Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 38 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
38
Dung lượng
861,97 KB
Nội dung
TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA VẬT LÝ
PHẠM DIỆU LINH
CÁC QUÁ TRÌNH PHÂN RÃ TRONG MÔ HÌNH
CHUẨN MỞ RỘNG CÓ TÍNH ĐẾN U - HẠT
KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC
Chuyên ngành: Vật lý lý thuyết
Người hướng dẫn khoa học
GS.TS. HÀ HUY BẰNG
Hà Nội - 2015
LỜI CẢM ƠN
Sau một thời gian nghiên cứu, tôi đã hoàn thành khóa luận Tốt
nghiệp với đề tài “Các quá trình phân rã trong mô hình chuẩn mở rộng có
tính đến u - hạt”.
Tôi xin được bày tỏ lòng biết ơn sâu sắc và lời cảm ơn chân thành
đến GS.TS. Hà Huy Bằng đã hướng dẫn và chỉ bảo tôi tận tình trong suốt
quá trình nghiên cứu để hoàn thành khóa luận.
Tôi xin chân thành cảm ơn các thầy giáo, cô giáo trong tổ Vật Lý lý
thuyết, khoa Vật Lý trường ĐH Sư Phạm Hà Nội 2 đã giúp đỡ tôi trong quá
trình học tập tại khoa.
Đồng thời tôi cũng gửi lời cảm ơn tới gia đình, bạn bè đã luôn bên tôi,
giúp đỡ, động viên tôi trong suốt quá trình học tập và hoàn thành khóa
luận.
Tôi xin chân thành cảm ơn.
Hà Nội, ngày 05 tháng 05 năm 2015
Sinh viên
Phạm Diệu Linh
LỜI CAM ĐOAN
Khóa luận tốt nghiệp “ Các quá trình phân rã trong mô hình chuẩn mở
rộng có tính đến u - hạt” được hoàn thành với sự nỗ lực của bản thân tôi và
sự hướng dẫn tận tình của GS.TS. Hà Huy Bằng.
Trong khi nghiên cứu và hoàn thành khóa luận tôi có tham khảo một
số tài liệu.
Tôi xin cam đoan kết quả của đề tài “Các quá trình phân rã trong mô
hình chuẩn mở rộng có tính đến u - hạt ” không lặp lại với kết quả của đề
tài khác.
Hà Nội, ngày 05 tháng 05 năm 2015
Sinh viên
Phạm Diệu Linh
MỤC LỤC
LỜI NÓI ĐẦU .............................................................................................. 1
CHƯƠNG I: MÔ HÌNH CHUẨN VÀ SỰ MỞ RỘNG ............................... 3
1.1. Mô hình chuẩn........................................................................................ 3
1.2. Mô hình chuẩn mở rộng khi tính đến siêu đối xứng và u-hạt ................ 8
CHƯƠNG 2: VẬT LÝ U-HẠT .................................................................. 11
2.1 Giới thiệu về u-hạt................................................................................. 11
2.2. Hàm truyền của u-hạt ........................................................................... 13
2.3. Lagrangian và đỉnh tương tác của các loại u-hạt với các hạt trong mô
hình chuẩn ................................................................................................... 13
CHƯƠNG 3: ĐỘ RỘNG PHÂN RÃ CỦA MỘT SỐ QUÁ TRÌNH
TRONG MÔ HÌNH CHUẨN MỞ RỘNG CÓ TÍNH ĐẾN U – HẠT ....... 15
3.1. Quá trình rã
v 2 v1 v1 v1 .................................................... 15
3.2. Quá trình rã e e e ……………………………………….....24
KẾT LUẬN ................................................................................................. 33
TÀI LIỆU THAM KHẢO. .......................................................................... 34
LỜI NÓI ĐẦU
1. Lý do chọn đề tài:
Vật lí hạt là một nhánh của vật lí, nghiên cứu các thành phần hạ
nguyên tử cơ bản, bức xạ và các tương tác của chúng. Lĩnh vực này cũng
được gọi là vật lí năng lượng cao.Cho đến nay người ta biết rằng giữa các
hạt cơ bản tồn tại 4 loại tương tác: tương tác mạnh, tương tác yếu, tương
tác điện từ, tương tác hấp dẫn. Xây dựng lý thuyết các tương tác là nội
dung chính của vật lý hạt cơ bản.
Các nhà Vật Lý đã đưa ra mô hình chuẩn kết hợp điện động lực học
lượng tử (QED) và lý thuyết trường lượng tử cho tương tác mạnh (QCD) để
tạo thành lý thuyết mô tả các hạt cơ bản và 3 trong 4 loại tương tác: tương
tác mạnh, yếu và điện từ là nhờ trao đổi các hạt gluon, năng lượng và Z
boson, photon.
Tuy nhiên, bên cạnh những thành công nổi bật, mẫu chuẩn còn có một
số hạn chế như chưa giải thích được các quá trình vật lý xảy ra ở vùng năng
lượng cao hơn 200GeV và một số vấn đề cơ bản của bản thân mô hình
như:lý thuyết chứa quá nhiều tham số và chưa giải thích được tại sao điện
tích các hạt lại lượng tử hóa. Đây chính là các lý do mà các nhà vật lí hạt
tin rằng đây chưa phải là lý thuyết hoàn chỉnh để mô tả thế giới tự nhiên.
Để khắc phục các khó khăn, hạn chế của SM, các nhà vật lí lý thuyết
đã xây dựng khá nhiều lý thuyết mở rộng hơn như: lý thuyết thống nhất
(Grand unified theory - GU), siêu đối xứng (supersymmtry), lý thuyết dây
(string theory), sắc kỹ (techcolor), lý thuyết Preon, lý thuyết Acceleron và
gần đây nhất là u – hạt. Các nhà vật lí lý thuyết giả thuyết rằng phải có một
loại hạt nào đó mà không phải là hạt vì nó không có khối lượng nhưng lại
để lại dấu vết đó chính là những sai khác giữa lý thuyết và thực nghiệm.
Nói cách khác hạt phải được hiểu theo nghĩa phi truyền thống, hay còn gọi
là unparticle physics (u – hạt).
