểu thức S = (4 x + y )(4 y + 3x) + 25 xy PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có M (2;0) trung điểm cạnh AB Đường trung tuyến đường cao qua đỉnh A có phương trình x − y − = x − y − = Viết phương trình đường thẳng AC Trong khơng gian với hệ toạ độ Oxyz , cho điểm A(2;1;0), B (1;2;2), C (1;1;0) mặt phẳng ( P) : x + y + z − 20 = Xác định toạ độ điểm D thuộc đường thẳng AB cho đường thẳng CD song song với mặt phẳng ( P ) Câu VII.a (1,0 điểm) Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn số phức z thoả mãn điều kiện | z − (3 − 4i ) |= B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C ) : ( x − 1)2 + y = Gọi I tâm (C ) Xác định n = 30D toạ độ điểm M thuộc (C ) cho IMO x+2 y−2 z = = mặt phẳng 1 −1 ( P ) : x + y − z + = Viết phương trình đường thẳng d nằm ( P) cho d cắt vng góc với đường thẳng Δ Câu VII.b (1,0 điểm) x2 + x − Tìm giá trị tham số m để đường thẳng y = −2 x + m cắt đồ thị hàm số y = hai điểm phân x biệt A, B cho trung điểm đoạn thẳng AB thuộc trục tung Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: Trong không gian với hệ toạ độ Oxyz , cho đường thẳng Δ : BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = − x − x + Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Viết phương trình tiếp tuyến đồ thị (C), biết tiếp tuyến vng góc với đường thẳng y = x − Câu II (2,0 điểm) Giải phương trình sin x − cos x + 3sin x − cos x − = Giải phương trình x + x+2 + x = 42 + e Câu III (1,0 điểm) Tính tích phân I = ⎛ x+2 + 2x + 4x − (x ∈ R) 3⎞ ∫ ⎜⎝ x − x ⎟⎠ ln x dx Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, cạnh bên SA = a ; hình AC chiếu vng góc đỉnh S mặt phẳng (ABCD) điểm H thuộc đoạn AC, AH = Gọi CM đường cao tam giác SAC Chứng minh M trung điểm SA tính thể tích khối tứ diện SMBC theo a Câu V (1,0 điểm) Tìm giá trị nhỏ hàm số y = − x + x + 21 − − x + 3x + 10 PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có đỉnh A(3; −7), trực tâm H(3; −1), tâm đường tròn ngoại tiếp I(−2; 0) Xác định tọa độ đỉnh C, biết C có hồnh độ dương Trong khơng gian toạ độ Oxyz, cho hai mặt phẳng (P): x + y + z − = (Q): x − y + z − = Viết phương trình mặt phẳng (R) vng góc với (P) (Q) cho khoảng cách từ O đến (R) Câu VII.a (1,0 điểm) Tìm số phức z thỏa mãn: | z | = z2 số ảo B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho điểm A(0; 2) Δ đường thẳng qua O Gọi H hình chiếu vng góc A Δ Viết phương trình đường thẳng Δ, biết khoảng cách từ H đến trục hoành AH ⎧x = + t x − y −1 z ⎪ = = Xác Δ2: Trong không gian toạ độ Oxyz, cho hai đường thẳng Δ1: ⎨ y = t 2 ⎪z = t ⎩ định tọa độ điểm M thuộc Δ1 cho khoảng cách từ M đến Δ2 ⎧⎪ x − x + y + = Câu VII.b (1,0 điểm) Giải hệ phương trình ⎨ (x, y ∈ R) ⎪⎩2 log ( x − 2) − log y = Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: D Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x +1 ⋅ Câu I (2,0 điểm) Cho hàm số y = x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Tìm k để đường thẳng y = kx + 2k + cắt đồ thị (C) hai điểm phân biệt A, B cho khoảng cách từ A B đến trục hoành Câu II (2,0 điểm) sin x + cos x − sin x − = Giải phương trình tan x + Giải phương trình log ( − x ) + log Câu III (1,0 điểm) Tính tích phân I = ∫ ( ) 