1. Trang chủ
  2. » Giáo án - Bài giảng

on thi toan 10

4 162 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 93,5 KB

Nội dung

b Chứng minh tam giác DBC vuông c Tính các góc của hình thang ABCD làm tròn đến độ.

Trang 1

Đề ôn thi vào lớp 10- THPT chuyên ( Thi chung )

( Thời gian làm bài: 120 phút)

Câu I: ( 2 điểm )

− +





+

+

10 2 :

2

1 6 3

6

x x

x x

x x x x

1) Rút gọn biểu thức A

2) Tìm x sao cho A < 2

3) Tìm các giá trị guyên của x để biểu thức A có giá trị nguyên

Câu II : ( 2 điểm ) Cho x1 và x2 là hai nghiệm của phương trình : x2 – 5x + 2 = 0 1) Hãy lập phương trình bậc hai có hai nghiệm là 3x1 -x2 và 3x2 -x1

2) Tính giá trị của biểu thức : B = 3x1−x2 + 3x2−x1 ,

Câu III : ( 1,5 điểm ) Giải hệ phương trình

1

1

Câu IV : ( 3,5 điểm )

Cho hình vuông ABCD trên đường chéo BD lấy điểm I sao cho BI = BA Đường thẳng

đi qua I vuông góc với BD cắt AD tại E và I cắt BE tại H

1) Chứng minh rằng : AE = ID

2) Đường tròn tâm E bán kính EA cắt AD tại điểm thứ hai F ( F ≠A)

Chứng minh : DF.DA = EH EB

Câu V : ( 1 điểm )

a) Cho a,b,c là 3 số dương, CMR: (a b c)(1 1 1) 9

a b c

b)Cho tam giác ABC có độ dài 3 cạnh lần lượt là : BC = a ; CA= b ; BA= c và chu vi bằng 2p Tìm giá trị nhỏ nhất của biểu thức B = p p p

p a+ p b+ p c

.Hết

Trang 2

Hưóng dẫn giải Câu 2: Phương trình : x2 – 5x + 2 = 0 (1) có ∆ = (-5) 2- 4.1.2= 7 >0 nên có hai nghiệm 1)Vì x1 và x2 là hai nghiệm của phương trình : x2 – 5x + 2 = 0 nên theo hệ thức Vi - ét ta có:

x 1 + x2 = 5 ; x1 x2 = 2, do đó (3x1 -x2 ) + ( 3x2 -x1 ) = 2 ( x 1 + x2 ) = 10

(3x1 -x2 ) ( 3x2 -x1 ) = 10 x1 x2 - 3( x1 + x2 )

= 10 x1 x2 - 3(( x1 + x2 )2 - 2x1 x2 ) = 16 x1 x2 - 3 ( x1 + x2 )2 = 16.2 - 3.52 = - 43

Vậy phương trình bậc hai có hai nghiệm là 3x1 -x2 và 3x2 -x1 là: y2 - 10 y - 43 = 0 ( 2)

2) Ta có 3x1 -x2 và 3x2 -x1 là hai nghiệm của pt ( 2) mà (3x1 -x2 ) ( 3x2 -x1 ) = - 43

< 0 nên hai số 3x1 -x2 và 3x2 -x1 trái dấu, không mất tính TQ ta giả sử 3x1 -x2 >0 và 3x2 -x1 <0 thì:

B = 3x1−x2 + 3x2−x1 = 3x1- x2 - 3x2+ x1 = 4 ( x1 - x2 )

= 4

(x x+ ) 4− x x =4 5 −4.2 4 17=

Câu 5: a ) Sử dụng Bất đẳng thức Bunhiacốpxky ta có:

( a) ( b) ( c)

  ( 1a)2+( 1b)2+( 1c)2 ≥

2

( a) ( b) ( c)

= 32 = 9 b) Đặt a+ b - c = x ; a+ c- b = y; b+ c - a = z và sử dụng bất đẳng thức ở câu a) tìm được giá trị nhỏ nhất của B là Min B = 9 ( khi a = b = c)

Trang 3

Bài kiểm tra số1: Môn: TOáN- Lớp 9

đề bàI Bài 1: Tìm điều kiện của x để các căn thức bậc hai sau có nghĩa:

a) x−5 b) (x−2)(x+3) c)

2

3 5 1

x x

− + d)

3

1− 2x+3

Trang 4

Bài 2: Rút gọn các biểu thức: a)2 27 3 75 1 108 1 6 1

b)B = 8 2 7+ − 7

1

Q

x

= − ữữ+

a) Tìm điều kiện của x để Q có nghĩa b) Rút gọn Q

c) Tìm x để Q = 1.

d) Tìm giá trị lớn nhất của Q

Bài 4: Cho hình thang ABCD (AB // CD ) Vẽ BK ⊥ CD (K∈CD)

Cho biết BK = 24m , DK = 32cm, CK = 18 cm , AD = 28cm

a) Tính độ dài DB , BC b) Chứng minh tam giác DBC vuông

c) Tính các góc của hình thang ABCD (làm tròn đến độ).

Bài5: Cho00 < <α 900, chứng minh rằng: 2 3

3

sin cos 1

cos

tgα tg α tg α α α

α

+

Bài 6:Chứng minh rằng:

2 + 3+ 4 + + 255+ 256 <

Ngày đăng: 11/11/2015, 19:03

Xem thêm

TỪ KHÓA LIÊN QUAN

w