1
Các quá trình tương tác thông dụng có tính đến sự tham gia của u –
hạt như: Các quá trình rã, tán xạ Bhabha , tán xạ Moller , …
Lý thuyết trước đây đã tính đến tiết diện tán xạ, độ rộng phân rã, thời
gian sống khi mà chỉ tính theo: , , Z ,W ,W , g , g , tức là tính trong mô
hình chuẩn. Và thực nghiệm đã đo được các thông số này. Từ đó khi so
sánh kết quả giữa lý thuyết và thực nghiệm đo được là khác nhau, điều này
chứng tỏ giả thuyết đưa ra chưa hoàn chỉnh cho thực nghiệm. Chính vì vậy
tôi chọn đề tài: “Các quá trình phân rã trong mô hình chuẩn mở rộng có
tính đến u – hạt” để làm khóa luận Tốt nghiệp của mình với mong muốn
tìm hiểu và đóng góp vào việc hoàn thiện mô hình chuẩn mở rộng khi tính
đến u – hạt qua việc tính được độ rộng phân rã của một số quá trình.
2. Mục đích nghiên cứu:
Nghiên cứu các quá trình phân rã trong mô hình chuẩn mở rộng có
tính đến u – hạt.
3. Nhiệm vụ nghiên cứu:
Tổng hợp kiến thức về quá trình phần rã trong mô hình chuẩn mở
rộng.
Tính toán độ rộng phân rã của hạt khi có tính đến u – hạt.
4. Đối tượng nghiên cứu:
Quá trình phân rã trong mô hình chuẩn mở rộng.
5. Phương pháp nghiên cứu:
Phương pháp Vật Lý lý thuyết và phương pháp toán học.
7. Bản luận văn bao gồm các phần như sau:
Chương 1: Mô hình chuẩn và sự mở rộng
Chương 2: Vật lý u - hạt
Chương 3: Độ rộng phân rã của một số quá trình trong mô hình chuẩn
mở rộng có tính đến u – hạt.
2
CHƯƠNG I: MÔ HÌNH CHUẨN VÀ SỰ MỞ RỘNG
1.1. Mô hình chuẩn
Trong vật lý hạt tương tác cơ bản nhất- tương tác điện yếu- được mô
tả bởi lý thuyết Glashow-Weinberg-Salam(GWS) và tương tác mạnh được
mô tả bởi lý thuyết QCD.GWS và QCD là những lý thuyết chuẩn cơ bản
dựa trên nhóm SU (2) L U Y (1) và SU (3) C ở đây L chỉ phân cực trái, Y là siêu
tích yếu và C là tích màu. Lý thuyết trường chuẩn là bất biến dưới phép
biến đổi cục bộ và yêu cầu tồn tại các trường chuẩn vector thực hiện biểu
diễn phó chính qui của nhóm. Vì vậy, trong trường hợp này chúng ta có:
1. Ba trường chuẩn W1 , W 2 , W 3 của SU (2) L
2. Một trường chuẩn B của U (1)Y
3. Tám trường chuẩn Ga của SU (3) C
Lagrangian của mô hình chuẩn bất biến dưới phép biến đổi Lorentz,
biến đổi nhóm và thỏa mãn yêu cầu tái chuẩn hóa được. Lagrangian toàn
phần của mô hình chuẩn là:
L Lgause L fermion LHiggs LYukawa
Trong đó:
L fermion il L D l L i q L D q L iu R D q R i d R D q R ie R D eR
Với
iD i gI iWi g '
Y
B g s T a G
2
3
Ở đây ma trận T a là vi tử của phép biến đổi và Ta , là ma trận
Pauli, g và g’ tương ứng là hằng số liên kết của các nhóm SU (2) L và U (1)Y ,
g s là hằng số liên kết mạnh. Lagrangian tương tác cho trường gause là:
Lgause =
1
4
1
4
1
4
- Wi Wi B B G a Wa
Trong đó
Wi = Wi Wvi g ijkWjWvk
B = B Bv
a
G
= Ga Gva g s f abc Gb Gvc
Với ijk , f abc là các hằng số cấu trúc nhóm SU (2), SU (3) . Nếu đối xứng
không bị phá vỡ, tất cả các hạt đều không có khối lượng. Để phát sinh khối
lượng cho các boson chuẩn và fermion thì ta phải sử dụng cơ chế phá vỡ
đối xứng tự phát sao cho tính tái chuẩn hóa của lý thuyết được giữ nguyên.
Cơ chế này đòi hỏi sự tồn tại của môi trường vô hướng (spin 0) gọi là
trường Higgs với thế năng V ( ) 2 | | 2 / 4 | | 2 . Với sự lựa chọn và
| | 2 là thực và không âm, các trường Higgs tự tương tác dẫn đến một giá trị
kì vọng chân không hữu hạn phá vỡ đối xứng SU (2) L U (1)Y . Và tất
cả các trường tương tác với trường Higgs sẽ nhận được khối lượng.
Trường vô hướng Higgs biến đổi như lưỡng tuyến của nhóm SU (2) L
mang siêu tích và không có màu. Lagrangian của trường Higgs và tương
tác Yukawa gồm thế năng V Higgs , tương tác Higgs-bosson chuẩn sinh ta do
đạo hàm hiệp biến và tương tác Yukawa giữa Higgs-fermion.
~
LHiggs LYukawa | D | ( y d q L d Ra yu u L u R y e l L eR h.c) V ( )
2
4
~
với y d , yu , ye là các ma trận 3 3 . là phản lưỡng tuyến của . sinh
~
khối lượng cho các down-type quark và lepton, trong khi sinh khối lượng
cho các up-type fermion.
Trong khi lagrangian bất biến dưới đối xứng chuẩn, thành phần trung
hòa của lưỡng tuyến Higgs có trị trung bình chân không
0
sẽ phá vỡ đối xứng SU (2) L U (1)Y thành U (1) EM thông
/ 2
< >=
qua < >. Khi đối xứng toàn cục bị phá vỡ, trong lý thuyết sẽ xuất hiện các
Goldstone boson này biến mất trở thành những thành phần dọc của boson
vector(người ta nói rằng chúng bị các gause boson ăn). Khi đó , 3 bosson
vector W , Z thu được khối lượng là:
M W g / 2
g
MZ
2
g '2 v / 2
Trong khi đó gause boson A (photon) liên quan tới U EM (1) vẫn không
khối lượng như là bắt buộc bởi đối xứng chuẩn.
