họ tên ễN THI VO LP 10 - S Cõu 1: Gii phng trỡnh a) 5x = b) + =2 x2 6x c) 2x2 - 5x - = (x+ 1)(x - 1) + x 2 Cõu 2: Cho biu thc A = x x +1 x Nờu iu kin xỏc nh v rỳt gn biu thc A Cõu 3: Cho phng trỡnh bc hai sau, vi tham s m x2 (m + 1)x + 2m = (1) a) Gii phng trỡnh (1) m = b) Tỡm giỏ tr ca tham s m x = -2 l mt nghim ca phng trỡnh (1) Xỏc nh nghim cũn li Cõu 4: Hai ngi cựng lm chung mt cụng vic thỡ sau gi 30 phỳt h lm xong Nu mt mỡnh ngi th nht lm gi, sau ú mt mỡnh ngi th hai lm gi thỡ c hai ngi lm c 75% cụng vic Hi nu mi ngi lm mt mỡnh thỡ sau bao lõu s xong cụng vic? Cõu 5: Cho na ng trũn tõm O ng kớnh AB im H c nh thuc on thng AO (H khỏc A v O) ng thng i qua im H v vuụng gúc vi AO ct na ng trũn (O) ti C Trờn cung BC ly im D bt k (D khỏc B v C) Tip tuyn ca na ng trũn (O) ti D ct ng thng HC ti E Gi I l giao im ca AD v HC a) Chng minh t giỏc HBDI ni tip ng trũn b) Chng minh tam giỏc DEI l tam giỏc cõn c) Gi F l tõm ng trũn ngoi tip tam giỏc ICD Chng minh gúc ABF cú s o khụng i D thay i trờn cung BC (D khỏc B v C) ễN THI VO LP 10 - S Cõu 1: a Giải phơng trình: 1) x2 - 6x + = ( 2) x+ ) 7x + =4 32 50 + : 15 v B = ( + 2) + ( 2) Cõu : Cho phơng trình mx2 (2m+1)x + m -2 = (1), với m tham số Tìm tất giá trị m để phơng trình (1): a Có nghiệm b Có tổng bình phơng nghiệm 22 c Có bình phơng hiệu hai nghiệm 13 Cõu : Tính cạnh tam giác vuông biết chu vi 12 cm tổng bình phơng độ dài cạnh 50 Cõu 4: Cho đờng tròn (O;R) đờng kính AB, kẻ tia tiếp tuyến Ax lấy điểm P cho AP>R, từ P kẻ tiếp tuyến tiếp xúc với đờng tròn M b Tính giá trị biểu thức: A= a) Chứng minh APMO nội tiếp b) Chứng minh BM//OP c) Đờng thẳng vuông góc với AB O cắt tia BM N Cm tứ giác OBNP hình bình hành d) Chứng minh PNMO hình thang cân Cõu 5: Tìm giá trị nhỏ biểu thức: M = ( x 2010)2 + ( x 2011)2 ễN THI VO LP 10 - S Cõu 1: Hãy giải phơng trình, HPT sau: a) 5x2 + 13x - 6=0 x y = 17 x + y = 11 b) 4x4 - 7x2 - = c) d) x - 6=2x x + y = mx + y = 2m Cõu 2: Cho hệ phơng trình a Giải hệ phơng trình với m = b Xác định m để hệ phơng trình có nghiệm ? Vô nghiêm? Vô số nghiệm? Cõu 3: Trong buổi liên hoan, lớp học sinh mời 15 khách tới dự Vì lớp có 40 học sinh nên phải kê thêm dãy ghế dãy ghế phải xếp thêm ngời đủ chỗ ngồi.Hỏi ban đầu lớp học có dãy ghế, biết dãy có số ngời ngồi nh không ngời 2x + 1 x2 + : Cõu 4: Rỳt gn biu thc : x x 1 x x + x + Cõu 5: Cho tam giácABC cân A( góc A góc C, AH đờng cao, AM đờng trung tuyến Đờng tròn tâm H bán kính HA cắt đờng thẳng AB D đờng thẳng AC E a) Chứng minh: Ba điểm D, H, E thẳng hàng b) CM: góc MAE = góc ADE MA DE c) Chứng minh điểm B, C, D, E nằm đờng tròn tâm O Tứ giác AMOH hình gì? Đề số Câu 1: (2 điểm) 5.x + = x 1) Giải phơng trình: a) b) x + x - 12 = c) 2x + = x 3x + 5y = 2x 3y = 2) Giải hệ phơng trình: Câu : (2 điểm) 1- Cho hàm số y = (m2 - 4m + 5)x2 a) Chứng tỏ hàm số nghịch biến x < 0, đồng biến x > b) Khi m = Tìm x để y = 2- Gọi x1, x2 hai nghiệm phơng trình x2- 2(m + 1)x + m - = Tìm hệ thức liên hệ x 1, x2 không phụ thuộc vào m tìm điều kiện m để x1, x2 dơng Câu 3: (2 điểm) x x +1 x-1 x ữ: x + ữ, với x > x x-1 x -1 x -1 a) Rút gọn biểu thức A = b) Một lớp học sinh tham gia lao động công ích Nếu chia học sinh vào tổ thừa học sinh, chia học sinh vào tổ tổ thiếu học sinh Tính số học sinh lớp số tổ lao động Câu 4: (3 điểm) Cho hai đờng tròn (O) (O) cắt A B AO cắt đờng tròn (O) (O) lần lợt C, E (C E khác A) AO cắt đờng tròn (O) (O) lần lợt D, F (D F khác A) CD EF cắt S Chứng minh rằng: a) Tứ giác CDEF nội tiếp b) Ba điểm C, B, F thẳng hàng SA qua B c) A tâm đờng tròn nội tiếp tam giác DBE Câu 5: (1 điểm) Trong mặt phẳng toạ độ xOy cho điểm A( 1; -3) B(3; 3) Tính khoảng cách từ đờng thẳng AB tới gốc toạ độ góc tạo đờng thẳng AB với trục ox Đề số Câu 1: (2 điểm) 1) Giải PT sau: a) c) x (x- 3) - x5=0 x 3x + = Câu 2: (2 điểm) b) x2 4x + = -x 2x + y = y - x = 2) Giải hệ phơng trình: x +1 2x x ữ: + + ữ x x x x ữ x 2) 2) Tìm giá trị m để đồ thị hàm số y = (m -2)x + m + 3, y = - x + y = 2x -1 đồng quy Câu 3: (2 điểm) 1) Tìm hai số có tổng 30 tổng bình phơng chúng 468 2) Gọi x1, x2 hai nghiệm phơng trình x2 2(m-1)x = (m tham số) Tìm giá trị lớn biểu thức Q = x13 x + x1x 32 - 5x1x Câu 4: (3 điểm ) Cho đờng tròn (O) đờng kính AB, kẻ dây MN vuông góc với AB I cho I nằm O A Gọi C điểm cung nhỏ MB (C khác M B) Nối AC cắt MN E Chứng minh: a) Tứ giác BCEI tứ giác nội tiếp b) Tam giác AME đồng dạng với tam giác ACM c) AE.AC - AI.IB = AI2 Cõu 5: (1) Tỡm iu kin ca m phng trỡnh x4 + 2mx2 + m - = cú nghim phõn bit 1) Rút gọn biểu thức x Họ tên: ễN THI VO LP 10 - S Câu 1: Cho hai số: x1 = ; x2 = + a Tính: x1 + x2 x1 x2 b Lập phơng trình bậc hai ẩn x nhận x1 , x2 hai nghiệm x + y = Câu 2: a Giải hệ phơng trình: x y = 1 d +1 d b Rút gọn biểu thức: D = với d 0; d ữ d +1 d + d Câu 3: a Trong mặt phẳng toạ độ Oxy cho đờng thẳng (d): y=(m2 - 4m)x + m đờng thẳng (d): y = 5x + Tìm m để đờng thẳng (d) song song với đờng thẳng (d) b Một đội công nhân hoàn thành công việc với mức 420 ngày công thợ Hãy tính số công nhân đội, biết đội tăng thêm ngời hoàn thành công việc trớc ngày Câu 4: Cho ng trũn (O) cú bỏn kớnh R v mt im S ngoi ng trũn (O) T S v hai tip tuyn SA, SB vi ng trũn (O) (A, B l hai tip im) V ng thng a i qua S ct ng trũn (O) ti hai im M, N vi M nm gia hai im S v N (ng thng a khụng i qua tõm O) a) Chng minh SO vuụng gúc vi AB b)Gi H l giao im ca SO v AB, gi I l trung im ca MN Hai ng thng OI v AB ct ti im E Chng minh IHSE l mt t giỏc ni tip c) Chng minh OI.OE = R2 d) Cho bit SO = 2R v MN = R Tớnh din tớch tam giỏc ESM theo R ễN THI VO LP 10 - S 10 x a) Nêu tính chất vẽ đồ thi hàm số b) Lập phơng trình đt qua điểm ( , -6 ) có hệ số góc a tiếp xúc với đồ thị hàm số c) Xác định giao điểm đồ thị hàm số với đờng thẳng y = x+6 Câu Cho phơng trình : x2 mx + m = x12 + x 22 M = a) Gọi nghiệm pt x1 , x2 Tính giá trị biểu thức Tìm m để M > x12 x + x1 x 22 Câu Cho hàm số : y = b) Tìm giá trị m để biểu thức P = x12 + x 22 đạt giá trị nhỏ Câu Giải phơng trình : a) x = x + x + 2x Câu a) Rút gọn biểu thức A = x x b) (2 x 7) = x x x x x + x ữ ữ x ữ x +1 ữ x +1 b) Nhà trờng tổ chức cho 180 học sinh khối tham