Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 147 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
147
Dung lượng
5,08 MB
Nội dung
Nguyn Kim Phỳc - THCS Quang sn ễN THI VO LP 10 a : + Bi 1: Cho biu thc K = a + a a a a a Rỳt gn biu thc K b Tớnh giỏ tr ca K a = + 2 c Tỡm cỏc giỏ tr ca a cho K < Bi 2: Cho phng trỡnh: x2 - 2(m-3)x - 2(m-1) = (1) a) Chng minh rng phng trỡnh luụn cú nghim phõn bit vi mi giỏ tr ca m; b) Gi x1, x2 l nghim ca phng trỡnh (1) Tỡm giỏ tr nh nht ca x12 + x22 Bi 3: Theo k hoch hai t sn xut 600 sn phm mt thi gian nht nh Do ỏp dng k thut mi nờn t I ó vt mc 18% v t II ó vt mc 21% Vỡ vy thi gian quy nh h ó hon thnh vt mc 120 sn phm Hi s sn phm c giao ca mi t theo k hoch? Bi 4: Cho tam giỏc ABC cú cỏc gúc u nhn, A = 45 V cỏc ng cao BD v CE ca tam giỏc ABC Gi H l giao im ca BD v CE a Chng minh t giỏc ADHE ni tip c mt ng trũn b Chng minh: HD = DC c Tớnh t s: DE BC d Gi O l tõm ng trũn ngoi tip tam giỏc ABC Chng minh OA vuụng gúc vi DE Bi 5: Cho a, b l cỏc s thc dng Chng minh rng: ( a + b ) + a+b 2a b + b a Nguyn Kim Phỳc - THCS Quang sn Bi gii: Bi 1: iu kin a > v a : + a ( a 1) a + ( a + 1)( a 1) a a K = a Bi 2: a) ' = m2 - 4m + = (m-2)2 + > : Phng trỡnh luụn cú nghim phõn bit vi mi giỏ tr ca m b) p dng h thc Viet: x1+x2 = m - x1x2 = - 2(m - 1) Ta cú: x12 + x22 = (x1+ x2)2 - x1x2 = 4(m - 3)2 + 4(m - 1) = 4m2 - 20m + 32 =(2m - 5)2 + ng thc xy 2m = m = 2,5 Vy giỏ tr nh nht ca x12 + x22 l m = 2,5 Bi 3: Gi x, y l s sn phm ca t I, II theo k hoch (iu kin x, y N*; x, y < 600) Theo gi thit ta cú phng trỡnh x + y = 600 S sn phm tng ca t I l: S sn phm tng ca t II l: x (sn phm) 100 21 y ( sn phm) 100 T ú cú phng trỡnh th hai: 18 21 x+ y = 120 100 100 Nguyn Kim Phỳc - THCS Quang sn x + y = 600 Do ú x v y tha h phng trỡnh: 18 21 x + y = 120 100 100 Gii c x = 200, y = 400( tha iu kin ) Vy: S sn phm c giao ca t I, t II theo k hoch th t l 200 v 400 sn phm Bi 4: a Ta cú ADH = AEH = 900, suy AEH +ADH = 1800 T giỏc AEHD ni tip ng trũn ng kớnh AH b AEC vuụng cú EAC= 450 nờn ECA = 450, t ú HDC vuụng cõn ti D Vy DH = DC c)Ta cú BEC = BDC = 900 nờn t giỏc BEDC ni tip ng trũn ng kớnh BC AED = ACB (cựng bự vi DEB) suy AED ú: ACB, DE AE AE = = = BC AC AE 2 d Dng tia tip tuyn Ax vi ng trũn (O), ta cú BAx = BCA (gúc to bi tia tip tuyn v dõy v gúc ni tip cựng chn cung AB) , m BCA = AED BAx =AED m chỳng l cp gúc so le ú DE Ax Mt khỏc, OA Ax ( Ax l tip tuyn), Vy OA ED (pcm) Nguyn Kim Phỳc - THCS Quang sn Bi :Ta cú : 1 a ; b , vi mi a , b > 2 a a + 1 0; b b + 4 a a + 1 +b b + 4 a+b+ a + b >0 Mt khỏc ( a b ) a + b ab > Nhõn tng v ta cú : ( a + b ) a + b + 2 hay: ( a + b ) + ab ( a+ b ) a+b 2a b + 2b a ễN THI VO LP 10 S Nguyn Kim Phỳc - THCS Quang sn Bi 1: Cho biu thc: P = ( x 2+ x + 8x x ):( ) 4x x2 x x a) Rỳt gn P b) Tỡm giỏ tr ca x P = mx - y = Bi 2: Cho h phng trỡnh: x y = 335 a) Gii h phng trỡnh cho m = b) Tỡm giỏ tr ca m h phng trỡnh