Khi phá vỡ đối xứng tự phát, tương tác Yukawa sẽ đem lại khối
lượng cho các fermion :
me
1
2
y e ,
mu
1
2
y u ,
md
1
2
y d ,
m 0
Như vậy , tất cả các trường tương tác với trường Higgs đều nhận được
một khối lượng. Tuy nhiên, cho đến nay, boson Higgs vẫn chưa được tìm
thấy ngoài một giá trị giới hạn dưới của khối lượng của nó ở 114.4 GeV
được xác định với độ chính xác 95% từ các thí nghiệm ở LEP. Ngoài ra ,
các dữ liệu thực nghiệm đã chứng tỏ rằng neutrino có khối lượng mặc dù
nó rất bé so với thang khối lượng trong mô hình chuẩn. Mà trong mô hình
5
chuẩn neutrino không có khối lượng và điều này chứng cớ của việc mở
rộng mô hình chuẩn.
Mô hình chuẩn không thể giải thích tất cả các hiện tượng của tương
tác giữa các hạt, đặc biệt là ở thang năng lượng lớn hơn 200GeV và thang
Planck. Tại thang Planck, tương tác hấp dẫn trở nên đáng kể và chúng ta hi
vọng các tương tác chuẩn thống nhất với tương tác hấp dẫn thành một
tương tác duy nhất. Nhưng mô hình chuẩn đã không đề cập đến lực hấp
dẫn. Ngoài ta, mô hình chuẩn cũng còn một số điểm hạn chế sau:
- Mô hình chuẩn không giải thích được các vấn đề liên quan tới số
lượng và cấu trúc của hệ fermion.
- Mô hình chuẩn không giải thích được sự khác nhau về khối lượng
của quark t so với các quark khác.
- Mô hình chuẩn không giải quyết đươc vấn đề strong CP: tại sao
QCD 1010 1?
- Mô hình chuẩn không giải thích được các vấn đề liên quan tới các
quan sát trong vũ trụ học như: bất đối xứng baryon, không tiên đoán đượcn
sựu giãn nở của vũ trụ cũng như vấn đề “vật chất tối” không baryon, “năng
lượng tối”, gần bất biến tỉ lệ….
- Năm 2001 đã đo được đọ lệch của moment từ dị thường của muon so
với tính toán lý thuyết của mô hình chuẩn. Điều này có thể là hiệu ứng vật
lý mới dựa trên các mô hình chuẩn mở rộng.
Vì vậy, việc mở rộng mô hình chuẩn là việc làm mang tính thời sự
cao. Trong các mô hình chuẩn mở rộng sẽ tồn tại các hạt mới so với các
tương tác và hiện tượng vật lý mới cho phép ta thu được các số liệu làm cơ
sở chỉ đường cho việc đề ra các thí nghiệm trong tương lai.
Một vấn đề đặt ra là : Phải chăng mô hình chuẩn là một lý thuyết tốt ở
vùng năng lượng thấp và nó được bắt nguồn từ một lý thuyết tổng quát hơn
6
mô hình chuẩn, hay còn gọi là mô hình chuẩn mở rộng. Mô hình mới giải
quyết được những hạn chế của mô hình chuẩn. Các mô hình chuẩn mở tộng
được đánh giá bởi 3 tiêu chí:
- Thứ nhất: Động cơ thúc đẩy việc mở rộng mô hình. Mô hình phải
giải thích hoặc gợi lên những vấn đề mới mẻ về những lĩnh vực mà mô
hình chuẩn chưa giải quyết được.
- Thứ hai: Khả năng kiểm nghiệm của mô hình. Các hạt mới hoặc các
quá trình vật lý mới cần phải được tiên đoán ở vùng năng lượng mà các
máy gia tốc có thể đạt tới.
- Thứ ba: Tính đẹp đẽ và tiết kiệm của mô hình.
Từ mô hình chuẩn có 3 hằng số tương tác tức là chưa thực sự thống
nhất mô tả các tương tác đã dẫn đến việc phát triển thành lý thuyết thống
nhất lớn. Lý thuyết này đã đưa ra một hằng số tương tác g duy nhất ở năng
lượng siêu cao, ở năng lượng thấp g tách thành 3 hằng số biến đổi khác
nhaum Ngoài ra, Quark và lepton thuộc cùng một đa tuyến nên tồn tại một
loại tương tác biến lepton thành quark và ngược lại, do đó vi phạm sự bảo
toàn số bayryon (B) và số lepton (L). Tương tác vi phạm B có thêt đóng vai
trò quan trọng trong việc sinh B ở những thời điểm đầu tiên của vũ trụ. Từ
sự không bảo toàn số L có thể suy ra được neutrino có khối lượng khác
không(khối lượng Majorana), điều này phù hợp với thực nghiệm. Mặc dù
khối lượng của neutrino rất nhỏ (cỡ vài eV) và đóng góp vào khối lượng vũ
trụ cũng rất bé, điều này có thể lien quan đến vấn đề vật chất tối trong vũ
trụ.
GUTs dựa trên các nhóm Lie với biểu diễn được lấp đầy những hạt
với spin cố định. Tuy nhiên, các lý thuyết này chưa thiết lập được quan hệ
giữa các hạt với spin khác nhau, và nó cũng chưa bao gồm cả tương tác hấp
dẫn . Hơn nữa, GUTs cũng chưa giải thích được một số hạn chế của mô
7
hình chuẩn như: Tại sao khối lượng của quark t lại lớn hơn rất nhiều so với
khối lượng của các quark khác và khác xa so với giá trị tiên đoán của lý
thuyết…Vậy lý thuyết này chưa phải là thống nhất hoàn toàn. Vì vậy, sự
mở rộng hiển nhiên của lý thuyết Guts phải được thực hiện theo các hướng
khác nhau, một trong các hướng đó là xây dựng một đối xứng liên quan
giữa các hạt có spin khác nhau. Đối xứng mới này được gọi là siêu đối
xứng (Supersymmetry-SUSY), được đề xuất vào những năm 70. Xa hơn
nữa, SUSY định xứ đã dẫn đến lý thuyết siêu hấp dẫn. Siêu hấp dẫn mở ra
triển vọng thống nhất được cả 4 loại tương tác. Một trong những mô hình
siêu đối xứng được quan tâm nghiên cứu và có nhiều hứa hẹn nhất của mô
hình chuẩn là mô hình chuẩn siêu đối xứng tối thiểu( the Minimal
Supersymmetric Standard Model- SMSM)
1.2. Mô hình chuẩn mở rộng khi tính đến siêu đối xứng và u-hạt
Các lý thuyết thống nhất vĩ đại (GUTs) đã cải thiện được một phần
khó khăn xuất hiện trong mẫu chuẩn bằng cách: xem xét các nhóm gauge
rộng hơn với một hằng số tương tác gauge đơn giản. Cấu trúc đa tuyến cho
một hạt spin đã cho được sắp xếp trong GUTs nhưng trong lý thuyết này
vẫn còn không có đối xứng liên quan đến các hạt với spin khác nhau.
