1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chuyên đề ÁNH SÁNG TRONG môi TRƯỜNG có CHIẾT SUẤT THAY đổi

20 2,2K 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 625,53 KB

Nội dung

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI TRẠI HÈ HÙNG VƯƠNG NĂM 2014 Chuyên đề : ÁNH SÁNG TRONG MÔI TRƯỜNG CÓ CHIẾT SUẤT THAY ĐỔI Đơn vị: Trường THPT Chuyên Thái nguyên I. ĐẶT VẤN ĐỀ. Trong các bài toán Quang hình chúng ta thường gặp những bài toán mà một quang cụ hay một một trường có chiết suất không đổi khi ánh sáng truyền qua nó. Tuy nhiên thực tế chiết suất của một môi trường có thay đổi dù ít hay nhiều ta có thể lấy ví dụ ngay như trường hợp ánh sáng trong khí quyển trái đất, cáp quang, hay thấu kính có bề dày không đổi…. Vấn đề “Ánh sáng trong môi trường có chiết suất thay đổi” đã được đề cập đến trong các đề thi quốc gia, chọn đội tuyển quốc tế, đề thi quốc tế với các mức độ khác nhau. Chúng ta đã biết khi ánh sáng đi trong môi trường có n biến thiên thì sẽ bị uốn cong, tùy thuộc vào điều kiện về n mà đường truyền của tia sáng có thể có dạng hình học cụ thể như: tia sáng truyền theo một đường tròn, elip, sin, parabol……. Trong những bài tập dạng này có thể có những cách hỏi như: biết dạng hàm của n n = n(σ ) ( ) tìm dạng đường truyền tia sáng hoặc ngược lại. Hướng giải quyết: Dạng bài tập này vận dụng nguyên lý Fermat (Từ nguyên lý Fermat suy ra các định luật cơ bản của quang hình); điều kiện có phản xạ toàn phần và điều kiện tương điểm (hoặc tương điểm gần đúng). Tất nhiên các công cụ toán học: vi phân, nguyên hàm……., cũng cần được trang bị. Trong phạm vi chuyên đề tác giả đưa ra định hướng chung và sưu tầm một số những bài tập trích từ các đề thi trong nước và ngoài nước để bạn bè và đồng nghiệp tham khảo và góp ý. 1 II. NỘI DUNG. 1. Nhắc lại những khái niệm cơ bản của quang hình. 1.1. Quang trình: Quang trình của quãng truyền giữa hai điểm A,B trên một tia sáng trong môi trường có chiết suất n: ∆ = n.AB . Trong một môi trường có chiết suất thay đổi ta có thể viết quang trình như sau: B ∆ = ∫ n(σ )ds(σ ).(1) A trong đó σ là một tham số. Trong môi trường này xét một lớp chất mỏng coi như đồng tính có chiết suất n(σ ) i (σ ) dσ ; có bề dày theo phương pháp tuyến, gọi là góc hợp bởi tia B n(σ )d σ . (2) cosi( σ ) A ∆=∫ sáng và pháp tuyến khi đó: 1.2. Điều kiện tương điểm: A là nguồn sáng điểm, có chiết suất n1...nk A' là ảnh của A qua một quang hệ , gồm k môi trường ngăn cách nhau bởi các mặt quang trình từ A tới trình ảo lấy dấu trừ). A' ∑i . để A' là ảnh điểm thì ∆ = (AA ) = const ' là một hằng số: (chú ý các quang Từ điều kiện tương điểm ta thấy “mặt khúc xạ tương điểm” là một mặt tròn xoay có kinh tuyến là một đường cong kín, gọi là ôvan của đề - các. 1.3. Nguyên lý Fermat: Quang trình ∆ của đường truyền một tia sáng từ điểm A tới B có giá trị cực trị (tức là có thể đạt cực đại, cực tiểu hoặc dừng) Chúng ta cũng có