1. Trang chủ
  2. » Giáo án - Bài giảng

PT BPT HỆ MŨ VÀ LÔGARIT

8 399 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 651,5 KB

Nội dung

dao thi bich lien - thpt yen lac x +1 x+4 bI TP PHNG TRèNH M x+2 24) 2+ x + 32 x = 30 1) + = + 2) x +8 4.3 x +5 + 27 = 25) x + + x = x +1 26) x = 32 x + 2.5 x + 2.3 x 2 2 27) x x = x x + 2 x x x 28) = 10 x x 29) + + 16 = x +3 x 3) 4.3 x 9.2 x = 5.6 4) 8.3 x + 3.2 x = 24 + x 72x x 5) = 6.( 0.7 ) + x 100 6) 125 x + 50 x = x +1 7) x + x.3 x + 31+ x = x x + x + 9) x +1 + x x + x = 750 10) 7.3 x +1 x + = x + x +3 11) 6.4 x 13.6 x + 6.9 x = 12) x +1 3.5 x = 110 13) 7.3 x +1 x + = x + x +3 1 ( ( x ) ( ( + 16) + + 2 17) 2 x = x +3 x x x ( ) x+2 ) x x = =0 x 31) + ( ) lo2 x ) x + x log x = 1+ x2 ) 32) x x + x = x + x 33) x log2 = x 3log x x log2 x 34) x.8 x + = 35) 2.x log x + x log8 x = 36) x + x log = x log 37) ( x ) log2 ( x ) = 4( x ) x x +1 ( 30) 3.16 + 2.81 = 2.36 14) 6.9 x 13.6 x +6 + 6.4 x = 15) + ) x 101 10 ( ) 38) lg10 x lg x = 2.3lg100 x x x x 1 39) + x = x + 6 40) 5.3 x 7.3 x + 6.3 x + x +1 = 18) x x + = x + 32 x 19) x + log x = x 20) x + 16 = 10.2 x 2 21) 2 x +1 9.2 x + x + 2 x + = 12 3x x 22) 6.2 3( x 1) + x = 2 41) log2 x x log2 = 2.3log2 x 42) x x x = ( x 1) 43) x + 9.5 x = x + 9.7 x x 23) + = x PHNG TRèNH LễGARIT 1) log ( x + 3) log ( x 1) = log 2) lg + lg( x + 10 ) = lg( 21x 20 ) lg( x 1) 1 3) lg x lg x = lg x + lg x + 2 4) log x log x + = =0 10) log x + log x = log log 225 = + log ( x + 1) 11) log ( x 1) + log x +3 9) log x log x + ( 6) log (4 x ) ( ) ( ) x x +1 12) log + = x log x2 ( ) log x + log =8 5) 2 ) 13) log x + log x = + log x log x ( log x = ) ( ) ( 14) log x x log x + x = log 20 x x 1 ) dao thi bich lien - thpt yen lac 7) log x x + log x x = log x x [ 16) log ( 2 8) log log x = x 37) log 17) log x x + 40 log x x 14 log16 x x = 38) log 2+ x 18) log ( x ) log x log = 3 19) lg( lg x ) + lg lg x = 20) log ( x + 1) + log ( x + 1) = [ ( ) ] 21) log ( + log x ( ( 26) log 2+ (x ) 27) log x = log x log [ (x ] ) ) ( ) ) ( ) ) ( ) ( ) ) ( ) 25 49) ( x + ) log ( x + 1) + 4( x + 1) log ( x + 1) 16 = 3 50) log ( x + ) = log ( x ) + log ( x + ) 4 ) ( ( = 1+ x2 48) log x + + log = log ( x + 2) log ( x ) x3 log log x log = + log x 51) 3 x 2 52) log x +7 + 12 x + x + log x +5 x + 23 x + 21 = ( ) ) log x ) ( ( ( 2x ) ( ( ) ) 2 2 53) x log x x x log x x = x + x 54) log x log x = log x + log x x 55) log x + x log ( x + 3) = + log ( x + 3) log x 34) log 22 x + ( x 1) log x + x = 35) log x + x + + log x + x + 12 = + log x x +1 36) log 5 log 25 = ( ( ) ) ) x2 +1 x = 2 47) log12 x x x + log13 x x x + = 28) log x log 3x = 29) lg( x + 10) + lg x = lg log ( x +1) 30) x = log x + log x 31) ( x + 3) log ( x + ) + 4( x + ) log ( x + ) = 16 32) log ( x +3 ) x + x = 2 log 36 + log 