vụ nghim Bi 3: Cho parabol (P) : y = x2 v ng thng (d) cú h s gúc m i qua im M( ; 2) a) Chng minh rng vi mi giỏ tr ca m thỡ (d) luụn ct (P) ti hai im A, B phõn bit b) Xỏc nh m A, B nm v hai phớa ca trc tung Bi 4: (2,0 điểm) Giải toán sau cách lập phơng trình hệ phơng trình: Một ca nô chuyển động xuôi dòng từ bến A đến bến B sau chuyển động ngợc dòng từ B A hết tổng thời gian Biết quãng đờng sông từ A đến B dài 60 Km vận tốc dòng nớc Km/h Tính vận tốc thực ca nô (( Vận tốc ca nô nớc đứng yên ) Bi 5: Cho ng trũn (O), ng kớnh AB c nh, im I nm gia A v O cho AO K dõy MN vuụng gúc vi AB ti I Gi C l im tựy ý thuc cung ln MN cho C khụng trựng vi M, N v B Ni AC ct MN ti E a) Chng minh t giỏc IECB ni tip c mt ng trũn b) Chng minh tam giỏc AME ng dng vi tam giỏc ACM v AM2 = AE.AC c) Chng minh: AE.AC AI.IB = AI2 d) Hóy xỏc nh v trớ ca im C cho khong cỏch t N n tõm ng trũn ngoi tip tam giỏc CME l nh nht AI = Gii: Bi 1: a P = x (2 x ) + 8x ( x 1) 2( x 2) : (2 + x )(2 x ) x ( x 2) Nguyn Kim Phỳc - THCS Quang sn = = x + 4x : (2 + x )(2 x ) x x ( x 2) x + 4x x ( x 2) (2 + x )(2 x ) x = 4x x iu kin x > 0; x v x b Vi x > 0; x v x 9; P = v ch khi: 4x = x hay: 4x + x = t y = x > ta cú: 4y2 + y = cú dng a b + c = y = ; y = 3 Vỡ y > nờn ch nhn y = nờn x = 4 Vy: P = x = 16 Bi 2: x y = a Khi m = ta cú h phng trỡnh: x y = 335 x y = x y = x = 2008 3x y = 2010 3x y = 2010 y = 2007 x = 2008 Vy vi m = h phng trỡnh ó cho cú nghim y = 2007 b mx y = y = mx x y = 335 y = x 1005 2 (*) H phng trỡnh vụ nghim (*) vụ nghim m = (vỡ ó cú 1005) Bi 3: Nguyn Kim Phỳc - THCS Quang sn a) ng thng (d) cú h s gúc m cú dng y = mx + b v (d) i qua im M( ; 2) nờn: 2= m( 1) + b b = m Vy: Phng trỡnh ng thng (d) l y = mx + m Honh giao im ca (d) v (P) l nghim ca phng trỡnh: x2 = mx + m x2 + mx + m = (*) Vỡ phng trỡnh (*) cú = m 4m + = (m 2) + > vi mi m nờn phng trỡnh (*) luụn cú hai nghim phõn bit , ú (d) v (P) luụn ct ti hai im phõn bit A v B b) A v B nm v hai phớa ca trc tung x2 + mx + m = cú hai nghim trỏi du x1x2 < p dng h thc Vi-et: x1x2 = m x1x2 < m < m < Võy: A, B nm v hai phớa ca trc tung thỡ m < Bi Bài 4: Gọi vận tốc thực ca nô x ( km/h) ( x>5) Vận tốc xuôi dòng ca nô x + (km/h) Vận tốc ngợc dòng ca nô x - (km/h) Thời gian ca nô xuôi dòng : 60 ( giờ) x+5 Thời gian ca nô xuôi dòng : 60 ( giờ) x5 Theo ta có PT: 60 60 + =5 x+5 x5 60(x-5) +60(x+5) = 5(x2 25) x2 120 x 125 = x1 = -1 ( không TMĐK) x2 = 25 ( TMĐK) Vậy vân tốc thực ca nô 25 km/h Bi 5: a Ta cú: EIB = 900 (gi thit) ECB = 900 (gúc ni tip chn na ng trũn) Nguyn Kim Phỳc - THCS Quang sn Vy: t giỏc IECB l ni tip ng trũn ng kớnh EB b Ta cú: s AM = s AN (ng kớnh MN dõy AB) AME = ACM (gúc ni tip) Li cú A chung, suy AME ACM AC AM = AM = AE.AC Do ú: AM AE c MI l ng cao ca tam giỏc vuụng MAB nờn MI2 = AI.IB Tr tng v ca h thc cõu b vi h thc trờn Ta cú: AE.AC AI.IB = AM2 MI2 = AI2 d T cõu b suy AM l tip tuyn ca ng trũn ngoi tip tam giỏc Ta