1+ x + − x − = ( x ∈ \ ) 4x − dx 2x + + Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vuông B, BA = 3a, BC = 4a; n = 30D Tính thể tích mặt phẳng (SBC) vng góc với mặt phẳng (ABC) Biết SB = 2a SBC khối chóp S.ABC khoảng cách từ điểm B đến mặt phẳng (SAC) theo a ⎧⎪2 x3 − ( y + 2) x + xy = m ( x, y ∈ \) Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm: ⎨ ⎪⎩ x + x − y = − 2m PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(– 4; 1), trọng tâm G(1; 1) đường thẳng chứa phân giác góc A có phương trình x – y – = Tìm tọa độ đỉnh A C x +1 y z − ⋅ = = Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; 2; 3) đường thẳng d: −2 Viết phương trình đường thẳng ∆ qua điểm A, vng góc với đường thẳng d cắt trục Ox Câu VII.a (1,0 điểm) Tìm số phức z, biết: z – (2 + 3i) z = – 9i B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng toạ độ Oxy, cho điểm A(1; 0) đường tròn (C): x2 + y2 – 2x + 4y – = Viết phương trình đường thẳng ∆ cắt (C) hai điểm M N cho tam giác AMN vuông cân A x −1 y − z = = mặt phẳng Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ : ( P) : x − y + z = Viết phương trình mặt cầu có tâm thuộc đường thẳng ∆, bán kính tiếp xúc với mặt phẳng (P) x + 3x + Câu VII.b (1,0 điểm) Tìm giá trị nhỏ giá trị lớn hàm số y = x +1 đoạn [0; 2] - Hết -Thí sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: www.MATHVN.com - Toán học Việt Nam ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO Mơn: TỐN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x − mx − 2(3m − 1) x + (1), m tham số thực 3 a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để hàm số (1) có hai điểm cực trị x1 x2 cho x1 x2 + 2( x1 + x2 ) = Câu (2,0 điểm) Cho hàm số y = Câu (1,0 điểm) Giải phương trình sin x + cos 3x − sin x + cos x = cos x ⎧⎪ xy + x − = Câu (1,0 điểm) Giải hệ phương trình ⎨ ( x, y ∈ \ ) 2 ⎪⎩ x − x y + x + y − xy − y = π Câu (1,0 điểm) Tính tích phân I = ∫ x(1 + sin x)dx Câu (1,0 điểm) Cho hình hộp đứng ABCD A' B 'C ' D ' có đáy hình vng, tam giác A' AC vng cân, AC ' = a Tính thể tích khối tứ diện ABB'C ' khoảng cách từ điểm A đến mặt phẳng ( BCD ') theo a Câu (1,0 điểm) Cho số thực x, y thỏa mãn ( x − 4)2 + ( y − 4)2 + xy ≤ 32 Tìm giá trị nhỏ biểu thức A = x3 + y3 + 3( xy − 1)( x + y − 2) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Các đường thẳng AC AD có phương trình x + y = x − y + = 0; đường thẳng BD qua điểm M − ;1 Tìm tọa độ đỉnh hình chữ nhật ABCD Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ): x + y − z + 10 = điểm I (2;1;3) Viết phương trình mặt cầu tâm I cắt (P) theo đường trịn có bán kính ( ) Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn (2 + i ) z + 2(1 + 2i ) = + 8i Tìm mơđun số phức w = z + + i 1+ i B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x − y + = Viết phương trình đường trịn có tâm thuộc d, cắt trục Ox A B, cắt trục Oy C D cho AB = CD = x −1 y +1 z = = hai −1 điểm A(1; −1; 2), B (2; −1;0) Xác định tọa độ điểm M thuộc d cho tam giác AMB vuông M Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : Câu 9.b (1,0 điểm) Giải phương trình z + 3(1 + i) z + 5i = tập hợp số phức HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: www.MATHVN.com BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = 2x3 − 3mx2 + (m − 1)x + (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để đường thẳng y = −x + cắt đồ thị hàm số (1) ba điểm phân biệt Câu (1,0 điểm) Giải phương trình Câu (1,0 điểm) Giải phương trình sin 3x + cos 2x − sin x = √ √ log2 x + log 1 − x = log√2 x − x + 2 Câu (1,0 điểm) Tính tích phân (x + 1)2 dx x2 + I= Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy hình thoi cạnh a, cạnh bên SA vuông góc với đáy, BAD = 120◦ , M trung điểm cạnh BC SMA = 45◦ Tính theo a thể tích khối chóp S.ABCD khoảng cách từ điểm D đến mặt phẳng (SBC) Câu (1,0 điểm) Cho x, y số thực dương thỏa mãn điều kiện xy ≤ y − Tìm giá trị lớn x − 2y x+y biểu thức P = − x2 − xy + 3y 6(x + y) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm M − ; 2 trung điểm cạnh AB, điểm H(−2; 4) điểm I(−1; 1) chân đường cao kẻ từ B tâm đường tròn ngoại tiếp tam giác ABC Tìm tọa độ điểm C Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1; −1; −2), B(0; 1; 1) mặt phẳng (P ) : x+y+z −1 = Tìm tọa độ hình chiếu vuông góc A (P ) Viết phương trình mặt phẳng qua A, B vuông góc với (P ) Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (1 + i)(z − i) + 2z = 2i Tính môđun z − 2z + số phức w = z2 B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) : (x−1)2 +(y −1)2 = đường thẳng ∆ : y − = Tam giác MNP có trực tâm trùng với tâm (C), đỉnh N P thuộc ∆, đỉnh M trung điểm cạnh MN thuộc (C) Tìm tọa độ điểm P Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1; 3; −2) mặt phẳng (P ) : x − 2y − 2z + = Tính khoảng cách từ A đến (P ) Viết phương trình mặt phẳng qua A song song với (P ) 2x2 − 3x + Câu 9.b (1,0 điểm) Tìm giá trị lớn giá trị nhỏ hàm số f(x) = x+1 đoạn [0; 2] −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A Thời gian làm bài: 180 phút, khơng kể thời gian phát đề ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) x x −1 Khảo sát biến thiên vẽ đồ thị ( C ) hàm số cho Cho hàm số y = Tìm m để đường thẳng d : y = − x + m cắt đồ thị ( C ) hai điểm phân biệt Câu II (2 điểm) Giải phương trình sin 3x − cos 3x = 2sin 2x ⎧ x − my = có nghiệm ( x; y ) thỏa mãn Tìm giá trị tham số m để hệ phương trình ⎨ ⎩mx + y = xy < Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A (1; 1; 3) đường thẳng d có phương trình x y z −1 = = −1 Viết phương trình mặt phẳng (P) qua A vng góc với đường thẳng d Tìm tọa độ điểm M thuộc đường thẳng d cho tam giác MOA cân đỉnh O Câu IV (2 điểm) Tính diện tích hình phẳng giới hạn parabol ( P ) : y = − x + 4x đường thẳng d : y = x Cho hai số thực x, y thay đổi thỏa mãn x + y = Tìm giá trị lớn giá trị nhỏ ( ) biểu thức P = x + y3 − 3xy PHẦN RIÊNG Thí sinh làm câu: V.a V.b Câu V.a Theo chương trình KHƠNG phân ban (2 điểm) Trong mặt phẳng với hệ toạ độ Oxy , tìm điểm A thuộc trục hoành điểm B thuộc trục tung cho A B đối xứng với qua đường thẳng d : x − 2y + = 18 ⎞ ⎛ Tìm số hạng khơng chứa x khai triển nhị thức Niutơn ⎜ 2x + ⎟ x⎠ ⎝ ( x > 0) Câu V.b Theo chương trình phân ban (2 điểm) Giải phương trình log 22 ( x + 1) − log x + + = n = ABC n = 90o , AB = BC = a, Cho hình chóp S.ABCD có đáy ABCD hình thang, BAD AD = 2a, SA vng góc với đáy SA = 2a Gọi M, N