thể hiểu một cách đơn giản: trong hiện tượng phản xạ tia sáng chọn con đường đi ngắn nhất, còn trong hiện tượng khúc xạ ánh sáng sẽ chọn con đường đi nhanh nhất. Theo nguyên lý Fermat để quang trình δ∆ = 0(3) δy ∆ cực trị thì đạo hàm quang trình : y = y(σ ) ∆ . Lúc này gọi là phiếm hàm, còn là dạng hàm thể hiện đương truyền tia sáng trong môi trường có chiết n suất thay đổi. Tuy nhiên việc giải quyết phương trình (3) một cách tổng quát khá vất vả về toán học đối với học sinh phổ thông, trong phạm vi chuyên đề chỉ đưa ra một số 2 y = y (σ ) bài toán mà chiết suất được phân bố theo những biến số mà dạng hàm là những hàm trong toán học bậc phổ thông học sinh đã được học như phân bố theo một phương, phân bố theo bán kính, … Để giải quyết những bài toán này có thể áp dụng định luật Snell về khúc xạ ánh sáng : n1 sin i1 = n2 sin i2 , và thỏa mãn điều kiện tương điểm. 2. Các bài toán thường gặp. 2.1. Trường hợp chiết suất phân bố theo một phương. Vấn đề 1: Một bản mặt song song được cấu tạo bởi chất liệu trong suốt có chiết suất thay đổi từ góc tới là i1 i2 α n ở mặt trên tới n, ở mặt dưới. Hỏi tia sáng tới mặt trên dưới sẽ ra khỏi mặt dưới góc ló là bao nhiêu? Cho chiết suất 2 môi trường i3 ii tiếp xúc bản là n0 ; n3 Bài cho chiết suất của bản thay đổi từ trên xuống dưới theo bề dày của bản mặt song song. Ta chia bản thành nhiều bản vô cùng mỏng và coi gần đúng trong những bản vô cùng mỏng này chiết suất coi như không đổi. theo định luật khúc xạ ánh sáng: 3 α ii n1 sin i1 = n2 sin i2 n2 sin i2 = n3 sin i3 .............. ni sin ii = ni +1 sin ii +1 y = ax 2 gọi góc ló ra ở mặt dưới là ta có: β n0 sin α = n3 sin β ta thấy trong thường hợp này góc ló không phụ thuộc vào chiết suất của bản mặt song song mà chỉ phụ thuộc vào là: α ; n0 ; n3 ni sin ii = const = n0 sin α . tức Nếu tại một điểm nào đó trong bản chiết n = n0 sin α A suất đạt giá trị thì tại đó xảy ra hiện tượng phản xạ toàn phần. Khi đó tia ló ra khỏi bản với góc ló α . y Vấn đề 2: Một môi trường trong suốt có chiết suất n biến thiên theo biến số y. Một tia sáng được chiếu vuông góc với mặt giới hạn môi trường tại điểm y=0, chiết suất của môi trường tại đó có giá trị . n = ny x M n0 Xác định để tia sáng truyền trong môi trường theo một parabol. Xét một điểm M trên đường truyền ánh sáng trong môi trường có chiết suất 4 n = ni , ii góc hợp bởi tia sáng và pháp tuyến là . Giống như ở vấn đề 1 ta có: nA sin iA = ni sin ii ⇒ sin ii = nA n = 0 ni n(y) Tia sáng truyền theo một parabol giả sử là: S α0 I O y 0,3m x y = ax 2 ⇒ dy = 2axdx ⇒ dy = tan α = 2ax = 2 ay dx sin ii = cos α = Theo hình vẽ ta có 1 1 + tan 2 α = 1 1 + 4ay n ( y ) = n0 1 + 4ay Vậy: Bài tập 1 : Một tia sáng SI đi từ không khí vào một bản mặt song song có bề dày n= 4 1+ x x0 0,3m với chiết suất thay đổi theo độ sâu x với quy luật , trong đó x0 = 0,1m. a. Xác định quỹ đạo của tia sáng trong bản mặt song song? b.Tìm điểm ló của