thy khong cỏch NK nh nht v ch NK BM Dng hỡnh chiu vuụng gúc ca N trờn BM ta c K im C l giao ca ng trũn tõm O vi ng trũn tõm K, bỏn kớnh KM ễN THI VO LP 10 S Bi 1: Cho A = 1 + 2(1 + x + ) 2(1 x + ) Nguyn Kim Phỳc - THCS Quang sn a Tỡm x A cú ngha b Rỳt gn A c Tỡm cỏc giỏ tr ca x A cú giỏ tr dng Bi 2: a Gii phng trỡnh: x4 + 24x2 - 25 = x y = b Gii h phng trỡnh: x + y = 34 Bi 3: Cho phng trỡnh: x2 - 2mx + (m - 1)3 = vi x l n s, m l tham s(1) a Gii phng trỡnh (1) m = -1 b Xỏc nh m phng trỡnh (1) cú hai nghim phõn bit, ú mt nghim bng bỡnh phng ca nghim cũn li Bi 4: Cho parabol (P): y =2x2 v ng thng (d): 2x + y - = a) V (P) b) Tỡm ta giao im A, B ca (P) v (d) bng th v bng phộp tớnh c) Gi A, B l hỡnh chiu ca A, B trờn trc honh.Tớnh din tớch t giỏc ABBA Bi 5: Cho na ng trũn (0) ng kớnh AB T A v B k hai tip tuyn Ax v By Qua im M thuc na ng trũn ny, k tip tuyn th ba, ct cỏc tip tuyn Ax v By ln lt E v F a Chng minh AEMO l t giỏc ni tip b AM ct OE ti P, BM ct OF ti Q T giỏc MPOQ l hỡnh gỡ? Ti sao? c K MH vuụng gúc vi AB (H thuc AB) Gi K l giao im ca MH v EB So sỏnh MK vi KH d Cho AB = 2R v gi r l bỏn kớnh ng trũn ni tip tam giỏc EOF r Chng minh rng: < < R Hng dn gii: Bi 1: x + a A cú ngha x + x x + x (*) x Nguyn Kim Phỳc - THCS Quang sn b A = 2(1 + x + ) + 2(1 x + ) c A cú giỏ tr dng = (1 x + 2) + (1 + x + 2) 21 ( x + 2) = x +1 > x + < v x tha (*) x +1 x < -1 v x tha (*) x < Bi 2: a Gii phng trỡnh: x4 + 24x2 - 25 = t t = x2, t 0, phng trỡnh ó cho tr thnh: t2 + 24t - 25 = cú a + b +c = nờn t =1 hoc t = -25, vỡ t ta chn t = T ú phng trỡnh cú hai nghim x = -1 v x = b Th y = 2x - vo phng trỡnh 9x + 8y = 34 ta c: 25x = 50 x = T ú ta cú y = x = y = Nghim ca h phng trỡnh ó cho l Bi 3: a) Phng trỡnh: x2 - 2mx + (m - 1)3 = vi x l n s, m l tham s.(1) Khi m = -1, phng trỡnh ó cho cú dng x2 + 2x - = ' = + = ' = Phng trỡnh cú nghim : x1 = -1+3 = 2; x2 = -1-3 = -4 b Phng trỡnh cú hai nghim phõn bit ' = m2 - (m - 1)3 > (*) Gi s phng trỡnh cú hai nghim l u, u2 thỡ theo nh lớ Vi-ột ta cú: u + u = 2m (1) u.u = (m 1) (2) T (2) ta cú u = m - 1, thay vo (1) ta c: (m - 1) + (m - 1)2 = 2m m2 - 3m = m(m-3) = m = hoc m = 3: C hai giỏ tr ny u tha iu kin (*), tng ng vi u = -1 hoc u = Vy vi m { 0; 3} thỡ phng trỡnh (1) cú hai nghim phõn bit, ú mt nghim bng bỡnh phng ca nghim cũn li Bi 4: a) V (P): 10 Nguyn Kim Phỳc - THCS Quang sn M FK BK FK BK FK BK = = = ( BF // AE) nờn hay (3) KA KE KA + FK BK + KE FA BE T (1) , ( 2) , (3) suy ra: MK KN = Vy MK = NK AE AE S KN AKB Tam giỏc AKB v tam giỏc AMB cú chung ỏy AB nờn: S = MN = AMB Do ú: SAKB = SAMB Tam giỏc AMB vuụng M nờn tg A = Vy AM = a a SAKB v MB = 2 MB ã = MAB = 600 MA 1 a a = = a (vdt) 16 2 2 133 Nguyn Kim Phỳc - THCS Quang sn TUYN SINH LP 10 THPT NM HC 2010-2011 Mụn: Toỏn Thi gian :120 phỳt Bỡ 1: Gii phng trỡnh: x2 + 5x + = Trong h trc to Oxy, bit ng thng y = ax + i qua im M(-2;2) Tỡm h s a Bi 2:Cho biu thc: x x x2 P = + ữ ữ vi x >0 ữ x x +1 x x + x 1.Rỳt gn biu thc P 2.Tỡm giỏ tr ca x P = Bi 3: Mt on xe ti nhn chuyờn ch 15 tn hng Khi sp hnh thỡ xe phi iu i lm cụng vic khỏc, nờn mi xe cũn li phi ch nhiu hn 0,5 tn hng so vi d nh Hi thc t cú bao nhiờu xe tham gia chuyn (bit lng hng mi xe ch nh nhau) Bi 4: Cho ng trũn tõm O cú cỏc ng kớnh CD, IK (IK khụng trựng CD) Chng minh t giỏc CIDK l hỡnh ch nht Cỏc tia DI, DK ct tip tuyn ti C ca ng trũn tõm O th t G; H a Chng minh im G, H, I, K cựng thuc mt ng trũn b Khi CD c nh, IK thay , tỡm v trớ ca G v H din tớch tam giỏc DGH t giỏ tr nh nht Bi 5: Cỏc s a, b, c [ 1; 4] tho iu kin a + 2b + 3c chng minh bt ng thc: a + 2b + 3c 36 ng thc xy no? HấT 134 Nguyn Kim Phỳc - THCS Quang sn Hng dn Bỡ 1: 1.Gii phng trỡnh: x2 + 5x + = x1 = -2, x2= -3 2.Vỡ ng thng y = a.x +3 i qua im M(-2,2) nờn ta cú: a = 0,5 = a.(-2) +3 Bi 2: k: x> x x + x x = x (2 x 1) x x +1 x x + x x +1 x P = x (2 x 1) x = , x = Vỡ x = khụng tha k x> nờn loi Vy P = x = P=( x x + x2 ).(2- ) = Bi 3: Gi s xe thc t ch hng l x xe ( x N*) thỡ s xe d nh ch hng l x +1 ( xe ) 15 ( tn ) x +1 15 Nhng thc t mi xe phi ch : ( tn ) x 15 15 Ta cú phng trỡnh : = 0,5 x x +1 Theo d nh mi xe phi ch: Gii phng trỡnh ta c : x1 = -6 ( loi ) ; x2 = ( nhn) Vy thc t cú xe tham gia chuyn hng Bi 4: 1, Ta cú CD l ng kớnh, nờn : CKD = CID = 900 ( T/c gúc ni tip ) Ta cú IK l ng kớnh, nờn : KCI = KDI = 900 ( T/c gúc ni tip) Vy t giỏc CIDK l hỡnh ch nht 2, a) Vỡ t giỏc CIDK ni tip nờn ta cú : ICD = IKD ( t/c gúc ni tip) Mt khỏc ta cú : G = ICD ( cựng ph vi GCI ) G = IKD Vy t giỏc GIKH ni tip b) Ta cú : DC GH ( t/c) DC2 = GC.CH m CD l ng kớnh, nờn di CD khụng i GC CH khụng i din tớch GDH t giỏ tr nh nht GH t giỏ tr nh nht M GH = GC + CH nh nht GC = CH Khi GC = CH ta suy : GC = CH = CD V IK CD Bi 5: Do -1 a, b, c Nờn a +1 a4 Suy : ( a+1)( a - 4) a 3.a +4 Tng t ta cú b2 3b +4 2.b2 b + 3.c2 9c +12 135 Nguyn Kim Phỳc - THCS Quang sn Suy ra: a2+2.b2+3.c2 3.a +4+6 b + 8+9c +12 a2+2.b2+3.c2 36 ( vỡ a +2b+3c ) 136 Nguyn Kim Phỳc - THCS Quang sn MễN THI: TON ( chung) Thi gian lm bi: 120 phỳt (khụng k thi gian phỏt ) Bi (1,5 im) Khụng dựng mỏy tớnh, hóy rỳt gn, tớnh giỏ tr ca cỏc biu thc sau: 14 15 + : ữ ữ 1) A = 2) B = x 2x x x x x ( x 0; x 1) Bi (1,5 im) 1) Cho hai ng thng d1: y = (m+1)x + ; d2: y = 2x + n Vi giỏ tr no ca m, n thỡ d1 trựng vi d2 ? 2) Trờn cựng mt phng ta , cho hai th (P): y = x2 ; d: y = x Tỡm ta giao im ca (P) v (d) bng phộp toỏn Bi (2 im) Cho phng trỡnh: x2 + 2(m + 3)x + m2 + = (m l tham s) 1) Tỡm m phng trỡnh cú nghim kộp? Hóy tớnh nghim kộp ú 2) Tỡm m phng trỡnh cú hai nghim x1, x2 tha x1 x2 = Bi (1,5 im) Gii cỏc phng trỡnh sau: 1) + =2 x2 x 2) x4 + 3x2 = Bi (3,5im) Cho ng trũn (O;R) ng kớnh AB v dõy CD vuụng gúc vi ( CA < CB) Hai tia BC v DA ct ti E T E k EH vuụng gúc vi AB ti H; EH ct CA F Chng minh rng: 1) T giỏc CDFE ni tip c mt ng trũn 2) Ba im B , D , F thng hng 3) HC