Siêu đối xứng là đối xứng duy nhất đã biết có thể liên hệ các hạt với
spin khác nhau là boson và fermion. Nó chứng tỏ là quan trọng trong nhiều
lĩnh vực phát triển của vật lý lý thuyết ở giai đoạn hiện nay.
Về mặt lý thuyết, siêu đối xứng không bị ràng buộc bởi điều kiện phải
là một đối xứng ở thang điện yếu. Nhưng ở thang năng lượng cao hơn cỡ
một vài TeV, lý thuyết siêu đối xứng có thể giải quyết được một số vấn đề
trong mô hình chuẩn, ví dụ như sau:
- Thống nhất các hằng số tương tác: nếu chúng ta tin vào sự tồn tại của
các lý thuyết thống nhất lớn, chúng ta cũng kì vọng vào sự thống nhất của 3
8
hằng số tương tác tại thang năng lượng cao cỡ O (1016) GeV. Trong SM, 3
hằng số tương tác không thể được thống nhất thành một hằng số tương tác
chung ở vùng năng lượng cao. Trong khi đó, MSSM, phương trình nhóm
tái chuẩn hóa bao gồm đóng góp của các hạt siêu đối xứng dẫn đến sự
thống nhất của 3 hằng số tương tác MGUT 2.1016 GeV nếu thang phá vỡ
đối xứng cỡ TeV hoặc lớn hơn hay nhỏ hơn một bậc.
- Giải quyết một số vấn đề nghiêm trọng trong SM là vấn đề về “ tính
tự nhiên” hay “ thứ bậc”: Cơ chế Higgs dẫn đến sự tồn tại của hạt vô hướng
Higgs có khối lượng tỉ lệ với thang điện yếu W 0(100GeV ) . Các bổ chính
một vòng từ các hạt mà Higgs tương tác trực tiếp hay gián tiếp đã dẫn đến
bổ chính cho khối lượng của Higgs rất lớn, tỉ lệ với bình phương xung
lượng cắt dùng để tái chuẩn hóa các tích phân vòng. Khác với trường hợp
của boson và fermion, khối lượng trần của hạt Higgs lại quá nhẹ mà không
phải ở thang năng lượng cao như phần bổ chính của nó. Trong các lý thuyết
siêu đối xứng, các phân kì như vậy tự động được loại bỏ do các đóng góp
của các hạt siêu đối xứng tương ứng nếu khối lượng của các hạt này không
quá lớn. Vì vậy, chúng ta tin tưởng rằng siêu đối xứng có thể được phát
hiện ở thang năng lượng từ thang điện yếu đến vài TeV.
- Thêm vào đó, siêu đối xứng khi được định xứ hóa bao gồm cả đại số
của lý thuyết tương đối tổng quát và dẫn đến việc xây dựng lý thuyết siêu
hấp dẫn. Do đó siêu đối xứng đem lại khả năng về việc xây dựng một lý
thuyết thống nhất 4 tương tác điện từ, yếu, tương tác mạnh và tương tác
hấp dẫn thành một tương tác cơ bản duy nhất.
Ngoài ra còn có nhiều nguyên nhân về mặt hiện tượng luận làm cho
siêu đối xứng trở nên hấp dẫn. Thứ nhất là, nó hứa hẹn giải quyết vấn đề
hierarchy còn tồn tại trong mẫu chuẩn: hằng số tương tác điện từ là quá nhỏ
so với hằng số Planck. Thứ hai là, trong lý thuyết siêu đối xứng hạt Higgs
9
có thể xuất hiện một cách tự nhiên như là một hạt vô hướng cơ bản và nhẹ.
Phân kỳ bậc hai liên quan đến khối lượng của nó tự động bị loại bỏ bởi
phân kỳ như vậy nảy sinh từ các fermion. Hơn nữa, trong sự mở rộng siêu
đối xứng của mẫu chuẩn, hằng số tương tác Yukawa góp phần tạo nên cơ
chế phá vỡ đối xứng điện từ - yếu.
Trong các mẫu chuẩn siêu đối xứng fermion luôn cặp với boson cho
nên số hạt đã tăng lên. Các tiến bộ về mặt thực nghiệm đối với việc đo
chính xác các hằng số tương tác cho phép ta từng bước kiểm tra lại các mô
hình thống nhất đã có. Hơn mười năm sau giả thuyết về các lý thuyết thống
nhất siêu đối xứng, các số liệu từ LEP đã khẳng định rằng các mô hình siêu
đối xứng cho kết quả rất tốt tại điểm đơn (single point). Tuy nhiên, cho đến
nay người ta chưa phát hiện được hạt nào trong số các bạn đồng hành siêu
đối xứng của các hạt đã biết. Và một trong những nhiệm vụ của LHC là tìm
kiếm các hạt này, trong số đó có gluino, squark, axino, gravitino,…
Trong những năm gần đây, các nhà vật lý rất quan tâm đến việc phát
hiện ra các hạt mới trên máy gia tốc, đặc biệt là LHC. Tuy nhiên, các đặc
tính liên quan đến các hạt này cần phải được chính xác hóa và được hiểu
sâu sắc hơn đặc biệt là thông qua quá trình tán xạ, phân rã có tính đến hiệu
ứng tương tác với chân không cũng như pha vi phạm CP.
Cũng trên quan điểm này người ta đề cập đến nhiều chất liệu không
hạt (unpaticle staff) và kéo theo đó là vật lý không hạt (unparticle physics).
Thực ra, chất liệu không hạt theo định nghĩa bình thường xuất hiện do
sector bất biến tỉ lệ không tầm thường của lý thuyết hiệu dụng ở năng
lượng thấp không thể được mô tả trong thuật ngữ của các hạt.