tia sáng ra khỏi bản mặt? Cho biết góc tới α0 = 300, OI = 0,63 (m), chiết suất không khí bằng 1 Lời giải. 5 a. Giả sử quỹ đạo tia sáng đi trong bản có dạng: y = f ( x) Ta chia bản mặt thành các mặt đẳng chiết Sau khi tia sáng đi một đoạn nhỏ dh thì sin α 2 n1 = sin α 1 n 2 đối với một điểm bất kỳ của quỹ đạo ta được: sin α 1 = (1) sin α 0 n Ta nhận thấy rằng α là góc giữa tiếp tuyến của quỹ đạo tia sáng và phương dx;dy đứng(góc tới trong một mặt đẳng chiết có kích thước tan α = dy = f ' ( x ) (2) dx ). Từ (1) và (2) ta có: n 1 n2 n2 1 2 = ⇒ = 1 + cot α ⇒ − 1 = sin α 0 sin α sin 2 α 0 sin 2 α 0 tan 2 α f '( x) = ± f ( x) = ±∫ sin α 0 n 2 − sin 2 α 0 sin α 0 10x + 1 = (3) 2 16 64 − (10x + 1) 2 2 − sin α 0   x 1 + ÷  x0  1 (10 x + 1) d (10 x + 1) 1 1 d (1 + 10 x ) =± ∫ =± . ∫ 2 2 10 10 2 64 − (1 + 10 x ) 64 − (1 + 10 x ) 2 (10 x + 1)dx 64 − (1 + 10 x ) =± 2  1 2  2 = ± .( − 2 ) 64 − (1 + 10 x )  + C = ± 0,64 − ( x + 0,1) + C  20  (5) f ( x) = − 0,64 − ( x + 0,1) + C 2 Từ hệ tọa độ đã cho, ta chỉ lấy nghiệm: với hằng số C được xác định từ điều kiện đầu: 6 f ( x) = − 0,63 = − 0,64 − ( 0 + 0,1) + C ⇒ C = 0 2 Khi x = 0 thì: f ( x) = − 0,64 − ( x + 0,1) 2 Vậy phương trình của tia sáng có dạng Quỹ đạo của tia sáng có dạng đường cung bán kính r = 0,8m b. Dựa vào hình vẽ ta có x = r -0,1 = 0,8 – 0,1 = 0,7 > 0,3 m Chứng tỏ tia sáng đi sang mặt kia của bản mặt Độ lệch của tia sáng so với điểm tới khi ra khỏi bản là (6) ∆y = 0,8 2 − 0,12 − 0,8 2 − 0,4 2 ≈ 0,1009m Bài tập 2.(trích đề thi Quốc Gia 2012). Một nguồn sáng điểm nằm trong chất lỏng và cách mặt chất lỏng một khoảng H. Một người đặt mắt trong không khí phía trên mặt chất lỏng để quan sát ảnh của nguồn sáng. 1. Giả thiết chất lỏng là đồng chất và có chiết suất n = 1,5. Tính khoảng cách từ ảnh của nguồn sáng đến mặt chất lỏng trong các trường hợp mắt nhìn nguồn sáng theo phương hợp với mặt chất lỏng một góc α = 600. 2. Giả thiết chiết suất của chất lỏng chỉ thay đổi theo phương vuông góc với n = 2+ y H mặt chất lỏng theo quy luật với y là khoảng cách từ điểm đang xét đến mặt chất lỏng. Biết tia sáng truyền từ nguồn sáng ló ra khỏi mặt chất lỏng đi tới mắt theo phương hợp với mặt chất lỏng một góc α = 600. Hỏi tia này ló ra ở điểm cách nguồn sáng một khoảng bao nhiêu theo phương nằm ngang? Lời giải. 1. Vẽ hai tia SB và SA đến mặt thoáng với các góc i và i + di (di rất nhỏ) ló ra với góc tới r = 900 - α và r + dr. Đường kéo dài của hai tia ló cắt nhau ở S’ n sin i = sin r ⇒ n cos i.di = cos r.dr ⇒ Từ AB = AC 1 H = SBdi = di cos i cos i cos 2 i h AB = dr cos 2 r Tương tự h= di 1 cos r = dr n cos i H cos3 r n cos3i . Do đó r A h h H dr = di 2 cos r cos 2 i di S’ S với i = 90o-α = 300; 7 C dr i B H dy dx i M x y s inr = sin i 1 2 2 = ;cosr = n 3 3 h=H . 