l tip tuyn ca ng trũn (O) 137 Nguyn Kim Phỳc - THCS Quang sn BI GIAI 14 15 + : ữ = ữ Bi 1: (1,5 im) 1)A = ( ) ( ) : + 2) B = x 2x x = x x x ( = ( + ) ( ) =75=2 ) ( ) x x x x x = x x x x x x +1 = = x ( ( ) x x ) ( x 0; x 1) = x Bi (1,5 im) m + = m = 1, n = 1) d1 d2 n =5 Phng trỡnh honh giao im ca (P) v d l: x2 = 6x x + 3x 18 = = b2 4ac = 32 ( 18) = 81 = b b + + x1 = = = , x2 = = = 2a 2a Suy ra: y1 = ; y2 = 12 Vy d ct (P) ti hai im: (3; 3) v ( 6; 12) Bi (2im) x2 + 2(m + 3)x + m2 + = (1) 1) Phng trỡnh (1) cú nghim kộp ' = ( m + 3) ( m + 3) = 6m + = m = Vy vi m = phng trỡnh (1) cú nghim kộp Nghim kộp ca PT (1) : x1 = x = b' ( m + 3) = = ( + 3) = a 2) Phng trỡnh (1) cú hai nghim x1 ; x2 ' 6m + m Theo h thc Vi-ột ta cú: S= x1 + x2 = 2(m + 3) ; P = x1 x2 = m2 + T x1 x2 = suy ra: ( x1 x2)2 = ( x1 + x2)2 4x1x2 = (*) ( ) Thay S v P vo (*) ta c: ( m + 3) m + = 138 Nguyn Kim Phỳc - THCS Quang sn ( m + 6m + ) 4m 12 = 24m + 24 = m = m ) Vy x1 x2 = m = ( tho 6 Bi (1,5 im) Gii cỏc phng trỡnh: + = (1) 1) K: x ; x x 6x (1) x + ( x ) = ( x ) ( x ) x + 3x = 12x 24 2x + 4x 2x2 14x + 24 = ' = b ' ac = 49 48 = b' + ' + b' ' x1 = = = ( TMK), x2 = = =3 a a ( TMK), Tp nghim ca phng trỡnh: S = { 3; 4} 2) x4 + 3x2 = t t = x2 ( t 0) , ta cú phng trỡnh n t: t2 + 3t = Vỡ a + b + c = + + ( ) = nờn t1 = (nhn) , t2 = < (loi) Vy x2 = x1 = 1; x2 = E Tp nghim ca phng trỡnh: S = { 1;1} C Bi (3,5 im) 1) Chng minh t giỏc CDFE ni tip: H O A ã ã CD // FE (cựng vuụng gúc AB) EFC (so le trong) = FCD AB CD nờn AB i qua trung im dõy CD (tớnh cht D ng kớnh vuụng gúc vi dõy cung) nờn C v D i xng F ã ã qua AB Do ú ACD = ADC ã ã Suy ra: EFC = EDC T giỏc CDFE cú hai nh F, D liờn tip nhỡn CE di mt gúc bng nờn ni tip c mt ng trũn 2) Chng minh ba im B , D , F thng hng ã ã Ta cú: ACB = 900 (gúc ni tip chn na ng trũn) ECF = 900 (k bự vi ã ) ACB ã ã ã T giỏc CDFE ni tip nờn ECF = EDF = 900 M ADB = 900 nờn ã ã EDF + EDB = 1800 139 B Nguyn Kim Phỳc - THCS Quang sn Vy ba im B , D , F thng hng 3) Chng minh HC l tip tuyn ca ng trũn (O) ã ã Ta cú EHA + ECA = 900 + 90 = 1800 nờn t giỏc AHEC ni tip ã ã Suy ra: HCA (cựng chn cung AH) = HEA ã ã ã ã M HEA (so le ca EH // CD) v ADC (cựng chn cung = ADC = ABC AC) ã ã ằ Vy HC l tip tuyn ca ng trũn (O) Do ú: HCA = s AC = ABC ã ã Chỳ ý: Rt nhiu HS cõu 1chng minh ECF = EDF = 900 v kt lun t giỏc CDFE ni tip l sai lm ã ã Cõu cú th chng minh HCA + ACO = 900 ri suy HC l tip tuyn 140 Nguyn Kim Phỳc - THCS Quang sn THI VO LP 10 MễN TON Nm hc 2010 2011 (Thi gian: 120 phỳt, khụng k thi gian giao ) Phn 1: Trc nghim (2im) Mi cõu sau cú nờu phng ỏn tr li, ú ch cú mt phng ỏn ỳng Hóy chn phng ỏn ỳng v vit vo bi lm ch cỏi ng trc phng ỏn c la chn Cõu 1: Vi iu kin no thỡ a = a A a = B a C a D ng thc khụng th xy Cõu 2: th hm s y = 2x v y = 3x ct ti im cú honh l: 1 1 A v B -1 v C v D -1 v 2 2 Cõu 3: Phng trỡnh x + x + = ó bit mt nghim x1 = Nghim l: A x = B x = + C x = + D