Thú vị ở chỗ unparticle cũng là ứng cử viên của vật chất tối và lạnh và
có thể tương tác với một số hạt trong SM.
10
CHƯƠNG 2: VẬT LÝ U-HẠT
2.1 Giới thiệu về u-hạt
Trong vật lí lí thuyết, vật lí “u hạt” là lí thuyết giả định vật chất không
thể được giải thích bởi lí thuyết hạt trong mô hình chuẩn (Standard Model)
vì các thành phần của nó là bất biến tỉ lệ.
Đầu năm 2007, Howard Georgi đưa ra lý thuyết u-hạt trong các bài
báo “ Unparticle Physics” và “Another Odd thing about unparticle
physics”. Các bài báo của ông được phát triển thêm qua các nghiên cứu về
tính chất, hiện tượng luận của vật lý u-hạt và ảnh hưởng của nó tới vật lý
hạt, vật lý thiên văn, vũ trụ học, vi phạm CP, vi phạm loại lepton, phân rã
nuon, bức xạ neutrino và siêu đối xứng.
Tất cả các hạt tồn tại trong các trạng thái đặc trưng bởi mức năng
lượng, xung lượng và khối lượng xác định. Trong phần lớn của mô hình
chuẩn của vật lý hạt, các hạt cùng loại ko thể tồn tại trong một trạng thái
khác mà ở đó tất cả các tính chất chỉ hơn kém nhau một hằng số so với các
tính chất ở trạng thái ban đầu. Lấy ví dụ về điện tử, điện tử luôn có cùng
khối lượng bất kể năng lượng hay xung lượng. Tuy nhiên, điều này không
phải lúc nào cũng đúng: các hạt không khối lượng, ví dụ : photon có thể tồn
tại ở các trạng thái mà các tính chất hơn kém nhau một hằng số. Sự ”miễn
nhiễm” đối với phép tỉ lệ được gọi là” bất biến tỉ lệ”.
Ý tưởng về u-hạt xuất phát từ giả thiết rằng vẫn có dạng vật chất tồn
tại mà không nhất thiết khối lượng bằng không vẫn bất biến tỉ lệ, các hiện
tượng vật lý vẫn xảy ra như nhau bất kể sự thay đổi về độ lớn hoặc năng
lượng. Những dạng vật chất này được gọi là u-hạt. Cho đến nay u-hạt chưa
được quan sát thấy, điều đó cho thấy nếu tồn tại nó phải tương tác yếu với
vật chất thông thường tại các mức năng lượng khả kiến. Năm 2009, máy
gia tốc LHC đã hoạt động và cho ra dòng hạt với năng lượng lớn, các nhà
11
vật lý lý thuyết đã bắt đầu tính toán tính chất của u-hạt và xác định nó sẽ
xuất hiện trong LHC như thế nào. Một trong những kì vọng về LHC là nó
có thể cho ra các phát hiện mới giúp chúng ta hoàn thiện bức tranh về các
hạt tạo nên thế giới vật chất và các lực gắn kết chúng với nhau.
U-hạt sẽ phải có các tính chất chung giống với neutrino-hạt không
khối lượng và do đó, gần như là bất biết tỉ lệ. Neutrino rất ít tương tác với
vật chất nên hầu hết các trường hợp, các nhà vật lý chỉ nhận thấy sự có mặt
của nó bằng cách tính toán phần hao hụt năng lượng, xung lượng sau tương
tác. Bằng cách nhiều lần quan sát một tương tác, người ta xây dựng được
“phân bố xác suất” và xác định được có bao nhiêu neutrino và loại neutrino
nào xuất hiện. Chúng tương tác rất yếu với vật chất thông thường ở năng
lượng thấp và hệ số tương tác càng lớn khi năng lượng càng lớn.
Kĩ thuật tương tự cũng có thể dùng để phát hiện u-hạt. Theo tính bất
biến tỉ lệ, một phân bố chứa u-hạt có khả năng quan sát được bởi nó tương
tự với phân bố cho một phần hạt không có khối lượng. Phần bất biến tỉ lệ
này sẽ rất nhỏ so với phần còn lại trong mô hình chuẩn, tuy nhiên, nó sẽ là
bằng chứng cho sự tồn tại của u-hạt. Lý thuyết u-hạt là lý thuyết với năng
lượng cao chứa cả các trường của mô hình chuẩn và các trường BanksZaks, các trường này có tính bất biến tỉ lệ ở vùng hồng ngoại. Hai trường
có thể tương tác thông qua các va chạm của các hạt thông thường nếu năng
lượng hạt đủ lớn. Những va chạm này sẽ có phần năng lương, xung lượng
hao hụt nhưng đo được bằng các thiết bị thực nghiệm. Tương tự như thí
nghiệm phát hiện neutrino, các phân bố riêng biệt của năng lượng hao hụt
sẽ chứng tỏ sự sinh u-hạt. Nếu các dấu hiệu đó không thể quan sát được thì
các giả thiết, mô hình cần phải được xem xét và điều chỉnh lại.
12
2.2. Hàm truyền của u-hạt
Hàm truyền của các u-hạt vô hướng, véc tơ và tensor có dạng
Vô hướng
S
Vecto V
iAdu
iAdu
q
q
2sin du
2sin du
2 du 2
2 du 2
(2.1)
T
Tensor
iAdu
2sin du
q
2 du 2
q g
Với:
T , q
T ,
q q
q2
1
2
q q q q
2
3
1
du
16
2
Adu
2 du
2 du 1 2du
2
Và
Trong các hàm truyền (2.1), q2 có cấu trúc sau đây
q
2 du 2
q 2
du 2
q2
q2
du 2
e idu
du 2
trong kênh s và cho q2 dương
trong kênh t,u và cho q2 âm
2.3. Lagrangian và đỉnh tương tác của các loại u-hạt với các hạt trong
mô hình chuẩn
Tương tác của các u-hạt vô hướng, vector và tensor với các hạt trong
mô hình chuẩn được cho bởi:
0
1
du 1
u
ffOu , 0
1
du 1
u
f i 5 fOu , 0
13
1
G G Ou ,
du
u
1
1
du 1
u
c f fOu , 1
1
du 1
u
ca f 5 fOu ,
1
1
2 du f i D D fOu
,
4 u
2G G Ou
Trong đó 𝝀i (i=0,1,2) là các hằng số tương tác hiệu dụng tương ứng
với các toán tử u-hạt vô hướng, vector và tensor. Cv, Ca tương ứng với hằng
số tương tác vector và vector trục của u-hạt vector. Dµ là đạo hàm hiệp
biến, f là các fermion mô hình chuẩn, Gαβ là trường gluon.