64.4 2 ≈ 0,86 H. 27.9 3 Do đó 2. Chia môi trường thành nhiều lớp mỏng bằng các mặt phẳng vuông góc Oy, bề dày dy. Đặt gốc toạ độ tại điểm tia sáng ló ra. Tại điểm xét M có toạ độ (x,y), tia sáng hợp với Oy một góc i. 8 n sin i = sin(90 − α) = cosα sin i = 0 0 Tại điểm ló, góc khúc xạ là 90 -α, ta có H dx sin i cos α = tan i = = dy 1 − sin 2 i n 2 − cos 2α y x = 2Hcosα 2 − cos α + H 0 cos αdy n − cos α 2 2 H =∫ 0 cosαdy 2 − cos 2 α + nên y H H = 2Hcosα( 3 − cos 2α − 2 − cos 2α ) 2 x= x=∫ ⇒ cos α n 0 H ( 11 − 7) ≈ 0, 34H. 2 Thay α = 600 ta có Bài tập 3 tương tự (bồi dưỡng hsg vật lý thpt – bài tập điện - quang). Một chùm tia sáng hẹp tới đập vuông góc với một bản x=0 y hai mặt song song ở điểm A ( ), suất của bản biến đổi theo công thức. nx = nA 1− x R d . trong đó ( là những hằng số) ; chùm sáng rời bản ở điểm B theo góc 1. 2. 3. nB x A nA , R chiết B α . hãy tính ở điểm B xB Tọa độ Bề dày d của bản 2.2. Trường hợp chiết suất phân bố theo bán kính. Bài 4. (trích đề thi chuyên Hạ Long, ) 9 I J n1 n2 i2 O i1 R2 R1 Một quả cầu tâm O, bán kính R được làm bằng một chất trong suốt. Cách tâm O khoảng r, chiết suất của quả cầu tại những điểm đó được xác định: nr = 2R R+r .Từ không khí, chiếu một tia sáng tới quả cầu dưới góc tới i = 30 o. Xác định khoảng cách ngắn nhất từ tâm O tới đường đi của tia sáng. Lời giải. Xét một vỏ cầu có bán kính ngoài R 1 và bán kính trong R2 được làm bằng chất trong suốt có chiết suất n2. Từ môi trường ngoài có chiết suất n 1, một tia sáng được chiếu tới vỏ cầu dưới góc tới, tia sáng chiếu đến mặt trong của vỏ cầu dưới góc tới i2 Áp dụng định luật khúc xạ : n1. sini1 = n2.sinr (1) Áp dụng định lý hàm số sin trong tam giác OIJ: OI/sini2 = OJ/sinr (2) 10 Từ (1) và (2) suy ra: n1.R1.sini1 = n2.R2.sini2 Chia quả cầu thành những vỏ cầu mỏng : bán kính trong r, bán kính ngoài r + dr. Chiết suất của vỏ cầu coi như không đổi nr Áp dụng (3) => nr.r.sini = nR.R.sin30o = R/2 sin i = sin i ≤ 1 nr 300 i dr d rmin r R 1 R+r . = 2 2R 4r r R+r r≥ R 3 => nên rmin = R/3 khi (sini)max = 1, i = 90o. Khoảng cách ngắn nhất từ tâm O tới đường đi của tia sáng là R/3 (5) Bài tập 5. Chiết suất của thủy tinh có thể tăng khi lẫn tạp chất. điều này cho phép chế tạo thấu kính có bề dày không đổi. cho a d một đĩa tròn bán kính , độ dày , tìm sự biến thiên theo bán kính của chiết suất n( r) để r f tạo ra một một thấu kính có tiêu cự thấu kính là mỏng ( Lời giải: d=a . Xem F ). n Gọi chiết suất của đĩa là và sự phân bố theod bán kính của chiết suất của đĩa lẫn tạp chất là n ( r ) ; n ( 0 ) = n0 . Xét các sóng phẳng tới đĩa (thấu kính có bề dày không đổi), sóng phẳng khúc xạ hội tụ tại tiêu điểm (hình vẽ) Xét điều kiện tương điểm ta có: n ( 0 ) .d + f = n ( r ) d + F f + r → n ( r ) = n0 − 2 2 11 f 2 + r2 − f d Theo bài thấu kính mỏng ( r f ? r ): theo công thức gần đúng  1 r  f 2 + r 2 ; f . 1 + 2 ÷  2 f  2 r2 ⇒ n ( r ) = n0 − 2df Bài tập 6. (Bài toán khúc xạ thiên văn) Chiết suất của không khí ở nhiệt độ 300K và áp suất 1atm là 1,0003 đối với ánh sáng ở khoảng giữa của quang phổ nhìn thấy. giả thiết khí quyển là đẳng nhiệt ở nhiệt độ 300K, hãy tính xem khí quyển của trái đất cần phải có mật độ lớn hơn bao nhiêu lần để ánh sáng bị uốn theo mặt cong của quả đất tại mực nước biển?