1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Econometrics – lecture 5 – assumptions

20 189 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 186,13 KB

Nội dung

HIGH COLINEARITY- EXAMPLEvariables is high?... HIGH COLINEARITY- CONSEQUENCE small tob => less chance to reject H0 only a problem if consequences are serious... HIGH COLINEARITY- SYMPTO

Trang 1

WHAT IF ASSUMPTIONS ARE

INVALID?

Dr Tu Thuy Anh

Faculty of International Economics

Chapter 5, 6 (selected) - S&W

Trang 2

BASIC ASSUMPTIONS

1 E(ui) = 0

2 Var(ui) = σ2

3 cov(ui, uj) = 0 for i #j

4 ui~ N(0, σ2)

vars

Trang 3

Assumptions

Trang 4

HIGH COLINEARITY- EXAMPLE

variables is high?

Trang 5

HIGH COLINEARITY- CONSEQUENCE

 small tob => less chance to reject H0

only a problem if consequences are serious

Trang 6

HIGH COLINEARITY- SYMPTOMS

Variable Coefficient Std Error t-Statistic Prob

C 1207.06 1575.06 0.77 0.45

P -146.90 479.15 -0.31 0.76

Wrong sign

R 2 =0.91

R2 large, but few significant

Trang 7

HIGH COLINEARITY- DETECTION

 If R2 is large?

 if VIF>10? VIF = 1/(1-R2))

Variable Coefficient Std Error t-Statistic Prob

Dependent variable: P

Trang 8

HIGH COLINEARITY- CAUSE/ CURE

growth

Trang 9

NORMALITY- CONSEQUENCES

 ui~ N(0, σ2)

estimates are still unbiased, but we will not be able to assess which parameters are

significant

distribution

F distribution

Trang 10

10

Trang 11

NORMALITY- DETECTION

The Jarque-Bera test:

where S and K are the sample Skewness and

Kurtosis statistics

The JB test has an asymptotic chi-square

distribution with two degrees of freedom

Trang 12

NORMALITY- CAUSE/CURE

even that u (hence Y) does not come from a

normal distribution, the parameters estimates will be asymptotically normal and consequently

we will be able to perform the usual inference

achieve normality in the parameter estimates?

can be not enough in some situations

only on N, but also on N-K, the degrees of

freedom

12

Trang 13

HETEROSCEDASTICITY- CONSEQUENCES

i

 => Confidence Intervals are invalid

 => Invalid t, F test

ˆ var(a j)

Need to be cured

Trang 14

HETEROSCEDASTICITY- DETECTION

 H0 : Var(ui) = σ2 for all i

 If

u X

X X

X X

X

e2  1  2 2  3 3  4 22  5 32  6 2 3 

) 1 (

) 1

2

Reject H0

=> R 2 (1)

2 2

( (1)) / ( 1)

( 1, ) (1 (1)) / ( )

k: n0 of coeffs in model 1

Trang 15

HETEROSCEDASTICITY- CAUSE/CURE

 etc

software

of heteroscedasticity

i = aK2

i

Trang 16

AUTOCORRELATION

 If the assumption does not hold: cov(ui; uj) # 0

for i # j

 Form of autocorrelation:

 ut = ρut-1 + vt =>AR(1);

 v(t): random error, satisfies assumptions 1-4

 If ρ >0: positive autocorrelation

 If ρ <0: negative autocorrelation

 If ρ =0: no autocorrelation

 ut = ρ1ut-1 + + ρput-p+ vt => AR(p)

Trang 17

AUTOCORRELATION -CONSEQUENCES

 Biased estimation of => invalid

Confidence Interval

ˆ var(a j)

2

ˆ

NEED TO BE CURED

Trang 18

AUTOCORRELATION - DETECTION

 Durbin Watson test, can be used in situations:

 AR (1)

 No lag value of the dependent variable in the model

 No missing observation

NO CONCLUSION

Trang 19

AUTOCORRELATION - DETECTION

 B-G test:

et = a1 + a2 Xt + ρ1et-1+ + ρp et-p +vt => R2(1)

et = a1 + a2 Xt + vt => R2(2) If:

) ( )

1

2

p

2

( (1) (2))/

or

Autocorrelation of order p

Trang 20

AUTOCORRELATION - CURE

 AR(1): ut = ρut-1 +vt

 Set:

Ngày đăng: 30/10/2015, 14:35

TỪ KHÓA LIÊN QUAN

w