quan di tích lịch sử Ngời ta dự tính Nếu dùng loại xe lớn chuyên chở lợt hết số học sinh phải điều dùng loại xe nhỏ Biết xe lớn có nhiều xe nhỏ 15 chỗ ngồi Tính số xe lớn, loại xe đợc huy động Câu 5: Cho hai đờng tròn (O1) (O2) có bán kính R cắt A B , qua A vẽ cát tuyến cắt hai đờng tròn (O1) (O2) thứ tự E F a) Chứng minh : BE = BF b) Một cát tuyến qua A vuông góc với AB cắt (O 1) (O2) lần lợt C, D Đờng thẳng EC , DF cắt P Chứng minh tứ giác BEPF , BCPD nội tiếp BP vuông góc với EF c) Tính diện tích phần giao hai đờng tròn AB = R ễN THI VO LP 10 - S 11 Câu 1Cho hàm số y = (m-1)x + m + a)Tìm giá trị m để đồ thị hàm số song song với đồ thị y = 2x b)Tìm giá trị m để đồ thị hàm số qua điểm (1; -3) c)Tìm điểm cố định mà đồ thị hàm số qua với giá trị m d)Tìm giá trị m để đồ thị hàm số tạo với trục tung trục hoành tam giác có diện tích (đơn vị diện tích) Câu : Giải phơng trình a) (x2 - x + 1)2 = 2x2 - 2x + b) x + = x 11 x + Câu a)Rút gọn biểu thức : x x x x 10 x : x + x + x + b) Hai ngi i b hnh cựng mt lỳc hai a im A v B cỏch 18km H i ngc chiu v gp sau mi ngi ó i c gi Bit rng c i km thỡ ngi i t A i lõu hn ngi i t B l phỳt Tớnh tc ca mi ngi? Câu4: Cho nửa đờng tròn đờng kính AB Lấy điểm D tuỳ ý nửa đ ờng tròn (D khác A D khác B) Dựng hình bình hành ABCD Từ D kẻ DM vuông góc với đ ờng thẳng AC M từ B kẻ BN vuông góc với đ ờng thẳng AC N a Chứng minh bốn điểm D, M, B, C nằm đ ờng tròn b Chứng minh: AD ND = BN DC c Tìm vị trí D nửa đ ờng tròn cho BN.AC lớn Cõu Tỡm iu kin ca m phng trỡnh x4 - 2mx2 + m - = cú nghim phõn bit ễN THI VO LP 10 - S 12 Câu 1: Cho hàm số y = (m -2)x - m + a)Tìm điều kiện m để hàm số luôn nghịch biến b)Tìm điều kiện m để đồ thị cắt trục hoành điểm có hoành độ c)Tìm giá trị m để đồ thị hàm số tạo với ox góc 450 Câu 2: Giải phơng trình : a) x2 (2 x +24) = Câu 3: b) 1 + = x x x c) 31 x x = Cho phơng trình : x2 ( m+2)x + m2 = (1) a) Tìm giá trị nguyên nhỏ m để phơng trình (1) có hai nghiệm khác b) Gọi x1, x2 hai nghiệm phơng trình Tìm m thoả mãn x1 x2 = Câu x+ y x y x + xy a) Rút gọn biểu thức: ữ: ữ + xy ữ xy xy b) mnh t hỡnh ch nht cú din tớch 360m2 Nu tng chiu rng m v gim chiu di m thỡ din tớch mnh t khụng i Tớnh chu vi ca mnh t lỳc ban u Câu 5: Cho tam giác ABC cân A nội tiếp (O) Gọi D, F lần lợt điểm cung AB, AC BF cắt CD E Chứng minh: a) AD // BF b) Tứ giác ADEF hình thoi c) Qua E kẻ đờng thẳng song song với AC cắt AB G Cm tứ giác BEGD nội tiếp DF cắt AC H Cm H thuộc đt ngoại tiếp tam giác CEF ... song với đờng thẳng (d) b Một đội công nhân hoàn thành công việc với mức 420 ngày công thợ Hãy tính số công nhân đội, biết đội tăng thêm ngời hoàn thành công việc trớc ngày Câu 4: Cho ng trũn... Tia Bx vuông góc với AM cắt tia CM D Chứng minh rằng: a) Góc AMD góc ABC b) Tam giác BMD cân c) Khi M di động cung nhỏ AC D chạy cung tròn cố định độ lớn góc BDC không đổi ễN THI VO LP 10 -... không phụ thuộc vào m tìm điều kiện m để x1, x2 dơng Câu 3: (2 điểm) x x +1 x-1 x ữ: x + ữ, với x > x x-1 x -1 x -1 a) Rút gọn biểu thức A = b) Một lớp học sinh tham gia lao động công