(nguyên tắc: khi trời quang mây có thể ngắm mặt trời lặn cả đêm, tuy rằng hình ảnh của mặt trời khi đó bị nén mạnh theo phương thẳng đứng). giả thiết chiết suất n có tính chất là n-1 tỷ lệ với mật độ. Độ cao 1/e của khí quyển đẳng nhiệt này là 8700m. Bài giải: n ( r ) − 1 = ρe Theo bài : mật độ không khí . − r −R 8700 trong đó R = 6400.103 m ρ là bán kính quả đất; − 8700 dn ( r ) 1 ⇒ =− ρ .e (1) dr 8700 r −R Theo giả thiết không khí có mật độ đủ lớn để làm làm cho ánh sáng bị bẻ cong theo mặt cong của trái đất ở mực nước biển. quang trình từ l = n(r) r θ l A đến B là: theo nguyên lý Fermat, đạt cực trị tức là  dn ( r )  dn ( r ) n( r) dl =0 ⇒θ r + n ( r ) ÷= 0 ⇒ =− (2) dr dr r  dr  − 8700 n( r ) 1 ρ .e = 8700 r r R r−R Từ (1) và (2) ta có: r = R ⇒ ρ = 0,00136 tại mực nước biển Mật độ thực tế của khí ở mực nước biển (ở 300K, áp suất 1atm, ρ 0 = n0 − 1 = 0,0003 ⇒ ρ = 4,53 ρ0 12 n0 = 1,0003 ) là Vậy: chỉ khi không khí có mật độ bằng 4,53 lần mật độ của không khí thực tế (cho trong bài) thì mới thỏa mãn điều kiện của bài cho. Bài tập 7. (bồi dưỡng hsg vật lý thpt – bài tập điện - quang). Coi khí quyển trái đất như một lớp trong suốt có chiết suất giảm theo độ cao theo quy luật: n = n0 − ah . với n là chiết suất của khí quyển ở độ cao h so với mặt đất; n0 là n0 a chiết suất của khí quyển tại mặt đất; là hệ số không đổi, n và có trị số luôn ah lớn hơn 1 một chút, còn luôn rất nhỏ so với 1. Bán kính trái đất là R. 1. Một tia sáng phát ra từ một điểm A, ở độ cao h0 chiếu theo phương nằm h0 ngang, trong một mặt phẳng kinh tuyến . Tính để tia sáng đi theo đúng một vòng tròn quanh trái đất, rồi trở lại A. J 2. Một tia sáng khác phát ra từ một điểm B ở độ cao h bất kỳ trong một mặt I (3) phẳng kinh tuyến. làm với đường thẳng đứng tại đó một góc (2) (1) dϕ K B i0 ; Tính i0 ' để tia sáng đi qua điểm nằm xuyên tâm đối với B, sau khi phản xạ một lần trên tầng cao của khí quyển. 3. Giả sử mô hình trên phù hợp với thực tế. khi đó có thể thực hiện được cả hai thí nghiệm ở trên được không? Lời giải: 1. Tương tự bài tập 6 ta có: dl = n(R + h)d θ ⇒ l = n(R + h)2π dl =0 dh 2. R+h O ⇒h= (Nguyên lý Fermat) R n0 R − 2a 2 Xét 3 lớp khí quyển (1); (2); (3), các lớp khí quyển cách nhau dh, lớp (2), có độ cao h. Theo hình vẽ ta có: n sin i = (n + dn)sinr ⇒ nsini = (n − a.dh)sinr (1) r = i + (di + d ϕ ) ⇒ sinr = sini.cos(di + d ϕ ) + sin(di + d ϕ ).cos i sin r = sin i + (di + d ϕ )cosi Gần đúng: thay vào (1) 13 E r i + di tan i ; n(di+ d ϕ ) (2) a.dh tan i = Tam giác KIE: a.dh(di + d ϕ )cosi bỏ qua lượng ( R + h − dh)d ϕ ( R + h)d ϕ ; (3) dh dh ⇒ [(R + h)a − n]d ϕ = ndi ⇒ (aR − n 0 )d ϕ = n 0 di (4) Giả sử tại F có phản xạ toàn phần(do tính chất đối xứng của bài toán khi có