Từ đó ta có các đỉnh hình học tương tác sau đây
Đỉnh tương tác giữa các u hạt vô hướng với các hạt fermion và boson
Hình 1. Đỉnh tương tác giữa các u-hạt vô hướng với các fermion và
boson
Hình 2. Đỉnh tương tác giữa các u-hạt vecto và các hạt fermion
14
CHƯƠNG 3: ĐỘ RỘNG PHÂN RÃ CỦA MỘT SỐ QUÁ TRÌNH
TRONG MÔ HÌNH CHUẨN MỞ RỘNG CÓ TÍNH ĐẾN U – HẠT
Trong chương này, chúng tôi xem xét một số quá trình phân rã trong
mô hình chuẩn mở rộng có tính đến u – hạt.
3.1. Quá trình rã
v 2 v1 v1 v1
Sơ đồ của quá trình:
v2 ( p0 ) v1 ( p1 ) v1 ( p2 ) v1 ( p3 )
Giản đồ Feyman của quá trình v 2 v1 v1 v
Biên độ rã:
M M1 M 2
Trong đó:
cV1 2 cV11 Adu e i u ( p1 ) (1 5 )u ( p0 )u ( p2 ) (1 5 ) ( p3 )
M 1 2 du 2
U
2 sin dU
(q12 ) 22 dU
15
cV 1 2 cV 1 1 Adu e i u ( p 2 ) (1 5 )u ( p0 )u ( p1 ) (1 5 ) ( p3 )
M 2 2 du 2
2 sin d U
U
(q 22 ) 2 2 dU
M1
2
cV 1 2 cV 1 1 Adu e i
1
2 du 2
2 sin d U (q12 ) 2 2 dU
U
2
. u ( p1 ) (1 5 )u ( p0 )u ( p2 ) (1 ) ( p3 )
5
2
, q 2 p0 p 2
Với (dU 2), q1 p0 p1 và
Biên độ M 1 và M 2 đại diện cho sự đóng góp tương ứng từ các giản đồ
2
(a) và (b). Bên cạnh đó chúng ta đã bỏ qua q1 q1 / q1 và q 2 q 2 / q 2
cV 1 2 cV 1 1 Adu e i
1
F
1
Đặt
2 du 2 2 sin d (q 2 ) 22 dU
U
1
U
M 1 F1 u ( p1 ) (1 5 )u ( p 0 )u ( p 2 ) (1 5 ) ( p 3 )
2
2
2
M 1a u ( p1 ) (1 5 )u ( p0 )
2
Tr p1 . .(1 5 ). p0 . . (1 5 )
2
2
F1 u ( p1 ) (1 5 )u ( p0 ) u ( p 2 ) (1 5 ) ( p3 )
2
F1 . M 1a .M 1b
2
2Tr p1 p0 p1 p0
5
8 p1 p0 ( g g g g g g i )
8( p1 p0 p1 p0 g p1 p0 i p1 p0 )
(1)
16
2
M 1b u ( p2 ) (1 5 ) ( p3 )
2
Tr p2 (1 5 ) p3 (1 5 )
Tr p2 ( 5 ) p3 ( 5 )
5
2Tr p2 p3 p2 p3 5
Tr p2 p3 p2 p3 p2 p3 p2 p3
5
(2)
2Tr p2 ' p3 ' ( 5 )
'
'
'
'
8 p2 ' p3 ' ( g g g g g g i )
'
'
' '
'
'
'
'
8( p2 p3 p2 p3 g p2 p3 i p2 ' p3 ' )
'
'
Từ (1) và (2) ta có:
M 12 F12 .M 1a .M 1b
F12 [8( p1 p0 p1 p0 g p1 p0 i p1 p0 )].[8( p2 p3 p2 p3 g
p2 p3 i p2 p3 )]
'
'
64 F12 ( p1 p0 p1 p0 g p1 p0 )( p2 p3 p2 p3 g p2 p3 )
i p1 p0 ( p2 p3 p2 p3 g p2 p3 )
( p1 p0 p1 p0 g p1 p0 ) (i p1 p0 )(i p2 p3 )
'
64 F12 2[( p1 p2 )( p0 p3 ) ( p1 p3 )( p0 p2 )
( p1 p2 )( p0 p3 ) ( p1 p3 )( p0 p2 )]
256( p1 p2 )( p0 p3 )
17
(3)
'
2
M 22
cV1 2 cV11 Adu e i
1
2 du 2
.
2 2 2 dU
2sin
d
(
q
)
U
2
U
. u ( p2 ) (1 5 )u ( p0 )u ( p1 ) (1 5 ) ( p3 )
cV 1 2 cV 1 1 Adu e i
1
F
Đặt 2
2 du 2 2 sin d (q 2 ) 2 2 dU
U
2
U
M 2 F2
2
u( p )
2
2
5
(1 5 )u ( p 0 )u ( p1 ) (1 ) ( p 3 )
2
F2 u ( p 2 ) (1 5 )u ( p0 ) u ( p1 ) (1 5 ) ( p3 )
F2 M 2 a .M 2b
2
2
2
2
2
M 2 a u ( p 2 ) (1 5 )u ( p0 )
2
Tr p2 . .(1 5 ). p0 . . (1 5 )
Tr p2 ( 5 ) p0 ( 5 )
2Tr p2 p0 p2 p0 5
2
(4)
0
8 p p ( g g g g g g i )
8( p2 p0 p2 p0 g p2 p0 i p2 p0 )
M 2b u ( p1 ) (1 ) ( p3 )
2
5
2
Tr p1 (1 ) p3 (1 5 )
5
18
2Tr p1 p3 p1 p3 5
2Tr p1 ' p3 ' ( 5 )
'
'
'
'
(5)
8 p1 ' p3 ' ( g g g g g g i )
'
'
' '
'
'
'
'
8( p1 p3 p1 p3 g p1 p3 i p1 ' p3 ' )
'
'
Từ (4) và (5) ta có:
M2
2
2
F2 . M 2 a .M 2b
64F1 {[ 2( p1 p2 )( p0 p3 ) 2( p2 p3 )( p0 p1 )]
2
[2( p1 p2 )( p0 p3 ) 2( p2 p3 )( p0 p1 )]}
F12 [8( p2 p0 p2 p0 g p2 p0 i p2 p0 )].