x = x + y = Cõu 4: S nghim ca h phng trỡnh l: x + y = A Mt B Hai C Khụng D Vụ s ( ) y = m x Cõu 5: Hm s ng bin x > nu: 1 A m = B m < C m > D m 2 Cõu 6: Cho ng trũn (O;R) T im M nm ngoi ng trũn k tip tuyn MA vi ng trũn (A l tip im) Nu MO = 3cm v gúc OMA = 45 thỡ bỏn kớnh R ca ng trũn bng: A 2cm B 0,5cm C cm D cm Cõu 7: Mt hỡnh viờn phõn cú bỏn kớnh bng 7cm, s o cung bng 90 Din tớch hỡnh viờn 22 phn ú bng (ly = ) A 38,5cm B 14cm C 24cm D 105cm Cõu 8: Nu bỏn kớnh ca mt hỡnh cu tng gp ụi thỡ th tớch hỡnh cu ú tng gp: A ln B ln C ln D ln Phn 2: T lun (8 im) Cõu 1: (1,5): Cho biu thc: 1 a +1 A = + : vi a > 0, a a a + a a a a, Rỳt gn biu thc A b, So sỏnh A vi Cõu 2: (1,5): Cho phng trỡnh x ( 4m + 3) x + 2m = (m l tham s) a, Gii phng trỡnh vi m = b, Tỡm tt c cỏc giỏ tr ca m phng trỡnh ó cho cú hai nghim phõn bit, ú cú mt nghim bng 141 Nguyn Kim Phỳc - THCS Quang sn Cõu 3: (1) Cho hm s y = (m-1)x + 2m (m l tham s) Xỏc nh m : a, Hm s ng bin b, th hm s ct trc honh ti im A cú honh bng Cõu 4: (2,5) Cho ABC vuụng ti A, (AB < AC), ng cao AH Gi M l im i xng ca H qua AB 1, Chng minh t giỏc AMBH ni tip 2, Tia MC ct ng trũn ngoi tip t giỏc AMBH ti im P (P M) Tia HP ct ng trũn ngoi tip APC ti im N (N P) Gi E v K tng ng l giao ca AB v BC vi ng trũn ngoi tip APC (E A, K C ) Chng minh rng: a, EN // BC b, H l trung im ca BK Cõu 5: (1,5) a, Tỡm giỏ tr ln nht v giỏ tr nh nht ca biu thc M = x + + x b, Tỡm cỏc s nguyờn x, y, z cho: x + y + z + < xy + y + z ******************************* 142 Nguyn Kim Phỳc - THCS Quang sn THI VO LP 10 MễN TON Nm hc 2010 2011 (Thi gian: 120 phỳt, khụng k thi gian giao ) a+3 a +2 Bài 1: Cho biểu thức P= a) Rút gọn P b) Tìm a để : ( a +2 )( ) a a+ a 1 + : a a +1 a 1 a +1 P Bai2: Giải toán cách lập phơng trình Một ca nô xuôi dòng khúc sông từ bến A đến bến B cách 80km,sau lại ngợc dòng đến địa điểm C cách B 72km, thời gian ca nô xuôi dòng thời gian ca nô ngợc dòng 15 phút Tính vận tốc riêng ca nô ,biết vận tốc dòng nớc 4km/h Bai3: Tìm toạ độ giao điểm A B đồ thị hai hàm số y=2x+3 y=x2 Gọi D C lần lợt hình chiếu vuông góc A B trục hoành Tính diện tích tứ giác ABCD Bài 4: Cho đờng tròn (O) đờng kính AB=2R, C trung điểm OA dây MN vuông góc với OA C Gọi K điểm tuỳ ý cung nhỏ BM,H giao điểm AK MN 1) Chứng minh tứ giác BCHK nội tiếp 2) Tính tích AH.AK theo R 3) Xác định vị trí điểm K để tổng (KM+KN+KB) đạt GTLN tính GTLN đó? Bài 5: Cho hai số dơng x,y thoả mãn điều kiện x+y =2 Chứng minh : x2y2(x2+y2) THI VO LP 10 MễN TON Nm hc 2010 2011 (Thi gian: 120 phỳt, khụng k thi gian giao ) Bài 1(2,5 điểm): Cho biểu thức P = + x a) Rút gọn P b) Tính GT P x=4 x x : x + x + x 143 Nguyn Kim Phỳc - THCS Quang sn c) Tìm x để P = 13 Bài 2(2,5 điểm): Giải toán cách lập phơng trình Tháng thứ hai tổ sản xuất đợc 900 chi tiết máy.Tháng thứ hai tổ I vợt mức 15%, tổ II vợt mớc 10% so với thảng thứ Vì hai tổ sản xuất đợc 1010 chi tiết máy Hỏi tháng thứ tổ sản