phản xạ toàn phần tại F tia sáng đi gần như tiếp tuyến với mặt đẳng chiết ở đây là mặt cầu khi đó ϕ tới giá trị π 2 và góc phản xạ toàn tại F phần coi như bằng π 2 ). Do đó: π 2 π 2 0 i0 aR − n 0 ) ∫ d ϕ = n 0 ∫ di ⇒ i0 = π (1 − aR ) 2n0 3. Theo kết quả ý 1 và 2 ta thấy ngay: nếu thực hiện được 1 thì không thực hiện được 2 và ngược lại. 2.3. Chiết suất phân bố theo mặt trụ (ánh sáng trong cáp quang). Bài tập 8: (trích đề dự thi quốc tế 2009) y O x x Một đoạn sợi quang thẳng có dạng hình trụ bán kính R, hai đầu phẳng và vuông góc với trục sợi quang, đặt trong không khí sao cho trục đối xứng của nó trùng với trục tọa độ Ox. Giả thiết chiết suất của chất liệu làm sợi quang thay đổi theo quy luật: n = n1 1 − k 2 r 2 , trong đó r là khoảng cách từ điểm đang xét tới trục Ox, n 1 và 14 k là các hằng số dương. Một tia sáng chiếu tới một đầu của sợi quang tại điểm O dưới góc  như hình 2. θ 1. Gọi là góc tạo bởi phương truyền của tia sáng tại điểm có hoành độ x với trục Ox. Chứng minh rằng ncos = C trong đó n là chiết suất tại điểm có hoành độ x trên đường truyền của tia sáng và C là một hằng số. Tính C. 2. Viết phương trình quỹ đạo biểu diễn đường truyền của tia sáng trong sợi quang. 3. Tìm điều kiện để mọi tia sáng chiếu đến sợi quang tại O đều không ló ra ngoài thành sợi quang. 4. Chiều dài L của sợi quang thỏa mãn điều kiện nào để tia sáng ló ra ở đáy kia của sợi quang theo phương song song với trục Ox? Bài giải y i 0 O x 1. Tại O: sin= n1sinθ0 Chia sợi quang thành nhiều lớp mỏng hình trụ đồng tâm. Xét trong mặt phẳng xOy, các lớp đó dày dy. Tại mỗi điểm góc tới của tia sáng là (900-), ta có n(y)sin(900-)= n1sin(900- 0) n(y)cos = n1cosθ0 = C n1 1 − sin 2 θ0 = n1 1 − sin 2 α = n12 − sin 2 α 2 n1 C = n1cos0= . C = n12 − sin 2 α Vậy, 2. Xét M có toạ độ (x,y), tia sáng có góc tới i = (900- ) cosθ = C n(y) n(y) cos = C; dx cos θ C = cot θ = = dy 1 − cos 2 θ n 2 (y) − C 2 15 y x=∫ 0 ⇒ y C dy n (y) − C 2 x=∫ 2 0 ; ∫ dy a 2 − b2 y2 = n (1 − k 2 y 2 ) − C 2 . 1 by arcsin b a Áp dụng x= C dy 2 1 a = n12 − C 2 với C kn y arcsin 1 kn1 sin α = sin; b = kn1 +C1. Điều kiện ban đầu: x = 0 thì y =0 suy ra C1 = 0 sin α kn sin α kn1 y= sin 1 x = sin x kn1 C kn1 n12 − sin 2 α Vậy quỹ đạo của tia sáng là đường hình sin. 3. Điều kiện để tia sáng truyền trong sợi quang là: sin α ≤ R. kn1 kn1R ≥ 1 Muốn đúng với mọi α thì . 4. Muốn ló ra theo phương song song Ox thì tại x = L, y có độ lớn cực đại kn1 n − sin α 2 1 Hay Suy ra 2 L= π + pπ 2 với p là số nguyên không âm. (2p + 1)π n12 − sin 2 α L= kn1 với p = 0, 1, 2 16 2.4.Chiết suất phân bố theo bước sóng. L1 L2 Bài tập 9: Một thị kính gồm hai thấu kính và mỏng, phẳng - lồi, đặt đồng trục. Các thấu kính được làm bằng thuỷ tinh chiết suất n và có tiêu cự tương ứng là f1 và f2 (đối với ánh sáng có bước sóng λ), đặt cách nhau một khoảng là e không L1 L2 đổi (e < f1). Thấu kính ở phía trước gọi là kính trường và thấu