[8( p1 p3 p1 p3 g p1 p3 i p1 ' p3 ' )]
'
'
64 F12 2[( p1 p2 )( p0 p3 ) ( p2 p3 )( p0 p1 )
(6)
( p1 p2 )( p0 p3 ) ( p2 p3 )( p0 p1 )]
256( p1 p2 )( p0 p3 )
Ta có:
2 Re M 1* M 2 2 F1F2 u ( p0 ) (1 5 )u ( p1 ) ( p3 ) (1 5 )u ( p2 )
u ( p2 ) (1 5 )u ( p0 )u ( p1 ) (1 5 ) ( p3 )
2 F1 F2 u ( p0 ) (1 5 )u ( p1 ) ( p3 ) (1 5 )u ( p2 )
u ( p1 ) (1 5 )u ( p0 )u ( p2 ) (1 5 ) ( p3 )
2 F1 F2Tr p1 . .(1 5 ). p0 . . (1 5 ) Tr p2 (1 ) p3 (1 5 )
19
5
Đặt
M a* Tr p1 . .(1 5 ). p0 . . (1 5 )
M
*
b
5
Tr p 2 (1 ) p3 (1 5 )
M Tr p1 . .(1 5 ). p0 . . (1 5 )
*
a
Tr p1 ( 5 ) p0 ( 5 )
(7)
8 p1 p0 ( g g g g g g i )
8( p1 p0 p1 p0 g p1 p0 i p1 p0 )
Ta có:
M b* Tr p2 (1 5 ) p3 (1 5 )
Tr p2 ( 5 ) p3 ( 5 )
8 p2 ' p3 ' ( g
'
g
'
g
' '
g
'
g g
'
i
' '
)
(8)
8( p2 p3 p2 p3 g p2 p3 i p2 ' p3 ' )
'
'
Từ (7) và (8) có:
2 Re M 1* M 2 2 F1 F2 M a* M b*
2 F1 F2 [8( p1 p0 p1 p0 g p1 p0 i p1 p0 )].
[8( p2 p3 p2 p3 g p2 p3 i p2 ' p3 ' )]
'
'
2 F1 F2 64.2[( p1 p2 )( p0 p3 ) ( p1 p3 )( p0 p2 )
( p1 p2 )( p0 p3 ) ( p1 p3 )( p0 p2 )]
2 F1 F2 256( p1 p2 )( p0 p3 )
20
(9)
Kết hợp (3), (6) và (9) ta thu được bình phương của yếu tố ma trận:
| M |2 M 12 M 22 2 Re( M 1* M 2 )
( F12 F22 2 F1 F2 )256 ( p1 p2 )( p0 p3 )
( F1 F2 ) 2 256 ( p1 p2 )( p0 p3 )
2
c1 2 c11 A e i
1
1
du
V V
2du2 2 sin d 2 22d
22d
U (q 2 )
U
U
(q )
U
1
2
2
256( p p )( p p ) (10)
1 2 0 3
Trong đó:
p0 p3 m (m E1 E2 )
p1 p2 m ( E1 E2
m
)
2
q12 ( p0 p1 ) 2 m 2 2m E1
q22 ( p0 p2 ) 2 m 2 2m E2
Từ (10) ta có độ rộng phân rã:
d V (v2 v1 v1 v )
1
1 11
2
M
dE1dE2
(2 )3 8m 2 2 2
1
1 1 1 cV cV Adu e i
(2 ) 3 8m 2 2 2 2Udu 2 2 sin dU
.256( p1 p2 )( p0 p3 )dE1dE2
1 2
1 1
2
1
1
2 22 d 2 22 d
( q2 )
(q1 )
(11)
Ở đây với:
0 E1
m 2
m 2
m 2
E
E
và
1
2
2
2
2
21
U
U
2
.
Đặt
q12 s
(12)
q 22 t
t
Trong đó:
s(1 cos )
2
(13)
Thay (12), (13) vào (11) ta được:
2
2
1 1 1 cV1 2 cV11 Adu e i
2 2 dU 2
2 2 dU 2
d V
(
q
)
(
q
)
.
1
2
(2 )3 8m 2 2 2 U2 du 2 2sin dU
.256( p1 p2 )( p0 p3 )dE1dE2
1
1 1 1 cV1 2 cV11 Adu e i
d V
(2 )3 8m 2 2 2 U2 du 2 2 sin dU
.256( p1 p2 )( p0 p3 )dE1dE2
1
2
s
2 dU 2
t 2 dU 2
2
.
2
2d 2
1 1 1 cV1 2 cV11 Adu ei 2 dU 2 s(1 cos ) U
d V
.
s
(2 )3 8m 2 2 2 U2 du 2 2sin dU
2
.256( p1 p2 )( p0 p3 )dE1dE2
2
1
2
2
2 dU 2
1
1 1 1 cV1 2 cV11 Adu e i 2 dU 2 (1 cos )
d V
s
1
.
(2 )3 8m 2 2 2 U2 du 2 2sin dU
2
.256( p1 p2 )( p0 p3 )dE1dE2
1 1 1 cV1 2 cV11 Adu e i (1 cos )
d V
1
(2 )3 8m 2 2 2 U2 du 2 2sin dU
2
.256( p1 p2 )( p0 p3 )dE1dE2
2
1
22
2 dU 2
2
4d 4
s U .