81 = log x x 15 33) log ( ( + x 2 ( 44) log x + log x = log log 225 45) log ( x + 8) log ( x + 26 ) + = 46) x log x 27 log x = x + 2x +1 ( log x 16 3= x = log 2+ 43) log x + log x + log x = ) ) ) x + + x + log 42) log x x log x + x = log x x 2 x log x 3 + log ( ) 41) log ( x + 1) + ( x 5) log ( x + 1) x + = 3 23) log x + + log x = x x 24) x + lg x x = + lg( x + ) ) x + x = log x ) ( 22) log x x log x = 12 25) log ( 40) x lg x + + x lg x + = ) ( ( 39) + x + x = log x ) + x = log 2 x + 12 x 2 3 ] x +1 x 15) log x 4.3 = x + ) dao thi bich lien - thpt yen lac BT PHNG TRèNH M x 1) + 2) 16 loga x + 3.x loga x 3) ( ) +1 x2 + x + 2x 2 + x +1 ( ) < x2 + x 4) x 8.3 x + x + 9.9 x + > 5) x + x x ( 16) ) 9) 21 2 x +1 x x +3 20) x +20 ( ) ) 3) log ( ) ( ) x + ) ( x ) ( 8) log x + log x ) ( ) log( x ) ( x 1) + x x ( log x x + log ) ( 19) log x log x < log x log x 20) log x 2( + log x ) > log x ( ) ( x x 21) log + > log + ) x + 8x x + x 10) x 16 x + log ( x 3) 11) log x x + + log x > log ( x 3) 3 x x + + log ( log x x ) ) 2 ( x x +1 18) log x > log x 7) x + log x x + > ( x + 1) log ( x ) 9) ) 16) log x + < log ( x ) + log ( x + 2) > 17) 2x +1 x 6x 3 32 x 6) log x log + log < log x x 2 5) log x3 52 log x log x > 2 x5 15) log ( x ) log x + x + + > log 3 x + x + 4) ( 14) x x 2) log 2 + + log + 2 BT PHNG TRèNH LễGARIT log x x + x 2 x + x + 12 1) ) 21) 12 52 x ( 6) x +1 2 x +1 12 < 7) x +1 16 x < log ( x 1) 17) 25 x x +1 + x x +1 34.15 x x 18) ( log5 x ) + x log5 x 10 x 8) x 2( x 1) + 13) 6.9 z x 13.6 x x + 6.4 x x 14) x x + x > x.3 x x 3x + x x 15) x + x x + 31+ x < 2.3 x x + x + 2 + log 32 x >1 22) + log x 23) log x log x > log 35 x >3 24) log ( x ) ( 2x 12) log 25) log x x + log ( x + 1) 35) ( log x ) 3 x + 6x + < log ( x + 1) 26) log 2( x + 1) 36) 18 x 27) log 18 log x 28) log x log < log ( x 1) + log ( x + 1) + log ( x ) < 29) 37) ( x [ ) )] ( 3x 31) log log 16 4 32 x 32) log x log + log < log x x 2 ) 33) log x x + + log 34) ( ) ( x 3x 2 ) ( ) log 22 x + log x > log x ( log ( x 1) > log 1 x 2 ( 43) x > log ( x + 3) log x x + 11 log11 x + 11 2 ) 39) log x log x > 2 log ( x + 1) log ( x + 1) 40) >0 x 3x lg x x + >2 41) lg x + lg 42) log x 64 + log x 16 3 ( log x 38) log x x +1 x x < 30) log x x ( x ) > x ) ( ) ( log x + x + + > log 2 x + x + ( ) ) 44) x + log x x + > ( x + 1) log ( x ) >0 45) log ( x+ x ) log x +1 log ( x 1) 46) log 25 ( x 1) log 2x 1 H PHNG TRèNH M LễGA I H phng trỡnh m + = 12 1) x + y = xy + xy = 32 2) log ( x y ) = log ( x + y ) x 1y 2y = 3) x + y = 2x x y x y 4) xy = 2 lg x + lg y = y log y x = + y 5) log x xy = log y x x = y y 6) x + x +1 =y x +2 x +1 + y = 3.2 y +3 x 7) x + xy + = x + II.H phng trỡnh lụgarit log xy y.x = x2 9) log y log y ( y x ) = 3lg x = lg y 10) ( x ) lg = ( y ) lg 3.2 x 2.3 y = 11) x +1 