trung điểm SA, SD Chứng minh BCNM hình chữ nhật tính thể tích khối chóp S.BCNM theo a -Hết Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ………… ………………………… Số báo danh: ………………………… BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2009 Mơn: TỐN; Khối: A Thời gian làm bài:180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x3 − (2m − 1) x + (2 − m) x + (1), với m tham số thực Khảo sát biến thiên vẽ đồ thị hàm số (1) m = 2 Tìm giá trị m để hàm số (1) có cực đại, cực tiểu điểm cực trị đồ thị hàm số (1) có hồnh độ dương Câu II (2,0 điểm) Giải phương trình (1 + 2sin x)2 cos x = + sin x + cos x Giải bất phương trình x + + x − ≤ x + ( x ∈ \) Câu III (1,0 điểm) Tính tích phân I = ∫ (e−2 x + x)e x dx Câu IV (1,0 điểm) Cho hình chóp tứ giác S ABCD có AB = a, SA = a Gọi M , N P trung điểm cạnh SA, SB CD Chứng minh đường thẳng MN vng góc với đường thẳng SP Tính theo a thể tích khối tứ diện AMNP Câu V (1,0 điểm) Cho a b hai số thực thỏa mãn < a < b < Chứng minh a ln b − b ln a > ln a − ln b PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có C ( −1; − 2), đường trung tuyến kẻ từ A đường cao kẻ từ B có phương trình x + y − = x + y − = Tìm tọa độ đỉnh A B Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng ( P1 ) : x + y + 3z + = ( P2 ) : 3x + y − z + = Viết phương trình mặt phẳng ( P ) qua điểm A(1; 1; 1), vng góc với hai mặt phẳng ( P1 ) ( P2 ) Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn (1 + i )2 (2 − i) z = + i + (1 + 2i) z Tìm phần thực phần ảo z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho đường thẳng Δ1 : x − y − = Δ : x + y + = Tìm tọa độ điểm M thuộc đường thẳng Δ1 cho khoảng cách từ điểm M đến đường thẳng Δ2 ⋅ 2 Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A(1; 1; 0), B (0; 2; 1) trọng tâm G (0; 2; − 1) Viết phương trình đường thẳng Δ qua điểm C vng góc với mặt phẳng ( ABC ) Câu VII.b (1,0 điểm) z − − 7i Giải phương trình sau tập hợp số phức: = z − 2i z −i Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2010 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Khảo sát biến thiên vẽ đồ thị (C) hàm số y = x3 + 3x − Viết phương trình tiếp tuyến đồ thị (C) điểm có hồnh độ −1 Câu II (2,0 điểm) 5x 3x Giải phương trình cos cos + 2(8sin x − 1) cos x = 2 ⎧⎪2 x + y = − x − y Giải hệ phương trình ⎨ ( x, y ∈ \) 2 ⎪⎩ x − xy − y = Câu III (1,0 điểm) 2x −1 dx Tính tích phân I = ∫ x +1 Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, mặt phẳng (SAB) vng góc với mặt phẳng đáy, SA = SB, góc đường thẳng SC mặt phẳng đáy 45o Tính theo a thể tích khối chóp S.ABCD Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện 3x + y ≤ Tìm giá trị nhỏ 1 biểu thức A = + ⋅ x xy II PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; − 2; 3), B(−1; 0; 1) mặt phẳng ( P): x + y + z + = Tìm tọa độ hình chiếu vng góc A (P) Viết phương trình mặt cầu (S) có bán kính AB , có tâm thuộc đường thẳng AB (S) tiếp xúc với (P) Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (2 − 3i ) z + (4 + i ) z = − (1 + 3i) Tìm phần thực phần ảo z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) x y −1 z Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : mặt phẳng = = −2 1 ( P): x − y + z − = Viết phương trình mặt phẳng chứa d vng góc với (P) Tìm tọa độ điểm M thuộc d cho M cách gốc tọa độ O mặt phẳng (P) Câu VII.b (1,0 điểm) Giải phương trình z − (1 + i ) z + + 3i = tập hợp số phức Hết -Thí sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: .; Số báo danh: ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2011 Mơn: TỐN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) x + x − x +1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho Viết phương trình tiếp tuyến đồ thị (C) giao điểm (C) với trục tung Câu I (2,0 điểm) Cho hàm số y = − Câu II (2,0 điểm) Giải phương trình cos x + 12sin x − = Giải bất phương trình x − 3.2 x + x2 − x − Câu III (1,0 điểm) Tính tích phân I = ∫ − 41+ x2 − x − > 2x +1 dx x( x + 1) Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = a, SA vng góc với mặt phẳng (ABC), góc hai mặt phẳng (SBC) (ABC) 30o Gọi M trung điểm cạnh SC Tính thể tích khối chóp S.ABM theo a Câu V (1,0 điểm) Tìm giá trị tham số thực m để phương trình sau có nghiệm + x + (4 − x)(2 x − 2) = m + 4 − x + x − ( x ∈ \) ( ) PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A B) A Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + = Viết phương trình đường thẳng qua điểm A(2; − 4) tạo với đường thẳng d góc 45o Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A(−1; 2; 3), B(1; 0; −5) mặt phẳng ( P) : x + y − 3z − = Tìm tọa độ điểm M thuộc (P) cho ba điểm A, B, M thẳng hàng Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn (1 + 2i ) z + z = 4i − 20 Tính mơđun z B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x + y − = 0, BC: x + y − = 0, CA : 3x + y − = Viết phương trình đường cao kẻ từ đỉnh A tam giác ABC x −1 y +1 z −1 = = Viết phương trình Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : −3 mặt cầu có tâm I(1; 2; − 3) cắt đường thẳng d hai điểm A, B cho AB = 26 Câu VII.b (1,0 điểm) Cho số phức z thỏa mãn z − 2(1 + i ) z + 2i = Tìm phần thực phần ảo - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: .; Số báo danh: z ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012 Mơn: TỐN; Khối A, Khối A1, Khối B Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x + Câu (2,0 điểm) Cho hàm số y = (1) x +1 a) Khảo sát biến thiên vẽ đồ thị hàm số (1) b) Viết phương trình tiếp tuyến d đồ thị hàm số (1), biết d vng góc với đường thẳng y = x + Câu (2,0 điểm) a) Giải phương trình 2cos x + sin x = sin 3x b) Giải bất phương trình log (2 x).log (3 x) > Câu (1,0 điểm) Tính tích phân I = ∫ x x +1 dx Câu (1,0 điểm) Cho khối chóp S ABC có đáy ABC tam giác vng cân A, AB = a , SA = SB = SC Góc đường thẳng SA mặt phẳng ( ABC ) 60o Tính thể tích khối chóp S ABC bán kính mặt cầu ngoại tiếp hình chóp S ABC theo a Câu (1,0 điểm) Giải phương trình x3 + x − ( x + 1) x + = ( x ∈ \) II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 6.a (2,0 điểm) a) Trong mặt phẳng với hệ tọa độ Oxy , cho đường tròn (C ) : x + y − x − y + = đường thẳng d : x − y + m = Tìm m để d cắt (C ) hai điểm A, B cho n AIB = 120o , với I tâm (C ) b) Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng: ⎧x = t ⎪ d1 : ⎨ y = 2t (t ∈ \), ⎪z = − t ⎩ ⎧ x = + 2s ⎪ d : ⎨ y = + 2s (s ∈ \) ⎪ z = −s ⎩ Chứng minh d1 