kính ở phía sau gọi là kính mắt. Giả thiết rằng điều kiện tương điểm hoàn toàn được thoả mãn. 1. Chiếu vào thị kính một chùm sáng đơn sắc bước sóng λ song song với trục chính của thị kính. Biết chùm tia ló ra khỏi kính mắt hội tụ tại điểm F. Chứng minh rằng mỗi tia ló ra khỏi kính mắt đều có đường kéo dài cắt đường kéo dài của tia tới tương ứng với nó tại một điểm nằm trên một mặt phẳng cố định vuông góc với trục chính tại H. Xác định khoảng cách f = HF từ mặt phẳng này tới F. λ0 f 01 , f 02 2. Gọi là tiêu cự của các thấu kính ứng với ánh sáng có bước sóng và thấu kính có chiết suất tương ứng là n0. a) Tìm điều kiện về khoảng cách e giữa hai thấu kính (e = e 0) để f tính ở ý 1 hầu như không thay đổi khi chiết suất n của thấu kính thay đổi một lượng nhỏ quanh giá trị n0. b) Giả thiết chiết suất n của chất làm các thấu kính phụ thuộc vào bước sóng n=a+ theo quy luật b λ2 λ (a, b là các hằng số dương; a > 1) và khoảng cách giữa hai kính là ke0 (e0 tính ở ý 2a, k là hằng số dương). Tìm độ biến thiên ∆λ = λ − λ 0 ∆λ [...]... ngược lại 2.3 Chiết suất phân bố theo mặt trụ (ánh sáng trong cáp quang) Bài tập 8: (trích đề dự thi quốc tế 2009) y O x x Một đoạn sợi quang thẳng có dạng hình trụ bán kính R, hai đầu phẳng và vuông góc với trục sợi quang, đặt trong không khí sao cho trục đối xứng của nó trùng với trục tọa độ Ox Giả thiết chiết suất của chất liệu làm sợi quang thay đổi theo quy luật: n = n1 1 − k 2 r 2 , trong đó r là... tạo thấu kính có bề dày không đổi cho a d một đĩa tròn bán kính , độ dày , tìm sự biến thiên theo bán kính của chiết suất n( r) để r f tạo ra một một thấu kính có tiêu cự thấu kính là mỏng ( Lời giải: d=a Xem F ) n Gọi chiết suất của đĩa là và sự phân bố theod bán kính của chiết suất của đĩa lẫn tạp chất là n ( r ) ; n ( 0 ) = n0 Xét các sóng phẳng tới đĩa (thấu kính có bề dày không đổi) , sóng phẳng... tia sáng chiếu tới một đầu của sợi quang tại điểm O dưới góc  như hình 2 θ 1 Gọi là góc tạo bởi phương truyền của tia sáng tại điểm có hoành độ x với trục Ox Chứng minh rằng ncos = C trong đó n là chiết suất tại điểm có hoành độ x trên đường truyền của tia sáng và C là một hằng số Tính C 2 Viết phương trình quỹ đạo biểu diễn đường truyền của tia sáng trong sợi quang 3 Tìm điều kiện để mọi tia sáng. .. một lớp trong suốt có chiết suất giảm theo độ cao theo quy luật: n = n0 − ah với n là chiết suất của khí quyển ở độ cao h so với mặt đất; n0 là n0 a chiết suất của khí quyển tại mặt đất; là hệ số không đổi, n và có trị số luôn ah lớn hơn 1 một chút, còn luôn rất nhỏ so với 1 Bán kính trái đất là R 1 Một tia sáng phát ra từ một điểm A, ở độ cao h0 chiếu theo phương nằm h0 ngang, trong một mặt phẳng kinh... đồng trục Các thấu kính được làm bằng thuỷ tinh chiết suất n và có tiêu cự tương ứng là f1 và f2 (đối với ánh sáng có bước sóng λ), đặt cách nhau một khoảng là e không L1 L2 đổi (e < f1) Thấu kính ở phía trước gọi là kính