y +1 = 19 x y x + y = 12) x y = 5.3 x y dao thi bich lien - thpt yen lac x y = ( log y log x )( + xy ) 1) 3 x + y = 16 lg x + y = + lg 2) lg ( x + y ) lg ( x y ) = lg log x + log y = + log 3) log ( x + y ) = 2( log y x + log x y ) = 4) xy = log ( log x ) = log ( log y ) 5) log ( log x ) = log ( log x ) x + xy + y = 14 6) log ( x +1) ( y + 2) log y + ( x + 1) = log x ( x + y ) + log y ( y + x ) = 7) log x ( x + y ) log y ( y + x ) = log x log y = 8) log x log y = ( ) x y = ( log y log x )( + xy ) 1) 3 x + y = 16 ( ) lg x + y = + lg 2) lg ( x + y ) lg ( x y ) = lg log x + log y = + log 3) log ( x + y ) = 2( log y x + log x y ) = 4) xy = log ( log x ) = log ( log y ) 5) log ( log x ) = log ( log x ) x + xy + y = 14 6) log ( x +1) ( y + 2) log y + ( x + 1) = log x ( x + y ) + log y ( y + x ) = 7) log x ( x + y ) log y ( y + x ) = log x log y = 8) log x log y = lg x = lg y + lg ( xy ) 9) lg ( x y ) + lg x lg y = ( ) log1 x ( xy x + y + ) + log 2+ y x x + = 10) log1 x ( y + 5) log 2+ y ( x + ) = log x + y log ( x ) + = log ( x + y ) 11) x log ( xy + 1) log 4 y + y x + = log y log3 ( xy ) = + ( xy ) log3 12) x + y x y = 12 x + log y = 13) x y y + 12 = 81 y ( ) ( ( ) ) log xy = x 14) log y = log3 x + log3 y = + log3 15 x + y = lg x = lg y + lg ( xy ) 9) lg ( x y ) + lg x lg y = log1 x ( xy x + y + ) + log 2+ y x x + = 10) log1 x ( y + 5) log 2+ y ( x + ) = log x + y log ( x ) + = log ( x + y ) 11) x log ( xy + 1) log 4 y + y x + = log y log log ( xy ) = + ( xy ) 12) x + y x y = 12 ( ( ) ) ( x + log y = 13) x y y + 12 = 81 y log xy = x 14) log y = log3 x + log3 y = + log3 15 x + y = ( ) ) dao thi bich lien - thpt yen lac (A07) 1) 2) 3) 4) 5) log (4 x 3) + log (2 x + 3) x+3 + log ( x + x + 4) > log x (D206) 2(log x + 1) log x + log = log x + 2log 0,25 ( x 1) + log (B203) 0,5 log x - + log x + + log = (x>2 x < ) (D305) log ( x=2 x= ẳ) (x 3) ổ ỗ ỗ ỗx ẻ ỗ ố log ( x + 2) + log ( x - 5) + log = 8) ùỡù - 17 ùỹ ữ ùýữ ữ - 6;3; ữ ùù ùù ứ ợ ỵữ ổ 17 ữ ỗ ữ ỗ x = 6; x = ữ ỗ ỗ ữ ố ứ 7) 9) 1 log ( x + 3) + log ( x 1)8 = log (4 x) log ( x + 3) - log x - - log3 4 x2 ( -10 < x < ) (x 4) 10) (A104) log [log ( x + x x )] < (x >1 x< - 4) 11) (B204) log x > log x 2 12) (D03) x x 22 + x x = 13) (D2.05) x 2 x 2. ( x>3 1/3 ... x 2 log x (0 < x x4) 28) (A203) 15.2 x +1 + x + x +1 (x 2) 29) (D103) f(x)= x log x Gii bpt f (x)0 30) (B3-03) 3x + x = x + 31) x log = x 3log x x log 32) x log + 4log5 x = x (0 < x ... x = log x ) + x = log 2 x + 12 x 2 3 ] x +1 x 15) log x 4.3 = x + ) dao thi bich lien - thpt yen lac BT PHNG TRèNH M x 1) + 2) 16 loga x + 3.x loga x 3) ( ) +1 x2 + x + 2x 2 + x +1 (... 24) log ( x ) ( 2x 12) log 25) log x x + log ( x + 1) 35) ( log x ) 3 x + 6x + < log ( x + 1) 26) log 2( x

Ngày đăng: 31/10/2015, 07:03

TỪ KHÓA LIÊN QUAN

w