xuất đợc chi tiết máy Bai3 (1 điểm): Cho Parabol (P): y= x đờng thẳng (d) có phơng trình y = mx+1 1) C/m đờng thẳng (d) cắt Parabol (P) hai điểm phân biệt với m 2) Gọi A,B hai giao điểm (d) (P) Tính diện tích tam giác OAB theo m( O gốc toạ độ) Bài 4(3,5 điểm): Cho đờng tròn (O) bán kính AB=2R E điểm đờng tròn đó(E khác A,B) Đờng phân giác góc AEB cắt đoạn thẳng AB F cắt đờng tròn (O) điểm thứ hai K khác A 1) C/m hai tam giác KAF KEA đồng dạng 2) Gọi I giao điểm đờng trung trực đoạn EF với OE Chứng minh đờng tròn (I;IE) tiếp xúc (O) E tiếp xúc AB F 3) Gọi M,N lần lợt giao điểm thứ hai AE,BE với đờng tròn (I;IE) C/m MN//AB 4) Gọi P giao điểm NF AK; Q giao điểm MF BK Tìm GTNN chu vi tam giác KPQ theo R E chuyển động (O) Bài 5(0,5 điểm): Tìm GTNN biểu thức A=(x-1)4+(x-3)4+6(x-1)2(x-3)2 THI VO LP 10 MễN TON Nm hc 2010 2011 (Thi gian: 120 phỳt, khụng k thi gian giao ) Bài1: Cho biểu thức P= a) Rút gọn P x x + x +1 x x b) Tìm GT x để P < Bài 2: Giải toán cách lập phơng trình Một ngời xe đạp từ A đến B cách 24km.Khi từ B trở A ngời tăng vận tốc thêm 4km/h so với lúc đi, thời gian thời gian 30 phút Tính vân tốc ngời xe đạp từ A đến B Bài 3: Cho phơng trình x2 +bx+c=0 1) Giải phơng trình b=-3;c=2 2) Tìm b,c để phơng trình có hai nghệm phân biệt tích Bài 4: Cho dờng tròn (O;R) tiếp xúc với đờng thẳng d A.Trên đờng thẳng d lấy điểm H (H khác A) AH[...]... x 1 1 + ) ) y +1 =1 y =1 Ta có: 1 + y 1 x 1 1 0 x 4 x = 0; 1; 2; 3 ; 4 Thay vào ta cócác cặp giá trị (4; 0) và (2 ; 2) thoả mãn Bài 2: a) Đờng thẳng (d) có hệ số góc m và đi qua điểm M(-1 ; -2) Nên phơng trình đờng thẳng (d) là : y = mx + m 2 Hoành độ giao điểm của (d) và (P) là nghiệm của phơng trình: - x2 = mx + m 2 x2 + mx + m 2 = 0 (*) Vì phơng trình (*) có = m 2 4m + 8 = ( m 2 )... + z ) zx + zy + z 2 + xy = 0 ( x + y ) xyz ( x + y + z ) ( x + y )( y + z ) ( z + x ) = 0 Ta có : x8 y8 = (x + y)(x-y)(x2+y2)(x4 + y4)= y9 + z9 = (y + z)(y8 y7z + y6z2 - + z8) z10- x10 = (z + x)(z4 z3x + z2x2 zx3 + x4)(z5 - x5) Vậy M = 3 3 + (x + y)(y + z) (z + x) A = 4 4 ễN THI VO LP 10 S 9 Bi 1(2 im): 1 1 x2 1 Cho biu thc K = ữì x 1 x + 1 x2 x + 1 a) Tỡm iu kin ca x biu thc... 2 A = ; x 0; x 1 x+2 x+22 vi x 0 2 1 vi x 0 x+2 2 1 vi x 0 x+2 Kt lun giỏ tr nh nht ca A l -1 ti x = 0 Bi 2 (1.0 im ) A = 0.50 0.25 0.25 1 x 5 3 = 10 x 3x + 2 2 x 1 x 5 3 + = K: ( x 1)( x 2) x 2 10 Gii phng trỡnh : 2 x 1; x 2 10 + 10 ( x 5 ) ( x 1 ) = 3 ( x 1 ) ( x 2 ) 7x2 51x + 54 = 0 9 Gii ra c x = 6 ; x = 7 9 x = 6 ; x = ( tha món iu kin) v kt lun nghim 7 Bi 3 (1.5 im ) Cho... B ) Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với đờng tròn (O), gọi M là điểm chính giữa của cung nhỏ AC Tia BC cắt Ax tại Q , tia AM cắt BC tại N a) Chứng minh các tam giác BAN và MCN cân b) Khi MB = MQ , tính BC theo R 1 1 1 1 + + = Bài 5: Cho x, y, z R thỏa mãn: x y z x+ y+z 3 Hãy tính giá trị của biểu thức : M = + (x8 y8)(y9 + z9)(z10 x10) 4 HƯớNG