d V
1
1 1 1 cV1 2 cV11 Adu ei (1 cos )
1
ds
(2 )3 8m 2 2 2 U2 du 2 2sin dU
2
.256( p1 p2 )( p0 p3 )dE1dE2
2
2 dU 2
Từ kết quả tính toán trên ta thấy:
Khi d U >1:
dV
0
ds
Khi d U 1
Giảm theo s khi d U [...]... là các fermion mô hình chuẩn, Gαβ là trường gluon Từ đó ta có các đỉnh hình học tương tác sau đây Đỉnh tương tác giữa các u hạt vô hướng với các hạt fermion và boson Hình 1 Đỉnh tương tác giữa các u- hạt vô hướng với các fermion và boson Hình 2 Đỉnh tương tác giữa các u- hạt vecto và các hạt fermion 14 CHƯƠNG 3: ĐỘ RỘNG PHÂN RÃ CỦA MỘT SỐ QUÁ TRÌNH TRONG MÔ HÌNH CHUẨN MỞ RỘNG CÓ TÍNH ĐẾN U – HẠT Trong. .. du 16 2 Adu 2 du 2 du 1 2du 2 Và Trong các hàm truyền (2.1), q2 có c u trúc sau đây q 2 du 2 q 2 du 2 q2 q2 du 2 e idu du 2 trong kênh s và cho q2 dương trong kênh t ,u và cho q2 âm 2.3 Lagrangian và đỉnh tương tác của các loại u- hạt với các hạt trong mô hình chuẩn Tương tác của các u- hạt vô hướng, vector và tensor với các hạt trong mô hình chuẩn. . .mô hình chuẩn, hay còn gọi là mô hình chuẩn mở rộng Mô hình mới giải quyết được những hạn chế của mô hình chuẩn Các mô hình chuẩn mở tộng được đánh giá bởi 3 ti u chí: - Thứ nhất: Động cơ thúc đẩy việc mở rộng mô hình Mô hình phải giải thích hoặc gợi lên những vấn đề mới mẻ về những lĩnh vực mà mô hình chuẩn chưa giải quyết được - Thứ hai: Khả năng kiểm nghiệm của mô hình Các hạt mới hoặc các quá trình. .. hơn nữa, SUSY định xứ đã dẫn đến lý thuyết si u hấp dẫn Si u hấp dẫn mở ra triển vọng thống nhất được cả 4 loại tương tác Một trong những mô hình si u đối xứng được quan tâm nghiên c u và có nhi u hứa hẹn nhất của mô hình chuẩn là mô hình chuẩn si u đối xứng tối thi u( the Minimal Supersymmetric Standard Model- SMSM) 1.2 Mô hình chuẩn mở rộng khi tính đến si u đối xứng và u- hạt Các lý thuyết thống... xét một số quá trình phân rã trong mô hình chuẩn mở rộng có tính đến u – hạt 3.1 Quá trình rã v 2 v1 v1 v1 Sơ đồ của quá trình: v2 ( p0 ) v1 ( p1 ) v1 ( p2 ) v1 ( p3 ) Giản đồ Feyman của quá trình v 2 v1 v1 v Biên độ rã: M M1 M 2 Trong đó: cV1 2 cV11 Adu e i u ( p1 ) (1 5 )u ( p0 )u ( p2 ) (1 5 ) ( p3 ) M 1 2 du 2 U 2 sin dU (q12 ) 22 dU 15 cV 1... Trong những năm gần đây, các nhà vật lý rất quan tâm đến việc phát hiện ra các hạt mới trên máy gia tốc, đặc biệt là LHC Tuy nhiên, các đặc tính liên quan đến các hạt này cần phải được chính xác hóa và được hi u s u sắc hơn đặc biệt là thông qua quá trình tán xạ, phân rã có tính đến hi u ứng tương tác với chân không cũng như pha vi phạm CP Cũng trên quan điểm này người ta đề cập đến nhi u chất li u. .. thuật tương tự cũng có thể dùng để phát hiện u- hạt Theo tính bất biến tỉ lệ, một phân bố chứa u- hạt có khả năng quan sát được bởi nó tương tự với phân bố cho một phần hạt không có khối lượng Phần bất biến tỉ lệ này sẽ rất nhỏ so với phần còn lại trong mô hình chuẩn, tuy nhiên, nó sẽ là bằng chứng cho sự tồn tại của u- hạt Lý thuyết u- hạt là lý thuyết với năng lượng cao chứa cả các trường của mô hình chuẩn. .. đại (GUTs) đã cải thiện được một phần khó khăn xuất hiện trong m u chuẩn bằng cách: xem xét các nhóm gauge rộng hơn với một hằng số tương tác gauge đơn giản C u trúc đa tuyến cho một hạt spin đã cho được sắp xếp trong GUTs nhưng trong lý thuyết này vẫn còn không có đối xứng liên quan đến các hạt với spin khác nhau Si u đối xứng là đối xứng duy nhất đã biết có thể liên hệ các hạt với spin khác nhau là... nhất đã có Hơn mười năm sau giả thuyết về các lý thuyết thống nhất si u đối xứng, các số li u từ LEP đã khẳng định rằng các mô hình si u đối xứng cho kết quả rất tốt tại điểm đơn (single point) Tuy nhiên, cho đến nay người ta chưa phát hiện được hạt nào trong số các bạn đồng hành si u đối xứng của các hạt đã biết Và một trong những nhiệm vụ của LHC là tìm kiếm các hạt này, trong số đó có gluino, squark,... 10 CHƯƠNG 2: VẬT LÝ U- HẠT 2.1 Giới thi u về u- hạt Trong vật lí lí thuyết, vật lí u hạt là lí thuyết giả định vật chất không thể được giải thích bởi lí thuyết hạt trong mô hình chuẩn (Standard Model) vì các thành phần của nó là bất biến tỉ lệ Đ u năm 2007, Howard Georgi đưa ra lý thuyết u- hạt trong các bài báo “ Unparticle Physics” và “Another Odd thing about unparticle physics” Các bài báo của ông ... đặt : Phải mô hình chuẩn lý thuyết tốt vùng lượng thấp bắt nguồn từ lý thuyết tổng quát mô hình chuẩn, hay gọi mô hình chuẩn mở rộng Mô hình giải hạn chế mô hình chuẩn Các mô hình chuẩn mở tộng... sau: Chương 1: Mô hình chuẩn mở rộng Chương 2: Vật lý u - hạt Chương 3: Độ rộng phân rã số trình mô hình chuẩn mở rộng có tính đến u – hạt CHƯƠNG I: MÔ HÌNH CHUẨN VÀ SỰ MỞ RỘNG 1.1 Mô hình chuẩn. .. Các trình phân rã mô hình chuẩn mở rộng có tính đến u – hạt để làm khóa luận Tốt nghiệp với mong muốn tìm hi u đóng góp vào việc hoàn thiện mô hình chuẩn mở rộng tính đến u – hạt qua việc tính