d cắt Viết phương trình mặt phẳng chứa hai đường thẳng d1 , d Câu 7.a (1,0 điểm) Cho số phức z thỏa mãn (1 − 2i ) z − 2−i = (3 − i ) z Tìm tọa độ điểm biểu diễn z 1+ i mặt phẳng tọa độ Oxy B Theo chương trình Nâng cao Câu 6.b (2,0 điểm) a) Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC Các đường thẳng BC , BB ', B ' C ' có phương trình y − = 0, x − y + = 0, x − y + = 0; với B ', C ' tương ứng chân đường cao kẻ từ B, C tam giác ABC Viết phương trình đường thẳng AB, AC x − y +1 z +1 b) Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : mặt phẳng = = −1 −1 ( P ) : x + y − z = Đường thẳng Δ nằm ( P ) vng góc với d giao điểm d ( P) Viết phương trình đường thẳng Δ Câu 7.b (1,0 điểm) Gọi z1 , z2 hai nghiệm phức phương trình z − z + + 2i = Tính z1 + z2 - Hết -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−− − ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2013 Môn: TOÁN; Khối A, Khối A1, Khối B Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x + Câu (2,0 điểm) Cho hàm số y = x−1 a) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho b) Gọi M điểm thuộc (C) có tung độ Tiếp tuyến (C) M cắt trục tọa độ Ox Oy A B Tính diện tích tam giác OAB π Câu (1,0 điểm) Giải phương trình cos − x + sin 2x = xy − 3y + = Câu (1,0 điểm) Giải hệ phương trình (x, y ∈ R) 4x − 10y + xy = Câu (1,0 điểm) Tính tích phân I= dx √ + 2x − Caâu (1,0 điểm) Cho lăng trụ ABC.A B C có AB = a đường thẳng A B tạo với đáy góc 60◦ Gọi M N trung điểm cạnh AC B C Tính theo a thể tích khối lăng trụ ABC.A B C độ dài đoạn thẳng MN √ Câu (1,0 điểm) Tìm m để bất phương trình (x − − m) x − ≤ m − có nghiệm II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y − = 0, ∆ : x − y + = điểm M(−1; 3) Viết phương trình đường tròn qua M, có tâm thuộc d, √ cắt ∆ hai điểm A B cho AB = Caâu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(4; −1; 3) đường thẳng x−1 y+1 z−3 d: = = Tìm tọa độ điểm đối xứng A qua d −1 Câu 9.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện (3 + 2i)z + (2 − i)2 = + i Tìm phần thực phần ảo số phức w = (1 + z) z B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông A(−3; 2) 1 có trọng tâm G ; Đường cao kẻ từ đỉnh A tam giác ABC qua điểm P (−2; 0) 3 Tìm tọa độ điểm B C Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1; 3; 2) mặt phẳng (P ) : 2x − 5y + 4z − 36 = Goïi I hình chiếu vuông góc A mặt phẳng (P ) Viết phương trình mặt cầu tâm I qua điểm A Câu 9.b (1,0 điểm) Giải phương trình z + (2 − 3i)z − − 3i = tập hợp C số phức −−−−− −Hết−−−−− − Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: ... cos x dx Câu IV (1,0 điểm) Cho hình chóp S ABCD có đáy ABCD hình thang vuông A D; AB = AD = 2a , CD = a; góc hai mặt phẳng SBC ABCD 6 0D Gọi I trung điểm cạnh AD Biết hai mặt phẳng SBI ( )... x dx cos x ∫ Câu IV (1,0 điểm) Cho lăng trụ ABCD .A1 B1 C 1D1 có đáy ABCD hình chữ nhật, AB = a, AD = a Hình chiếu vng góc điểm A1 mặt phẳng (ABCD) trùng với giao điểm AC BD Góc hai mặt phẳng (ADD 1A1 )... lăng trụ ABC .A ''B'' C'' có độ d? ?i cạnh b? ?n 2a, đáy ABC tam giác vuông A, AB = a, AC = a hình chiếu vng góc đỉnh A'' mặt phẳng (ABC) trung điểm cạnh BC Tính theo a thể tích khối chóp A'' .ABC tính cosin