DẫN 8 Bài 1: a) Điều... H di chuyn trờn Cung BC ca ng trũn ngoi tip ABCD (c 2 im B v C ) ễN THI VO LP 10 S 7 Bi 1 ( 2.0 im ) Cõu 1 ( 0.75) : Rỳt gn: 3 2 32 + Cõu 2 ( 1.25 ) : Cho biu thc : a Rỳt gn A b Tỡm giỏ tr nh nht ca Bi 2 (1.0 im ) (1 2 ) 2 x +1 A = x 1 1 x+2 : x + 1 1 x ; x 1; x 0 A 26 Nguyn Kim Phỳc - THCS Quang sn 1 x5 3 = 10 x 2 3x + 2 2 x 1 2 Cho hm s y = x 2 Gii phng trỡnh : Bi 3 (1.5 im... x y ) 2 + ( y z ) 2 + ( z x) 2 = 0 ( x y ) 2 = 0 x = y ( y z ) 2 = 0 y = z x= y = z ( z x ) 2 = 0 z = x Thay vào (1) => x = y = z = 3 Ta thấy x = y = z = 3 thõa mãn hệ phơng trình Vậy hệ phơng trình có nghiệm duy nhất x = y = z = 3 Bài 4: Q a) Xét ABM và NBM Ta có: AB là đờng kính của đờng tròn (O) nên :AMB = NMB = 90o M là điểm chính giữa của cung nhỏ AC N nên ABM = MBN => BAM =... minh gúc SEM l gúc tự, suy ra SM>SE ; v cú SE = SB suy ra SM > SB 1.00 ễN THI VO LP 10 S 8 Bài 1: Cho biểu thức: P= x y ( ) ( xy )( ) ( x + y )(1 y ) x + y) x +1 x + 1 1 y a) Tìm điều kiện của x và y để P xác định Rút gọn P b) Tìm x,y nguyên thỏa mãn phơng trình P = 2 Bài 2: Cho parabol (P) : y = -x2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) a) Chứng minh rằng với mọi giá trị của... 23 Nguyn Kim Phỳc - THCS Quang sn 1 1 1 1 3 + 3 + ữvi x > 2 x 2x 3 4x 3 5x 6 Du = xy ra x = 2x 3 x = 3 Vy phng trỡnh cú nghim duy nht x = 3 0.25 24 Nguyn Kim Phỳc - THCS Quang sn ễN THI VO LP 10 S 6 Cõu 1(2,5): Cho Biu Thc : A=( + ):( - ) + a, Rỳt gn bt A b, Tớnh giỏ tr ca A khi x = 7 + 4 c , Vi giỏ tr no ca x thỡ A t Min ? Cõu 2 (2): Cho phng trỡnh bc hai : x2 - 2(m + 1) x + m - 4 =... Quang sn Mt khỏc b < a, c < a a + b+ c < 3a 1 1 > a + b + c 3a a a 1 > = (3) a + b + c 3a 3 T (1); (2); (3) ta cú: 1 r 1 < < 3 R 2 *Ghi chỳ: Cõu 4d l cõu nõng cao, ch ỏp dng cho trng chuyờn ễN THI VO LP 10 S 4 Bi 1: 13 Nguyn Kim Phỳc - THCS Quang sn x x + 1 x 1 x vi x > 0 v x 1 : x + Cho biu thcA = x 1 x 1 x 1 a) Rỳt gn A b) Tỡm giỏ tr ca x A = 3 Bi 2: 3x + 2 y = 5 a Gii h... mx + m 2 x2 + mx + m 2 = 0 (*) Vì phơng trình (*) có = m 2 4m + 8 = ( m 2 ) 2 + 4 > 0 m nên phơng trình (*) luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A và B b) A và B nằm về hai phía của trục tung phơng trình : x2 + mx + m 2 = 0 có hai nghiệm trái dấu m 2 < 0 m < 2 x + y + z = 9 (1) 1 1 1 Bài 3 : + + = 1 ( 2) x y z xy + yz + xz = 27 ( 3) ĐKXĐ ... < 600) Theo gi thit ta cú phng trỡnh x + y = 600 S sn phm tng ca t I l: S sn phm tng ca t II l: x (sn phm) 100 21 y ( sn phm) 100 T ú cú phng trỡnh th hai: 18 21 x+ y = 120 100 100 Nguyn Kim Phỳc... 2 010 3x y = 2 010 y = 2007 x = 2008 Vy vi m = h phng trỡnh ó cho cú nghim y = 2007 b mx y = y = mx x y = 335 y = x 100 5 2 (*) H phng trỡnh vụ nghim (*) vụ nghim m = (vỡ ó cú 100 5)... nht ca A l -1 ti x = Bi (1.0 im ) A = 0.50 0.25 0.25 x = 10 x 3x + 2 x x + = K: ( x 1)( x 2) x 10 Gii phng trỡnh : x 1; x 10 + 10 ( x ) ( x ) = ( x ) ( x ) 7x2 51x + 54 = Gii c x