trường và thấu kính ở phía sau gọi là kính mắt Giả thiết rằng điều kiện tương điểm hoàn toàn được thoả mãn 1 Chiếu vào thị kính một chùm sáng đơn sắc bước sóng λ song song với trục chính... thành những vỏ cầu mỏng : bán kính trong r, bán kính ngoài r + dr Chiết suất của vỏ cầu coi như không đổi nr Áp dụng (3) => nr.r.sini = nR.R.sin30o = R/2 sin i = sin i ≤ 1 nr 300 i dr d rmin r R 1 R+r = 2 2R 4r r R+r r≥ R 3 => nên rmin = R/3 khi (sini)max = 1, i = 90o Khoảng cách ngắn nhất từ tâm O tới đường đi của tia sáng là R/3 (5) Bài tập 5 Chiết suất của thủy tinh có thể tăng khi lẫn tạp chất điều... tại điểm F Chứng minh rằng mỗi tia ló ra khỏi kính mắt đều có đường kéo dài cắt đường kéo dài của tia tới tương ứng với nó tại một điểm nằm trên một mặt phẳng cố định vuông góc với trục chính tại H Xác định khoảng cách f = HF từ mặt phẳng này tới F λ0 f 01 , f 02 2 Gọi là tiêu cự của các thấu kính ứng với ánh sáng có bước sóng và thấu kính có chiết suất tương ứng là n0 a) Tìm điều kiện về khoảng cách... sáng có bước sóng và thấu kính có chiết suất tương ứng là n0 a) Tìm điều kiện về khoảng cách e giữa hai thấu kính (e = e 0) để f tính ở ý 1 hầu như không thay đổi khi chiết suất n của thấu kính thay đổi một lượng nhỏ quanh giá trị n0 b) Giả thiết chiết suất n của chất làm các thấu kính phụ thuộc vào bước sóng n=a+ theo quy luật b λ2 λ (a, b là các hằng số dương; a > 1) và khoảng cách giữa hai kính là... đẳng nhiệt ở nhiệt độ 300K, hãy tính xem khí quyển của trái đất cần phải có mật độ lớn hơn bao nhiêu lần để ánh sáng bị uốn theo mặt cong của quả đất tại mực nước biển?(nguyên tắc: khi trời quang mây có thể ngắm mặt trời lặn cả đêm, tuy rằng hình ảnh của mặt trời khi đó bị nén mạnh theo phương thẳng đứng) giả thiết chiết suất n có tính chất là n-1 tỷ lệ với mật độ Độ cao 1/e của khí quyển đẳng nhiệt... Vũ Thanh Khiết (NXB-GD) Bài thi Vật lý quốc tế(tập 1+2) – Dương Trọng Bái; Cao Ngọc Viễn Olympic Vật lý 30-4 một số năm Chuyên đề bồi dưỡng HSG Vật lý THPT- quang 1 và bài tập Trích đề thi quốc gia và chọn quốc tế một số năm gần đây Đề thi đề nghị duyên hải một số năm của các trường Chuyên Bài tập và lời giải Quang học – Yung Kuo Lim (NXB-GD năm 2010) Thái nguyên tháng 5 năm 2014 20 ... truyền hai điểm A,B tia sáng môi trường có chiết suất n: ∆ = n.AB Trong môi trường có chiết suất thay đổi ta viết quang trình sau: B ∆ = ∫ n(σ )ds(σ ).(1) A σ tham số Trong môi trường xét lớp chất... với góc ló α y Vấn đề 2: Một môi trường suốt có chiết suất n biến thiên theo biến số y Một tia sáng chiếu vuông góc với mặt giới hạn môi trường điểm y=0, chiết suất môi trường có giá trị n = ny... M n0 Xác định để tia sáng truyền môi trường theo parabol Xét điểm M đường truyền ánh sáng môi trường có chiết suất n = ni , ii góc hợp tia sáng pháp tuyến Giống vấn đề ta có: nA sin iA = ni sin

Ngày đăng: 16/10/2015, 15:51

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w